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Abstract

Background: Febrile malaria is the most common clinical manifestation of P. falciparum infection, and is often the primary
endpoint in clinical trials and epidemiological studies. Subjective and objective fevers are both used to define the endpoint,
but have not been carefully compared, and the relative incidence of clinical malaria by active and passive case detection is
unknown.

Methods: We analyzed data from cohorts under active and passive surveillance, including 19,462 presentations with fever
and 5,551 blood tests for asymptomatic parasitaemia. A logistic regression model was used to calculate Malaria Attributable
Fractions (MAFs) for various case definitions. Incidences of febrile malaria by active and passive surveillance were compared
in a subset of children matched for age and location.

Results: Active surveillance identified three times the incidence of clinical malaria as passive surveillance in a subset of
children matched for age and location. Objective fever (temperature$37.5uC) gave consistently higher MAFs than case
definitions based on subjective fever.

Conclusion: The endpoints from active and passive surveillance have high specificity, but the incidence of endpoints is
lower on passive surveillance. Subjective fever had low specificity and should not be used in primary endpoint. Passive
surveillance will reduce the power of clinical trials but may cost-effectively deliver acceptable sensitivity in studies of large
populations.
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Introduction

Childhood febrile disease is the most common clinical manifes-

tation of P. falciparum infection and is the endpoint most commonly

used to measure the public health burden of the disease, and to

assess the efficacy and effectiveness of preventative interventions

such as bed nets [1] or vaccines [2], including early phase trials [3].

Both active and passive surveillance methods have been proposed to

assess this endpoint and consensus guidelines on their use in vaccine

trials have been published [4]. However, there are no analyses that

examine the sensitivity and specificity of febrile malaria case

definitions identified by passive case detection, yet this is critical to

the accuracy of clinical trials and public health surveillance.

Defining clinical malaria in malaria endemic countries is

difficult because individuals may carry parasites without symp-

toms, and coincidental febrile episodes may have etiologies other

than malaria. The malaria-attributable fraction method uses

population data to estimate the frequency of true febrile malaria

among all febrile cases by fitting the risk of fever as a function of

parasite density using a logistic regression model[5]. This method

has been widely used under different malaria endemicities, and has

become a standard approach for deriving parasite density

thresholds to optimize sensitivity and specificity [6,7,8,9,10,11].

In active surveillance, individuals are visited regularly (monthly,

fortnightly or weekly) and assessed for malaria infection or disease

status. Provision is usually made to identify febrile episodes

between visits. This additional provision is often referred to as

‘‘passive surveillance’’, and hence the combination may be called

‘‘active and passive surveillance’’. However, the likelihood of

presentation between visits often rises as a result of the frequent

contact [12]. For this reason, and also to avoid confusion, we have

described the combination as active surveillance in this paper. The
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alternative, which we refer to as passive surveillance, relies only on

individuals’ attendance at health care facilities to identify episodes

of malaria.

It has been argued that active surveillance is more likely than

passive surveillance to misdiagnose asymptomatic parasitaemia

with a coincident, non-malaria cause of fever as a true malaria

case, leading to over-estimation of burden of malaria [13].

However, passive surveillance may miss clinical episodes that are

treated or resolve spontaneously without presentation to health

care facilities[14,15,16]. Cohorts under active surveillance often

record higher rates of malaria episodes than those under passive

surveillance [17,18] which may be interpreted either as the

inclusion of false-positives by the former, or an under-estimation of

the true malaria burden by the latter [19,20,21]. Estimates of the

global burden of malaria disease has relied on cohorts under active

case detection [22].

Comparison between surveillance methods can be confounded

by the location, malaria endemicity, age of individual being

followed and period of follow up. Therefore a formal comparison

of the relative incidence of endpoints detected by passive and

active surveillance requires matching by these variables, and has

not previously been undertaken.

Regardless of the surveillance method used, cases are often

defined by malaria parasitaemia in association with either an

objective fever (i.e. temperature.37.5) or a subjective fever. Use of

subjective fever in the case definition may lack specificity, and has

been avoided in some studies[6], but the specificity of this endpoint

has not been formally calculated.

We therefore analyzed data across four different cohorts in Kilifi

District, Kenya, in order to describe the sensitivity and specificity

of different case definitions from active and passive surveillance.

We also performed a formal comparison of specificity and

incidence of mild malaria endpoints from active and passive

surveillance in a sub-group of children who were matched by age,

period of follow up and location (implying similar malaria

endemicity).

Previous studies have suggested that a threshold of 2,500

parasites per ml adds specificity to the case definition [7], and so we

describe and compare estimates with and without this threshold.

Methods

Study cohorts and surveillance
We analyzed data from four cohorts which underwent different

surveillance methods for mild P. falciparum malaria, in order to

describe the sensitivity and specificity of case definitions within

cohorts and compare the specificity and incidences of the

endpoints from active and passive surveillance. The cohorts were

located in Chonyi, Ngerenya, Junju and Pingilikani sub-locations

of Kilifi District, on the coast of Kenya between January 1998 and

June 2009 (Figure1). The Junju cohort included children located

both in Junju and Pingilikani sub-locations. All cohorts were

nested within the wider demographic surveillance system (DSS)

which covers an area of about 891 km2 around Kilifi District

Hospital and involves six monthly re-enumeration visits to about

25,000 households. Junju and Pingilikani have generally been high

transmission areas, with moderate transmission in Chonyi, and

low transmission in Ngerenya, as evidenced by entomological

studies [23] and parasite rates [6,7]. However, transmission has

been falling throughout the period of study [24,25]. For the

purpose of this study we categorized the transmission intensity

based on concurrent parasite prevalence in each cohort.

Different follow up and blood slide evaluation protocols were

used in each cohort. In the Chonyi and Ngerenya cohorts, clinical

malaria episodes were detected using weekly active surveillance

implemented over the entire study period [7]. Children with

subjective or objective fever (axillary temperature$37.5uC) had

blood samples taken to estimate the parasite density from blood

smears. In contrast, in Junju blood smears were done only on

children with an objective fever (axillary temp$37.5uC) and

children with subjective fever without elevated temperature were

followed 6–12 hours later, and the temperature measurement

repeated. Blood smears were made if objective fever was confirmed

at this measurement. Clinicians reviewed all children who were

unwell but without objective fever. In addition while the parents of

the children in Chonyi and Ngerenya were instructed to report to

Kilifi District Hospital (20 km away) if the child had any symptoms

of disease at any time, in Junju, dispensaries were located within

5 km and trained field workers were available at all times in the

villages for passive surveillance. Pingilikani cohort was monitored

purely by passive surveillance at the Pingilikani dispensary, where

blood smears were done for all children presenting with a complaint

of fever (both objective and subjective fever). Sulfadoxine-

pyrimethamine was the first line anti-malarial drug used until early

2006 when the artemisinin base combination therapy (artemether-

lumefantrine) was introduced throughout Kenya.

Ethics statement
The details of consent procedures have been published

elsewhere [7,26]. Briefly, in Chonyi and Ngerenya, written

informed consent was obtained from parents/guardians of young

children and adults from randomly selected homesteads using an

approved consent form. In Junju written informed consent was

obtained from parents/guardians of children who earlier partic-

ipated in a non-efficacious malaria vaccine trial. Subsequently the

consent was sought for all the newborns from these homesteads.

Pingilikani dispensary cohort is part of a wider Demographic

Surveillance system with established recruitment process. The

clinical records of children in the cohort were obtained by

matching their personal identification numbers from anonymised

Demographic Surveillance System and dispensary database.

The approval for human participation in these cohorts was

given by the Kenya Medical Research Institute Scientific

Committee and National Review and the Ethical Committee of

the Kenya Medical Research Institute.

Laboratory investigations
Malaria parasitaemia was determined by examination of blood

smears stained with 2% Giemsa solution. For Junju, Pingilikani

dispensary, Chonyi and Ngerenya cohort, the number of asexual-

stage parasites/200 leukocytes was counted, and parasitaemia was

estimated on the basis of an assumed uniform white cell count;

8,000 leukocytes/mL. For members of the Junju cohort located in

the Pingilikani sub-location, parasitaemia was estimated on the

basis of actual leukocyte count measured for each blood smear.

Regression models for the determination of Malaria Attributable

Fraction used parasite densities calculated from a single method.

Only Plasmodium falciparum parasitaemia was included in the

analysis.

Calculation of Malaria Attributable Fraction
Malaria Attributable Fractions were used to estimate the

specificity of the malaria endpoints detected by different

surveillance methods. Cases were febrile children at the time of

surveillance visit. Control cases were afebrile healthy children seen

at the cross sectional bleeds during the follow up period. For

Pingilikani dispensary cohort, we used controls from Junju cross

sectional bleed. Junju is contiguous with and immediately to the
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south of Pingilikani. Malaria Attributable Fraction was determined

by using logistic regression to model the risk of fever as continuous

function of parasite density as developed by Smith et al [5].

Log
p

1{p

� �
~azbxp

Where p is the probability that a subject with x parasite density

has fever and p is the power function of parasite density. The

power function maximizes likelihood estimation for the different

age groups, cohorts and surveillance methods and was used to

model the relationship between fever and parasite density as a

continuous function. The power function was re-optimized for

each fit of the model, hence the shape of the curve relating parasite

density to the probability of fever was allowed to vary for different

populations. Confidence intervals were calculated by the bootstrap

method using 1000 repeat samplings. Analysis was performed

using STATA software (version 9.0; STATA Corp). Only children

aged 0–5 years old were included in the analysis of general MAF.

Age specific MAF were estimated to investigate variation of MAF

with age for each cohort. Children who had objective fever and

also were reported to have subjective fever were included in the

sub-analysis of ‘‘objective fever’’ but not ‘‘subjective fever’’.

Incidence rate
Active surveillance in the Junju cohort located in Pingilikani

sub-location overlapped with passive surveillance at Pingilikani

dispensary. This overlap applied to the 105 children aged 5–17

months who were under active surveillance between May 2007

and April 2008. In order to define a comparable cohort under

passive surveillance at Pingilikani dispensary, we used the

demographic surveillance system to identify age- and location-

matched children during the same period. However, we did not

include children sharing a homestead with a child under active

surveillance in this matched cohort, to avoid a possible

contaminating effect of the homestead being visited. Incidence

rates of malaria clinical episodes were calculated by counting the

number of clinical episodes of malaria divided by the total time at

risk expressed as total person years at risk.

Results

The detailed characteristics of each cohort are shown in Table 1.

In total there were 7,606 children and 299,189 surveillance visits

across all four cohorts. Fever was documented in 19,462

surveillance visits and clinical malaria was diagnosed in 9,219

surveillance visits.

MAFs of clinical malaria with objective or subjective fever
Using a subjective history of fever in the case definition was

associated with a consistently lower MAF than objectively elevated

temperature (temp$37.5uC) independent of age. This difference

was more marked in the higher transmission cohorts (Chonyi and

Pingilikani) Table 2. As expected, using a threshold of .2500

parasite/ul increased the MAF for all case definitions. However,

among children with subjective fever in Chonyi the MAF was 59%

even after applying this threshold (Table 2).

In the Junju cohort, where blood smears were only made on

objectively febrile children, on only 8 out of 532 occasions (0.02%)

were children with a history of fever but no elevated temperature

found to have febrile malaria on a return visit conducted 6–

12 hours later. The children who had no objective fever at 6–

12 hours follow-up had a similar risk of a subsequent malaria

episode as the children (matched by season and age group) who

had no history of fever (HR: 0.9 95%CI 0.7–1.5, p value = 0.9).

Older children (2.5–5 years) had lower MAF than younger

children (0–2.5 years) which increased after using a parasite

threshold of .2500/mL (data not shown). However this difference

was less marked in a low transmission cohort (Ngerenya).

Parasite densities
Children under passive surveillance in Pingilikani had a

significantly higher geometric mean parasite density than children

under active surveillance in Junju [10,300/mL:95% CI: 9,800–

10,800 versus 4,775/mL:95%CI: 3,900–5,800]. Furthermore,

there was no variation in geometric mean parasite density with

distance from dispensary for the Pingilikani dispensary cohort

within 10 kilometers of the dispensary suggesting that distance to

healthcare was not a factor that determined the likelihood of

presentation (Figure 2).

Comparison of active and passive surveillance
Part of the Junju active cohort and the Pingilikani dispensary-

based cohort overlapped geographically (Figure 1). Among an age-,

time- and location-matched subgroups of these cohorts the Malaria

Attributable Fractions were similar (Table 3). However, the

incidence of clinical malaria identified by active surveillance was

over three times the incidence by passive surveillance. The mean

febrile temperature for passive surveillance at dispensary cohort was

38.6uC [95%CI: 38.6–38.7] compared with 38.3uC [95%CI: 38.2–

38.4] on active surveillance, although the geometric mean

parasitaemia were not statistically significantly different (Table 3).

Discussion

Clinical malaria is the endpoint most commonly used in the

field to measure the efficacy of interventions to prevent malaria,

and is often used to assess the public health burden. In a subset of

concurrent location- and age-matched cohorts, we found that

purely passive surveillance without specific prompts for visits

detected about one third of the episodes that would have been

identified by active surveillance yet MAFs were similar. Further-

more, cases with subjective fever but no objective evidence

(temperature ,37.5uC) had persistently lower Malaria Attribut-

able Fractions, even when a parasite density threshold was used.

It is surprising that the difference between rates for active and

passive case detection in matched subset of children was not larger.

Pingilikani dispensary serves a population of 4000 children under

5, and there had been no contact at the homestead or village level

to encourage attendance. In contrast, active surveillance required

one local fieldworker per 30–40 children monitored with frequent

contact at the homestead level (compared to 1 field worker per

.1,000 children in passive surveillance). The large numbers of

children using Pingilikani dispensary could be attributed to the

availability of adequate staff seven days a week, good malaria

diagnostic facilities and a constant antimalarial drug supply in

contrast to frequent supply problems reported elsewhere in Kenya

[27].

Nevertheless, fewer cases of malaria were identified at the

dispensary than would have been seen on active surveillance, and in

comparison children brought to the dispensary had significantly

higher mean temperatures when they were febrile but similar

symptomatic blood stage parasitaemia. This suggests that parents

were inclined to postpone presentation at the dispensary until more

acute overt illness. This was not simply the parents’ inability to

identify illness, since when field workers were made highly accessible

in the subset of Junju cohort children located in Pingilikani sub-

Clinical Malaria: Passive and Active Surveillance
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Table 1. Baseline characteristics of cohorts used in the analysis.

Chonyi cohort Ngerenya cohort Pingilikani cohort Junju cohort

Number of children 315 575 6123 488

Follow up period analyzed 1998–2001 1998- June 2006 2003- June 2009 2006- March 2009

Median age in years (IQR)
at the start of follow up*

1.8 (3.3) 0.5(2.5) 1.6 (2.1) 2.5 (2.3)

Female % 153 (49%) 292 (51%) 2760 (45%) 202 (41%)

Transmission intensity High Low Moderate Moderate

Time at risk (years) 480.4 1930.4 25,144.1 864.8

Incidence rate 1.16[1.07–1.26] 0.63[0.6–0.67] 0.16[0.15–0.16] 0.93 [0.87–1.0]

Parasite prevalence# 30.8% 8.8% 18.7% 18.7%

Surveillance methods Weekly active surveillance
by field worker Passive
surveillance at district
hospital

Weekly active surveillance
by field worker Passive
surveillance at district
hospital

Passive visits at dispensary Weekly active surveillance
by field worker Passive
surveillance by field workers
and at dispensary

Indication for blood smear Axillary temperature $37.5
or history of fever in the
last 24 hours.

Axillary temperature $37.5
or history of fever in the
last 24 hours.

Axillary temperature $37.5
or history of fever in the
last 24 hours.

Axillary temperature $37.5
only

Number of total contact 29,353 178,292 28,384 59,604

# = Parasitaemia prevalence for all cohorts is summed up across the entire follow up period.
* = Only children less than 5 years old are included in the analysis
doi:10.1371/journal.pone.0015569.t001

Table 2. Malaria attributable fractions of malaria case definitions for any parasitaemia and .2500/uL parasites in the four cohorts.

Using objective
fever(temp$37.5 C)

Using subjective but
not objective fever
(temp,37.5 C) Using both case definitions

Chonyi cohort; active surveillance cohort

MAF for density .0/mL (95%CI) 68% (63%–71%) 44% (38%–50%) 56% (52%–61%)

Number of cases 558 1105 1663

MAF for density.2500/mL (95%CI) 81% (78%–84%) 59% (53%–64%) 70% (66%–74%)

Number of cases 456 671 1127

Ngerenya cohort; active surveillance cohort

MAF for density .0/mL (95%CI) 76% (73%–78%) 67% (65%–69%) 74% (72%–76%)

Number of cases 1225 1802 3028

MAF for density.2500/mL (95%CI) 83% (81%–85%) 81% (79%–83%) 83% (81%–85%)

Number of cases 1060 1253 2313

Pingilikani cohort; passive surveillance only cohort

MAF for density .0/mL (95%CI) 75% (74%–76%) 40% (39%–41%) 61% (60%–61%)

Number of cases 3954 3209 7163

MAF for density.2500/mL (95%CI) 85% (84%–86%) 54% (53%–55%) 73% (72%–74%)

Number of cases 2433 1609 4042

Junju cohort; active surveillance package cohort

MAF for density .0/mL (95%CI) 72% (69%–76%) NA NA

Number of cases 809 NA NA

MAF for density.2500/mL (95%CI) 85% (83%–88%) NA NA

Number of cases 636

doi:10.1371/journal.pone.0015569.t002

Figure 1. Location of the cohorts used in the study. The map shows the location of the cohorts used in the analysis. Colored regions represent
the locations where the cohorts were located. The sub-locations within each location are also shown, some of which have the same name as the
cohort.
doi:10.1371/journal.pone.0015569.g001
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location, the majority of malaria episodes were identified by

assessments initiated by the mothers between regular weekly visits.

There was no gradient of increasing parasite density with distance

from the dispensary, suggesting that the distance parents had to

travel with their children did not delay their treatment seeking. We

conclude that, in our setting, there is a barrier to approaching

medical staff in a health facility that does not exist with more

familiar, local field workers. Cases of febrile malaria not presenting

to the local dispensary may resolve without treatment or be treated

by anti-malarials bought by the parents from shops[28].

Passive surveillance in health care facilities has been reported to

be insensitive outside Africa [19,20] and globally [22]. As malaria

incidence falls, and it becomes increasingly important to identify the

majority of infections to sustain progress in control [29]. Novel

approaches, for instance passive surveillance operated by fieldwor-

kers stationed locally, deserve further consideration and evaluation.

The proportion of fevers attributable to malaria was persistently

lower in children with subjective fever than in children with

objective fever. Fever diagnosis by parents is unreliable [30,31].

Almost half of the cases with reported but not objective fever were

classified as not ‘‘true malaria’’ (i.e. they represented asymptomatic

parasitaemia in febrile patients with other etiologies). Based on our

results, the inclusion of reported fever cases in the endpoint of a

clinical trial, or in measuring the public health burden of malaria is

questionable.

Other factors may be relevant in defining the endpoint of a

study. Although the main outcome for most Phase IIb vaccine

trials in children would be clinical malaria, cluster randomized

Figure 2. Variation of geometric parasite density mean with distance from Pingilikani dispensary. Variation of geometric mean parasite
densities with distance from Pingilikani dispensary. Parasite densities have been converted into log10 scale.
doi:10.1371/journal.pone.0015569.g002

Table 3. Comparison between passive surveillance and active surveillance during follow up from May 2007 to May 2008 in a
subset of children aged 5–17months.

Passive surveillance# Active surveillance package*

Cohort location Pingilikani Junju-Pingilikani

Total number of children 561 105

Total number of contacts 932 3394

Total time at risk (person years) 562.6 91.6

Total malaria episodes h 58 34

Median contacts (Range) 1.6 (1–9) 32 (2–48)

Geometric mean parasite density (/mL) (95% CI) 14,700(8,700–24,900) 41,000(18,300–92,000)

Children with at least one malaria episode 33 14

Incidence of clinical malariah 0.10 [95%CI: 0.08–0.13] 0.37 [95% CI: 0.27–0.52]

Malaria Attributable Fraction .0/mL 92% (89%–95%) 88% (81%–96%)

Malaria Attributable Fraction .2500/mL 98% (95%–100%) 94% (87%–100%)

* = The active surveillance package consisted of passive surveillance at dispensary, passive surveillance at community by trained field worker with supervision from
study clinician and active weekly surveillance by trained field workers.
h= Clinical malaria defined as fever (axillary temperature$37.5uC plus parasitaemia of any density.
# = Passive surveillance package consisted of Passive surveillance at dispensary only. Numbers in brackets are 95% confidence interval unless indicated otherwise.
doi:10.1371/journal.pone.0015569.t003
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trials of transmission blocking vaccines might appropriately

include all parasitaemic cases identified regardless of the definition

of clinical malaria.

However, approximately half of all cases presenting had only

subjective fever, and so the loss in power of the study must be

balanced against the need to include endpoints of high specificity.

As an illustration, consider a hypothetical example where the

incidences of subjective and objective febrile malaria were both 10

per 100 children, and the respective MAFs were 54% and 85%

(using a threshold of 2,500 parasites/mL). A study would have 90%

power to detect 50% vaccine efficacy on including 1800 children

using objective fever alone as the endpoint, falling to 1300 children

using objective plus subjective fever. However, the estimate of

efficacy would be 43% using objective fever, but 35% using

objective fever plus subjective fever.

When we followed-up 532 children with subjective fever in Junju

cohort 6–12 hours later, we found only 4% (19/532) developed an

objective fever despite not receiving treatment and only 8 (0.02%)

had parasitaemia. Furthermore, children who remained afebrile at

6–12 hours of follow-up had a similar risk of subsequent malaria

episodes and other adverse events as other children matched by age

and time of follow up. This was done in a clinical trial where we

carefully monitored children and ensured 24 hour access to health

care, and would not be practical for routine healthcare or larger

studies, but demonstrates that subjective fever alone does not

identify children at a high risk of serious disease.

When estimating MAFs in the Pingilikani cohort, cross-sectional

surveys from neighboring Junju were used. Since malaria

transmission can vary significantly within short distances [32]

using controls from a different area could have biased our MAF

estimates. Furthermore controls were from a closely monitored

cohort which could underestimate the true population prevalence

of asymptomatic parasitaemia. However, these two directly

adjacent areas are similar in soil-type, housing and Entomological

Inoculation Rate (EIR) [23]. A potential estimation error is likely

to non-differentially affect both MAF estimates, and thus, is

expected not to bias incidence estimates.

Our results of the comparative analysis between passive

surveillance and active surveillance apply in the context of our

transmission patterns (seasonal/low to moderate) and age group

compared, and extrapolation to other transmission patterns and

age groups must be done with caution. Ngerenya and Chonyi

cohorts operated identical surveillance methods, but the difference

between objective fever and subjective fever was greater in Chonyi

(at moderate transmission intensity) than in Ngerenya (at low

transmission intensity). We have avoided comparisons between

surveillance in Junju and Ngerenya/Chonyi because both the

surveillance methodology and transmission intensity are different.

Another limitation of our study is its retrospective nature which is

prone to unmeasured confounding and bias.

In conclusion, the Malaria Attributable Fractions are similar

between active and passive surveillance, and passive surveillance at

the dispensary underestimates malaria occurrence substantially.

Cases of malaria identified on the basis of reported fever alone

should not be included in the primary endpoint of a clinical trial

since the specificity of the endpoint is low. Phase III studies

intended to lead to marketing licenses should test vaccines in the

standard setting of dispensary surveillance, but active surveillance

should be preferred in Phase IIb studies. Further studies are

needed to examine the potential factors inhibiting attendance at

health facilities. Improved malaria surveillance at local levels is

particularly important for supporting current malaria control

efforts and eventually, its elimination.
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