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Abstract

Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent
activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H), a method that
interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible
background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring
within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase,
Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells
containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell
wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin
(WGA) binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA
binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2.
Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the
G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions
were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be
identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of
the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.
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Introduction

Identifying a protein’s interaction partners is essential for

deciphering protein function. The yeast two-hybrid (Y2H) system

is a high-throughput genetic method that enables rapid genome-

wide screening to discover a protein’s interaction partners [1]. In

its traditional and extensively-used form, the Y2H system relies on

the ability of chimeric proteins to activate transcription of a

reporter gene, an event that takes place in the nucleus. Although

the Y2H is a powerful approach, limitations arise from the fact

that protein-protein interactions are interrogated at a specific

subcellular location, the nucleus. Transcriptional activators

represent a class of proteins that cannot readily be studied using

the traditional Y2H. These proteins can activate transcription on

their own, thereby obscuring the transcriptional readout of the

Y2H assay. For these reasons, an assay that examines protein-

protein interactions at another subcellular location would provide

a powerful complement to Y2H technology. Indeed, several

groups have described two-hybrid or protein complementation

assays (PCAs) that take place in the secretory pathway [2,3], on the

cell surface [4], or in the periplasmic space of bacteria [5,6], but

none of these methods has yet been widely adopted and each has

its drawbacks. Those assays that rely solely on fluorescence-

activated cell sorting [3,4] necessitate access to special instrumen-

tation. Furthermore, they are not as efficient at analyzing large

libraries as assays that depend on survival or conditional growth.

Assays that take place in bacteria [5,6] may not be suitable for

analyzing proteins that require specialized factors or post-

translational modifications only present in mammalian cells.

To fill these gaps, we report the Golgi two-hybrid (G2H) system,

a method for identifying protein-protein interactions in the

secretory pathway of yeast. In the design of the G2H system, we

took inspiration from key features of the traditional Y2H system.

Specifically, we noted that the traditional Y2H system relies on the

modularity of a transcription factor, which is separated into two

domains. Protein-protein interactions bring together those two

domains, reassembling the transcription factor and activating

transcription of a reporter gene or genes. In an analogous fashion,

our G2H method capitalizes on the modular nature of Golgi-

resident glycosyltransferases, which consist of localization (LOC)
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and catalytic (CAT) domains. Golgi-resident glycosyltransferases

add monosaccharides to protein and lipid substrates, a large

fraction of which are subsequently trafficked to the cell surface or

the extracellular space. In the G2H system, the interaction

between two proteins reconstitutes the glycosyltransferase in a null

background, thereby restoring wild-type cell surface glycosylation.

Selection and screening strategies are critical features of any

approach to protein-protein interaction discovery. In the tradi-

tional Y2H system, a protein-protein interaction results in

activation of a reporter gene that, in turn, confers a survival

advantage or enables visual identification. Survival-based report-

ers, such as HIS3, provide selective pressure, thereby enabling

rapid analysis of large libraries of cells. Survival-based selection

can be combined with screening using a second reporter, such as

LacZ, that induces a color or fluorescence change. By using two

reporters, large cDNA libraries can be rapidly screened while

eliminating many false positives. In contrast, most non-nuclear

two-hybrid assays and PCAs rely on a single readout, thereby

limiting throughput and increasing the incidence of false positives.

Guided by the Y2H, we chose a Golgi-resident glycosyltransferase

whose activity can be detected in multiple ways. In the G2H

system, changes in cell surface glycosylation form the basis of both

conditional growth and flow cytometry-based assays. Each of these

assays could, in principle, be used both to screen individual strains

and to select cells containing interacting bait-prey pairs from a

mixed population.

We describe the fundamental features of the G2H method, a

two-hybrid assay that takes place in the secretory pathway of

eukaryotic cells. We demonstrate the utility of the G2H system by

using it to observe protein-protein interactions that cannot be

detected through traditional Y2H methods. We show that the

selection strategies incorporated in the G2H method can be used

to identify and enrich for cells containing interacting bait-prey

pairs.

Results

The G2H reporter is the yeast glycosyltransferase Och1p
The G2H assay is based on the reassembly of a Golgi-resident

glycosyltransferase. Most Golgi-resident enzymes are composed of

modular LOC and CAT domains [7,8]. The N-terminal LOC

domain dictates localization and is anchored in the membrane,

while the C-terminal CAT domain resides in the lumen of Golgi

and performs the sugar transfer reaction (Figure 1A) [9]. When

these domains are expressed separately no catalytic activity is

observed: the LOC domain is properly localized in the Golgi but

lacks catalytic activity, and the CAT domain does not encounter

its substrates because it is secreted by default [8]. Proteins to be

interrogated, a bait and a prey, are then fused to the LOC and

CAT fragments of a reporter glycosyltransferase (Figure 1).

Interaction between bait and prey reconstitutes the glycosyltrans-

ferase and restores its activity, resulting in a concomitant change in

cell surface glycosylation (Figure 1B).

Robust selection strategies are paramount to the utility of the

G2H assay. Therefore, we sought to identify a glycosyltransferase

whose activity could form the basis of a conditional growth assay

as well as at least one complementary screening method. We

examined phenotypic changes caused by the activity of Golgi-

resident S. cerevisiae glycosyltransferases whose activities are critical

to cell wall integrity [10,11,12,13,14] by assessing the growth of

deletion strains at elevated temperature or in the presence of small

molecule stressors. We focused attention on och1D because it grows

only slightly slower than the parental strain under permissive

conditions (30uC), but exhibits strong sensitivity to temperature

and to Congo red, caffeine, and hygromycin (Figure S1). Och1p is

an a1-6-mannosyltransferase that adds mannose to Man8GlcNAc2

in N-linked glycans to yield Man9GlcNAc2 [15]. This enzymatic

reaction initiates the formation of the mannan outer chain. Once

the product Man9GlcNAc2 is formed, a cascade of a1-6-

mannosyltransferases acts to produce Man50-100GlcNAc2, a high

mannose structure that covers the cell wall of wild-type yeast

(Figure 2A). While och1D yeast exhibited dramatically slowed

growth under non-permissive conditions (37uC or 30uC in the

presence of Congo red), transformation with an OCH1 plasmid

rescued growth to close to wild-type levels (Figure 2B). Although

och1D yeast exhibited reduced growth in both liquid culture

(Figure S1) and on agar plates (Figure 2B), we conducted all

subsequent growth assays on agar media because we were

concerned that the flocculation tendency of och1D yeast [16]

might interfere with our ability to accurately measure growth in

liquid culture.

In addition to the conditional growth assays, we assessed the

composition of och1D yeast cell walls by flow cytometry. Since

Och1p plays a critical role in mannan biosynthesis, och1D yeast

have dramatically different N-linked glycans from their wild-type

counterparts. Chitin-binding reagents such as Alexa488-labeled

lectin wheat germ agglutinin (WGA) bind strongly to och1D but

weakly to the parental strain (Figure 2C). Furthermore, expression

of full-length OCH1 in och1D complements the WGA binding

phenotype.

The interaction between MyoD and Id2 restores Och1p
activity

Our next step was to demonstrate that Och1p enzymatic

activity could be reassembled from the component LOC and CAT

domains. As in previous work [17], we used sequence alignment

[18] of Och1p protein sequences from multiple species to identify

the LOC and CAT domains. We designated S. cerevisiae Och1p

amino acids 1-80 as LOC and Och1p amino acids 78-481 as

CAT. DNA sequences encoding LOC and CAT domains were

Figure 1. The Golgi two-hybrid assay is based on the
modularity of the mannosyltransferase Och1p. (A) Och1p is
predicted to be a type II transmembrane protein, with a single-pass
transmembrane domain and a large, lumenal catalytic domain. Like
other Golgi-resident glycosyltransferases, Och1p can be subdivided into
localization (LOC) and catalytic (CAT) domains that function indepen-
dently. When LOC and CAT are fused to interacting bait and prey, active
Och1p is reassembled from two separate polypeptides. (B) When the
bait and prey proteins do not interact, the bait-CAT is secreted to the
outside of the cell and little Och1 activity is observed. When bait and
prey do interact, bait-CAT is retained in the cis Golgi and the resulting
Och1 activity causes a change in cell surface glycosylation.
doi:10.1371/journal.pone.0015648.g001

Golgi Two-Hybrid Assay
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cloned into the yeast expression vectors p425-TEF and p426-TEF

[19], respectively (Methods S1 and Tables S1 and S2). Since the

catalytic domain contains no localization cue, we also included an

N-terminal signal peptide to ensure its entry into the secretory

pathway.

To evaluate the ability of Och1p activity to be reconstituted

from its modular components, we examined a known protein-

protein interaction, MyoD binding to Id2. While this interaction

has been used as a positive control in Y2H assays, it presents a

potential challenge for detection. In addition to forming a

heterodimer with Id2, MyoD can also homodimerize through

the same interface. We wondered if the G2H assay would be able

to detect MyoD:Id2 complex formation in the face of competing

MyoD homodimerization. Thus, we prepared plasmids encoding

the fusion proteins LOC-MyoD and Id2-CAT. To ensure that any

interaction we observed was specific, we also prepared a LOC

domain fused to SV40 large T antigen (LOC-SV40TAg) and a

CAT domain fused to p53 (p53-CAT).

och1D yeast were transformed with pairs of plasmids. All strains

grew at 30uC and only slight growth differences were apparent

under these permissive growth conditions (Figure S2). Under non-

permissive growth conditions (at 37uC or at 30uC in the presence of

Congo red), dramatic differences in strain growth were observed

(Figure 3A). och1D yeast transformed with either LOC-MyoD or

Id2-CAT displayed och1D-like growth both at 37uC and at 30uC in

the presence of Congo red (Figure 3A). Conversely, och1D co-

transformed with both LOC-MyoD and Id2-CAT plasmids grew

robustly at elevated temperature and on Congo red plates

(Figure 3A). The observed growth differences are unlikely to be

due to toxicity of the expressed proteins, because none of the

plasmids affected growth of the parental yeast strain (Figure S3). We

interpret the rescued growth observed in och1D[LOC-MyoD][Id2-

CAT] yeast to mean that Och1p activity is reconstituted in these

cells. The distinction between och1D and och1D[LOC-MyoD][Id2-

CAT] was most pronounced in the presence of Congo red,

suggesting that Congo red provides a stronger selective pressure

than elevated temperature. Taken together, these data indicate that

Och1p, like mammalian glycosyltransferases, is modular and can be

reassembled into an active form via the interaction between MyoD

and Id2.

To confirm that the growth phenotype observed in LOC-MyoD/

Id2-CAT-transformed cells is due to Och1p activity, Alexa488-

modified WGA lectin was employed to fluorescently label yeast based

on cell wall composition. Flow cytometry analysis of yeast incubated

with Alexa488-WGA revealed that the cell wall of och1D[LOC-

MyoD][Id2-CAT] is shifted to resemble that of complemented

och1D[OCH1], whereas the cell wall of och1D transformed with only

Id2-CAT is indistinguishable from that of och1D cells (Figure 3B).

These data provide further evidence that Och1p activity is present in

cells containing both LOC-MyoD and Id2-CAT, yet is absent from

cells containing only the Id2-CAT fusion. Thus, Och1p is modular,

and its inactive modules can be reassembled via the MyoD-Id2

interaction to form a functional enzyme.

Mutations to the MyoD-Id2 interaction interface increase
Congo red sensitivity and WGA binding

To confirm that the rescued growth and WGA binding

phenotypes observed in och1D[LOC-MyoD][Id2-CAT] yeast are

Figure 2. och1D yeast exhibit phenotypes that are reversed by
OCH1 expression. (A) Och1p activity is necessary for production of
high-mannose glycans. Och1p catalyzes the addition of the a1-6-linked
mannose residue highlighted in red. Once this sugar is added, other
mannose monomers (shown by open circles) can be added. Further
elaboration results in high-mannose glycans containing 50–200
monomer units. High-mannose glycans interfere with the ability of
the WGA lectin to bind cell wall chitin. (B) och1D yeast grow slowly on
agar plates when Congo red is present or when the temperature is
elevated to 37uC. Introduction of a plasmid copy of OCH1 partially
restores growth. Each row shows ten-fold serial dilutions of the
indicated strain. (C) Och1p activity can be inferred by measuring WGA
binding by flow cytometry. Wild-type yeast bind WGA poorly, while
och1D yeast bind WGA well. Expression of full-length OCH1 in och1D
complements the WGA binding phenotype.
doi:10.1371/journal.pone.0015648.g002

Figure 3. Interaction between MyoD and Id2 reassembles
Och1p and reverses och1D phenotypes. (A) The temperature and
Congo red sensitivity of och1D yeast can be rescued by co-expression of
the interacting LOC-MyoD and Id2-CAT pair. och1D yeast were
transformed with the indicated plasmids and grown on CSM-Leu-Ura
agar plates at 30u in the presence of Congo red or at 37uC in the
absence of Congo red. Each row shows ten-fold serial dilutions of the
indicated strain. (B) Yeast strains were incubated with Alexa488-WGA
and fluorescence was measured by flow cytometry. Decreased WGA
binding is caused by co-expressing interacting LOC and CAT fusions
(LOC-MyoD and Id2-CAT) in the och1D strain.
doi:10.1371/journal.pone.0015648.g003

Golgi Two-Hybrid Assay
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due to the interaction between MyoD and Id2, we designed

mutations to disrupt this interaction. Because a crystal structure of

the MyoD-Id2 complex is not available, we modeled the MyoD-

Id2 interaction using the crystal structure of a dimeric form of

MyoD [20]. We reasoned that mutating the amino acids that form

the tightly packed helix-helix contacts would interfere with

MyoD:Id2 complex formation, preventing reassembly of Och1p

and leading to increased sensitivity to Congo red and increased

WGA binding. To test this possibility, we constructed plasmids

that harbor point mutations in the second helix of the HLH

domain of MyoD (Figure S4 and Table S3). These mutations

encode changes that replace hydrophobic residues with lysines.

We also prepared plasmids in which one or more turns of the

second helix of MyoD are deleted.

As expected, och1D yeast expressing Id2-CAT and mutant forms

of LOC-MyoD grew more slowly in the presence of Congo red

than och1D yeast transformed with wild-type LOC-MyoD and Id2-

CAT and demonstrated increased WGA binding (Figures 4A &

4B). Examination of the phenotypes observed for MyoD mutants

suggests that the Congo red growth assay and the WGA binding

assay may report on the relative strength of the bait-prey

interaction. The I149K and I157K mutants produced severe

growth defects and strong WGA binding. In fact, och1D yeast

transformed with LOC-MyoD(I149K) and Id2-CAT were almost

indistinguishable from och1D yeast transformed with Id2-CAT

alone. This observation is expected given the very strong

conservation of isoleucine at these positions throughout the bHLH

family [21]. On the other hand, the L160K and Q161K mutations

had a more modest effect, consistent with the fact that charged and

polar amino acids are found at these positions in some bHLH

family members [21]. In addition, L160 and Q161 are near the C-

terminal end of the HLH motif and may not be as critical to

packing as more centrally located residues. One surprise was the

mild phenotypic changes observed for the L150K mutant, which

appears to have only a small effect on the MyoD-Id2 interaction

despite near conservation of leucine at this position throughout the

bHLH family. As a control, we also made two point mutations to

Id2, both of them outside of the canonical HLH motif: V86K is

four amino acids C-terminal to the HLH motif, while L124K is 42

amino acids away. As expected, these mutations had milder effects

than those made to the HLH region of MyoD and the severity of

the phenotypes correlated with their proximity to the HLH motif

(Figure 4C).

The G2H detects interactions of Gal4p’s activation
domain (AD)

Next, we examined whether the G2H can detect interactions

that cannot be studied using the traditional, transcription-based

Y2H. The yeast transcription factor Gal4p contains a potent acidic

AD that interferes with analysis by standard Y2H methods. In vitro

affinity purification methods have been used to identify binding

partners of Gal4p’s AD, but the notoriously promiscuous binding

properties of this domain have complicated analyses. As an

alternative, Kodadek and colleagues used the Sos recruitment

system [22] to demonstrate that the Gal4p AD interacts with

Gal80p, Hap5p, and Rpt4p [23]. While successfully detecting

some Gal4p AD binding partners, their analysis of a yeast cDNA

library did not identify Gal11p, a known Gal4p AD binding

partner. The absence of Gal11p was hypothesized to be due to the

toxicity associated with overexpression of this transcriptional

regulator, since Gal11 overexpression has been documented to

cause a growth defect [24]. Taken together, the literature data

suggested that detecting Gal4p’s interactions would be a

demanding test for our new assay.

To test the G2H’s ability to detect Gal4p AD’s interactions,

och1D yeast were transformed with a plasmid encoding Gal4p AD

fused to the OCH1 CAT domain (Gal4AD-CAT) and with

plasmids encoding the OCH1 LOC domain fused to potential

interaction partners. We observed that och1D yeast expressing

Gal4AD-CAT alone exhibited increased growth in the presence of

Congo red and decreased WGA binding, perhaps reflecting the

notorious propensity of the acidic AD to interact nonspecifically

with a variety of proteins [25]. Despite this increased background

signal, we observed a significant growth enhancement and

decrease in WGA binding when the yeast were co-transformed

with Gal4AD-CAT and LOC-Gal80 (Figure 5A) or LOC-Gal11

(Figure 5B), and a more modest effect for yeast co-transformed

with LOC-Rpt4 (Figure 5C) or LOC-Hap5 (Figure 5D). och1D
yeast containing Gal4AD-CAT and LOC-Rpt6 demonstrated a

slight decrease in WGA binding, but no significant change in

growth phenotype relative to och1D yeast containing the Gal4AD-

CAT construct alone (Figure 5E). These data suggest that the

G2H can detect interactions of the Gal4p AD with Gal80p and

Gal11p, and, to a lesser extent, Rpt4p and Hap5p. Our inability to

detect an interaction between Gal4AD and Rpt6p is consistent

with reported cross-linking data [26] and might indicate that these

proteins do not interact directly. Using a non-transcriptional

readout enabled us to examine the interactions of a transcriptional

Figure 4. Mutations to MyoD and Id2 cause increases in Congo
red sensitivity and WGA binding. (A) och1D yeast were trans-
formed with wild-type Id2-CAT and LOC-MyoD plasmids containing
point mutations to amino acids in the HLH domain of MyoD. Yeast were
grown on CSM-Leu-Ura plates in the presence of Congo red. Each row
shows ten-fold serial dilutions of the indicated strain. Yeast were also
analyzed by flow cytometry using Alexa488-WGA. Strains expressing
mutant LOC-MyoD plasmids exhibited slowed growth in the presence
of Congo red and increased binding to WGA. (B) och1D yeast were
transformed with wild-type Id2-CAT and with LOC-MyoD plasmids in
which one or more turns of the interaction helix were deleted. Yeast
were analyzed by flow cytometry using Alexa488-WGA. Strains
expressing LOC-MyoD with deleted helices exhibited dramatically
increased binding to WGA. (C) och1D yeast were transformed with
LOC-MyoD and Id2-CAT plasmids containing point mutations to amino
acids outside the HLH domain of Id2. Yeast were grown on CSM-Leu-
Ura plates in the presence of Congo red. Each row shows ten-fold serial
dilutions of the indicated strain. Strains expressing mutant Id2-CAT,
instead of wild-type Id2-CAT, exhibited slightly slowed growth in the
presence of Congo red.
doi:10.1371/journal.pone.0015648.g004

Golgi Two-Hybrid Assay
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Figure 5. The Golgi two-hybrid assay detects interactions between a transcriptional activation domain and its binding partners.
och1D yeast were transformed with Gal4AD-CAT and LOC-Gal80 (A), LOC-Gal11 (B), LOC-Rpt4 (C), LOC-Hap5 (D), or LOC-Rpt6 (E). Yeast were grown on
CSM-Leu-Ura plates in the presence of Congo red. Each row shows ten-fold serial dilutions of the indicated strain. Yeast were also analyzed by flow

Golgi Two-Hybrid Assay
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activator and moving interaction interrogation to the Golgi seems

to have relieved the toxicity that is normally observed with Gal11p

overexpression.

Selective conditions enable enrichment of cells
containing interacting bait-prey pairs

Having established that the G2H can be used to detect known

protein-protein interactions, we wished to test whether the

phenotypic changes that we observed could form the basis of a

selection strategy. Approximately equal quantities of seven strains

were mixed together and cultured under the selective pressure of

Congo red. Each och1D strain was co-transformed with Id2-CAT

and one of seven LOC plasmids: LOC (no fusion protein), LOC-

SV40TAg, LOC-Gal80, LOC-Gal11, LOC-Hap5, LOC-Rpt6, or

LOC-MyoD. The plasmid encoding LOC without a fusion protein

was included to mimic typical plasmid library construction where

some clones lack inserts. Strains were co-cultured for 72 hours and

ratios of LOC plasmids in the culture were measured at various

times using quantitative PCR. Within 24 hours, a significant

enrichment of LOC-MyoD was observed (Figure 6). After

72 hours, the LOC-MyoD and LOC plasmids were dominant

(66% and 23%, respectively) and all other LOC fusions were

minor (,5%) constituents. These data indicate that, under

selective conditions, yeast containing an interacting bait-prey pair

rapidly outcompete those with non-interacting pairs. The

representation of LOC alone increased slightly over time, while

representation of all non-interacting LOC fusions decreased,

suggesting that fusion of LOC to a non-interacting protein actually

provides negative selective pressure. Based on these observations,

we predict that the G2H method can be used to detect and enrich

for yeast that harbor LOC and CAT constructs fused to novel

interaction partners.

Discussion

We describe the development of the G2H method and show

that it can be used to detect interactions among proteins that

cannot be studied using transcription-based two-hybrid systems,

namely transcription factors. By virtue of its secretory pathway

localization, the G2H also has the potential to be used to study the

secretome, a class of proteins that remains poorly characterized

[27]. Detecting protein interactions via the G2H method relies on

robust phenotypic changes that will enable the G2H method to be

used in both screening and selection experiments.

By interrogating protein-protein interactions in the Golgi,

rather than the nucleus, the G2H provides a powerful complement

to transcription-based approaches. We demonstrated two specific

examples of the utility of Golgi localization. First, Gal4AD is a

transcriptional activator and cannot easily be studied using assays

that employ a transcriptional readout [23]. By testing Gal4p AD

interactions in the Golgi, we avoided off-target transcriptional

effects. Furthermore, we were to detect specific Gal4p interactions,

even in the face of non-specific binding. Second, by targeting a

toxic protein to the secretory pathway, we relieved its negative

growth effects. Overexpression of Gal11p normally results in a

dramatic decrease in growth [24], yet cells expressing the Golgi-

localized LOC-Gal11 construct did not experience this toxicity.

Indeed, the opposite was true: co-transformation with the LOC-

Gal11 plasmid improved the growth of Gal4AD-CAT-expressing

yeast.

In addition to detecting the interactions of Gal4AD with a

number of binding partners, we were pleased to observe robust

detection of the MyoD:Id2 interaction. Because the LOC-MyoD

fusions are sequestered to the luminal face of the Golgi membrane,

we were concerned that they might preferentially homodimerize

with one another, rather than heterodimerizing with the soluble

Id2-CAT fusion. Nonetheless, we are able to observe strong

evidence of the LOC-MyoD:Id2-CAT heterodimeric interaction.

Competition for binding will also be expected in cases where the

prey is endogenously expressed within the Golgi and capable of

competing with the LOC fusion protein for binding to the bait-

CAT fusion protein. To investigate whether this situation will

interfere with interaction detection by the G2H, we plan to

conduct experiments to test the ability of the G2H to detect

interactions that normally occur within the secretory pathway.

Like the traditional, transcriptional-based Y2H, the G2H is

likely to have limitations. Proteins not normally localized to the

secretory pathway could misfold in the G2H due to glycosylation

of cryptic acceptor sequences or abnormal disulfide bond

formation, thereby rendering them unable to engage in their

normal protein-protein interactions. Misfolded proteins could also

be retained in the ER, potentially leading to false positive signals.

We observed reconstitution of Och1 in the Golgi through the

MyoD:Id2 interaction and through the interactions of Gal4AD

with a number of binding partners; therefore, at least some nuclear

protein-protein interactions can assemble the secretory pathway

environment, but others may be unable to do so due to differences

in pH, ion concentration (Ca2+ in particular), oxidation state, or

cytometry using Alexa488-WGA. In each flow cytometry plot, the mean fluorescence intensity (MFI) is indicated for Gal4AD-CAT expressed alone and
together with each LOC fusion. The observed increases in growth in the presence of Congo red and decreases in WGA binding provide strong
evidence for Gal4AD interactions with Gal80p and Gal11p and somewhat weaker evidence for Gal4AD interactions with Rpt4p and Hap5p. The data
do not support the Gal4AD-Rpt6p interaction.
doi:10.1371/journal.pone.0015648.g005

Figure 6. och1D yeast expressing LOC-MyoD and Id2-CAT
outcompete strains expressing non-interacting LOC and CAT
chimeras. Approximately equal quantities of strains expressing Id2-
CAT and one of seven LOC plasmids were mixed together and cultured
in media containing 10 mg/L Congo red. Quantitative PCR was used to
measure the ratio of LOC plasmids present in the culture at different
points in time. At 72 hr, the LOC-MyoD (66%) and LOC (23%) plasmids
were dominant, while the LOC-Gal11 (4%), LOC-SV40TAg (5%), LOC-
Hap5 (,1%), LOC-Gal80 (2%), and LOC-Rpt6 (,1%) plasmids were
minor constituents of the mixture.
doi:10.1371/journal.pone.0015648.g006
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protein composition. Because the secretory environment is

distinctly different from the nucleus, we predict that the G2H

will be able to detect many protein-protein interactions that the

classical, transcription-based Y2H cannot. Conversely, we expect

that many interactions that are readily detected by the classical

Y2H will be inaccessible to the G2H.

So far, the only case where the G2H assay failed to detect a

well-characterized interaction was the p53:SV40TAg complex

(data not shown). We speculate that the dodecameric structure of

the SV40TAg:p53 complex [28] may be incompatible with the

topology of the LOC and CAT fusions or that the high molecular

weight complex interferes with correct trafficking of the Och1p

fusion proteins, a phenomenon that was observed when another

large oligomeric complex was ectopically localized to the secretory

pathway [29]. If one of these hypotheses is correct, modifications

to the G2H may be necessary to adapt it to analyses of proteins

that oligomerize into very high molecular weight complexes. For

example, inserting longer linkers between LOC and CAT domains

and the bait and prey proteins may accommodate complex

interaction geometry. Alternatively, using an ER-resident glyco-

syltransferase, rather than a Golgi-resident one, may enable

detection of complexes that cannot exit the ER.

The experiments presented here describe a qualitative relationship

between protein-protein interaction affinity and the signal observed in

the G2H assay: the interaction between MyoD and Id2 produces

strong signals, while introduction of mutations designed to disrupt this

interaction decreases the strength of the phenotypic readouts. More

comprehensive analysis will be needed to determine whether the

signals observed in the growth and WGA binding assays are directly

correlated with interaction affinity. A systematic analysis of

interactions with varying affinities will enable us to answer this

question and to assess the full dynamic range of this new assay.

The use of a glycosyltransferase, rather than a transcription

factor, as a reporter enables new screening and selection methods.

The Och1p reporter system described here relies on phenotypic

changes observed in och1D yeast. The growth assay is simple to

implement and its sensitivity can be adjusted by altering the

concentration of Congo red. The WGA binding assay sensitively

detects different levels of Och1p activity and, in principle, could be

incorporated into a fluorescence-activated cell sorting (FACS)

experiment to separate yeast with an active Och1p from those in

which the protein is not reassembled.

By relying on a glycosyltransferase reporter, we envision that the

G2H could also be adapted for use in other eukaryotic cells; all

that is required is a modular reporter glycosyltransferase that

causes a measurable cell surface change. Large families of

glycosyltransferases occur in all eukaryotes, with 171 of these

enzymes identified in humans [30]. In addition the yeast Pichia

pastoris has recently been engineered to have human-like

glycosylation patterns [31] and may have a secretory pathway

better suited to discovering novel mammalian secretome protein-

protein interactions [32]. For example, one could imagine using a

G2H assay that incorporates human-like glycosylation to discover

protein ligands for orphan cell surface receptors. Indeed,

interactions among extracellular and cell surface proteins are

poorly represented in existing protein-protein interaction databas-

es [33] and new methods are needed to enable their discovery.

More broadly, glycosyltransferase activity has the potential to be

more widely exploited for screening and selection experiments.

The utility of glycosyltransferases stems from two key features.

First, they are modular enzymes that can be reassembled from

their component parts. Second, they have the ability to provide an

extracellular report of intracellular events: the activity of secretory

pathway glycosyltransferases occurs within the cell, but results in

dramatic changes on the cell surface. In the same way that the

transcription-based Y2H assay has been adapted to new uses, such

as the discovery of protease substrates [34] and of protein-protein

interactions that depend on post-translational modifications such

as acetylation and phosphorylation [35], we anticipate the G2H

has the potential to be used to report on biological events beyond

simple protein-protein recognition.

Materials and Methods

Strains, plasmids, and growth conditions
Saccharomyces cerevisiae strains (MATa, background BY4741) were

purchased from Open Biosystems. S. cerevisiae strains were grown

on yeast extract, peptone and dextrose (YEPD) or on synthetic

dextrose medium lacking leucine and uracil (CSM-Leu-Ura; MP

Biomedicals). Detailed methods for plasmid construction are

described in Methods S1. Primers used are shown in Tables S1,

S2, and S3.

Yeast transformation
All plasmids used are listed in Table S4. Plasmids were

transformed into och1D yeast (background strain BY4741, MATa,

his3D1, leu2D0, met15D0, ura3D0) or wild-type yeast (BY4741

MATa his3D1 leu2D0 met15D0 ura3D0) [36] by the lithium

acetate/SS carrier DNA/PEG method [37] and selected on CSM-

Leu-Ura plates. We used yeast colony PCR protocol to verify

transformation. A single colony was transferred to 2 mL of sterile

water in a microcentrifuge tube for each PCR reaction. The tubes

were microwaved for 30 seconds and the contents used as a

template for PCR. PCR cycling conditions were step 1: 94uC for

5 min; step 2: 94uC for 45 s; step 3: 60uC for 1 min; step 4: 72uC
for 2 min; step 5: repeat steps 2-4 35 times; step 6: 72uC for

10 min. The yeast strains used are listed in Table S5.

Yeast growth assays on agar plates
Growth of yeast strains on agar-based growth medium was scored

by dilution plating. Yeast strains were grown in liquid culture at

30uC for two days in YEPD or SD-Leu-Ura, then standardized to

an optical density at 600 nm (OD600) of 1.5. Strains were serially

diluted ten-fold in media in a 96-well plate and then transferred to

agar plates supplemented with or without Congo red (100 mg/L for

YEPD plates; between 2.5 and 6 mg/L for CSM-Leu-Ura plates)

using an inoculating manifold. Plates were incubated at 30uC or

37uC for 2 or 3 days and then imaged using an Alpha Innotech

FluorChem HD2 photodocumentation system.

Yeast growth assays in liquid culture
The ability of yeast strains to grow at 30uC or 37uC in liquid

YEPD was measured by optical density. Starter cultures of wt,

och1D, and och1D + OCH1 were grown at 30uC for two days in

YEPD. Fresh YEPD cultures were then inoculated (OD600 = 0.01)

and grown for 3 days at 30uC or 37uC. The OD600 of each culture

was measured in triplicate once daily for three days. Data were

plotted as the average OD600 of each culture, with error bars

representing +/2 one standard deviation.

Flow cytometry assay
Yeast cell wall chitin was detected using the lectin wheat germ

agglutinin (WGA) and analyzed by flow cytometry. Yeast strains

were grown at 30uC for two days in CSM-Leu-Ura, diluted to

adjust OD600 to 0.4, then aliquoted into a 96-well plate with

conical bottom (3 wells per strain; 200 mL per well). The yeast

were pelleted (1200 g for 3 min in a tabletop centrifuge) and

washed twice with 100 mL of FACS buffer (0.9% NaCl solution).
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Yeast were then incubated in 100 mL FACS buffer containing 0.01

or 0.02 mg/mL WGA-Alexa 488 (Invitrogen) for one hour at

room temperature in the dark. After the incubation, yeast were

washed three times with 100 mL of FACS buffer, then resuspended

in 200 mL of FACS buffer and placed on ice. Flow cytometry

experiments were performed on a FACSCalibur (BD Biosciences)

instrument gating on 10,000 live cells per replicate. Data were

analyzed using FlowJo software (Tree Star, Inc.). Representative

data from each experiment are shown.

Enrichment experiment
A small library was prepared by mixing together approximately

equal quantities of seven och1D strains that were co-transformed with

p426-Id2-CAT and one of seven p425-LOC plasmids: p425-LOC-

MyoD, p425-LOC-SV40TAg, p425-LOC-Gal80, p425-LOC-

Gal11, p425-LOC-Hap5, p425-LOC-Rpt6, and p425-LOC. The

mix, having a starting OD600 of 0.2, was cultured in 400 mL CSM-

Leu-Ura containing 10 mg/L Congo red. Yeast were harvested at 0,

8, 24, 32, 50, and 72 hr. Plasmid DNA was isolated the Wizard Plus

SV Minipreps DNA Purification System (Promega), with the

following modification to the manufacturer’s protocol: after resus-

pending the cell pellet in the cell resuspension solution, the same

volume acid-washed glass beads (Sigma) were added and mixture was

vortexed for 3 min. The concentrations of plasmid DNA isolated for

each time point were measured by UV absorbance.

Each qPCR reaction contained 10 mL of 2X iQ SYBR green

Supermix (Bio-Rad), 1 mL of a 10 mM forward/reverse primer

mix, 11.5 ng plasmid DNA and DNase/RNase-free water for a

final volume of 20 mL. Cycling conditions were as follows: 95uC
for 3.5 min, then 40 repeats of the following steps: 95uC for 30 sec,

60uC for 45 sec and 72uC for 2 min. SYBR green fluorescence

was detected with a BioRad MyiQ2 Two-Color Real-Time PCR

Detection System. Melting curves were obtained from 55uC to

98uC, with fluorescence measurements taken at every 0.5uC
increase in temperature. Copy number of each plasmid was

calculated by the iQ5 optical system software. Standard curves for

primers and plasmids were obtained by 10-fold dilution of

plasmids starting from 3,000,000 copies down to 300 copies. All

reactions were carried out in triplicate and a non-template control

was performed in each analysis.

Supporting Information

Figure S1 Yeast lacking mannosyltransferasases exhib-
it increased sensitivity to small molecule stressors. (A) In

liquid culture, yeast that lack OCH1 exhibit a growth delay at 30uC
and fail to grow at 37uC. Introduction of a plasmid copy of OCH1

partially restores growth. (B) Wild-type yeast (BY4741) or mutants

strains lacking mannosyltransferases were grown on YEPD with or

without various small molecule stressors. och1D yeast exhibited

strong sensitivity to caffeine, hygromycin, and Congo red. Each

row shows ten-fold serial dilutions of the indicated strain.

(TIF)

Figure S2 Under permissive conditions, och1D yeast
transformed with LOC and CAT plasmids show only
small growth differences. och1D yeast transformed with the

indicated plasmids were grown on CSM-Leu-Ura agar plates at

30uC in the absence of Congo red. Each row shows ten-fold serial

dilutions of the indicated transformant.

(TIF)

Figure S3 LOC and CAT plasmids are not toxic to yeast.
Wild-type yeast (BY4741) were transformed with the indicated

plasmids and grown on CSM-Leu-Ura agar plates (A) at 30uC in

the presence of 5 mg/L of Congo red or (B) at 37uC in the absence

of Congo red. Each row shows ten-fold serial dilutions of the

indicated transformant. In the context of this OCH1-expressing

strain, the LOC and CAT constructs do not affect growth.

(TIF)

Figure S4 Design of MyoD and Id2 mutations. (A) Clustal

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) alignment of

mouse MyoD and human Id2. The region of MyoD visible in the

MyoD crystal structure is shaded in lavender and the portion of

Id2 present in Id2-CAT is shaded in green. Sites of point

mutations to MyoD and Id2 are indicated by red stars. All point

mutations changed the native amino acid to lysine. The amino

acids shown in purple, blue, green and gold represent regions of

MyoD that were deleted in the helix deletion mutants. (B) Model

of the interaction between the HLH regions of MyoD and Id2 was

created based on the crystal structure of the dimeric MyoD bHLH

domain bound to DNA (pdb code: 1MDY). Using the clustal

alignment, the amino acids of the HLH region of one MyoD

monomer were mutated to the corresponding Id2 residues. The

modeled structure was rendered in PyMol and the sites of

mutagenesis are highlighted. The terminal residues are labeled to

provide reference to the sequence alignment.

(TIF)

Table S1 Primers used in the localization domain
constructs. Sequence and names of primers used to prepare

localization domain constructs. Restriction sites are underlined.

(DOC)

Table S2 Primers used in the catalytic domain con-
structs. Sequence and names of primers used to prepare catalytic

domain constructs. Restriction sites are underlined.

(DOC)

Table S3 Primers used for MyoD and Id2 mutagenesis.
Primers used for site-directed mutagenesis of MyoD- and Id2-

encoding DNA sequences. In the case of point mutations, the

mutated codon is shown in bold-faced type.

(DOC)

Table S4 Plasmids used. Names and descriptions of all

plasmids used in this work.

(DOC)

Table S5 Yeast strains used. Descriptions of all yeast strains

used in this work and the figures in which they were used.

(DOC)

Methods S1 Plasmid construction. Provides detailed de-

scription of the methods used for plasmid construction.

(DOC)
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