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Abstract

An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic
reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment.
Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of
urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate
a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of
cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic
acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and
thereby increasing the activity of b-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the
overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive
microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological
role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory
mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical
pathways in acidogenic microorganisms.
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Introduction

The mechanism that acts in the regulation of cell bioenergetics

belongs to the complexity of biological systems in which large

networks of metabolic pathways interact to govern the life and

responsiveness of cells in a very significant fashion. Biological

systems are constituted by a large number of components and

processes whose complex relationships determine properties like

dynamics, regulation, and adaptation [1]. In this context, the

urease of the dairy bacterium Streptococcus thermophilus represents an

interesting example of a multifunctional enzymes involved in

several metabolic processes. Urease is a complex enzyme that is

encoded by an 11-gene operon that accounts for 0.9% of the

estimated core genome of Streptococcus thermophilus [2,3]. This

enzyme has been found in all previously characterised S.

thermophilus strains, and urease-negative mutants are not common

in nature [4]. Although the physiological role of the S. thermophilus

urease has not been completely assessed, it was found to be

involved in the nitrogen metabolism by a mechanism sensitive to

aspartate, glutamate, glutamine and ammonia concentration [5,6].

The role of urease as a stress response to counteract the acidic

challenge, as it is described in several microorganisms [7], is unlike

to be applicable in S. thermophilus because urea degradation occurs

at a relatively high pH that is not associated with a significant loss

of viability [8]. The S. thermophilus genome has mainly evolved

following divergent evolution from the phylogenetically related

pathogenic streptococci. Loss-of-function mutations, counterbal-

anced by the acquisition of relevant traits [e.g. lactose utilisation]

have resulted in a S. thermophilus genome that is well-adapted for

dairy colonization [3,9]. Because urease is not common in

pathogenic streptococci [10], its acquisition and maintenance

within the S. thermophilus genome is likely dependent upon its

contribution to the environmental fitness of this microorganism.

The use of a multitechnique, metabolomic approach has

highlighted a ‘‘hidden’’ physiological role of urease enzymatic

activity in S. thermophilus.

Results

Urea-stimulated ATP synthesis
In several bacterial species, such as Ureaplasma urealyticum [11],

Bacillus pasteurii [12], Helicobacter pylori [13] and Howardella ureilytica

[14], urea hydrolysis generates an ammonium/urea-dependent

chemical potential that is coupled to ATP synthesis. The addition

of 10 mM urea to a suspension of nutrient-starved S. thermophilus

cells resulted in a rapid increase in the intracellular ATP
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concentration and a concomitant extracellular and intracellular

alkalisation that was caused by increased urease activity

(Figure 1A). In the presence of the urease inhibitor flurofamide

the intracellular ATP concentration did not increase. While the

extracellular pH (pHex) remained relatively alkaline, the intracel-

lular pH (pHin) became acidic, and this change was not dependent

upon urease activity, which persisted until approximately 83% of

the urea molecules were consumed. The urea-stimulated ATP

synthesis was not based on a chemiosmotic mechanism, since

protonophore, ionophore or ATPase inhibitors did not reduce

ATP synthesis (Table S1), which was also detected in a membrane-

free cell extract (Figure S1).

Urea hydrolysis streamlines cellular metabolism
Since the metabolism of S. thermophilus is exclusively based on the

homolactic fermentation of lactose via the Embden-Meyerhof

glycolytic pathway [15], we hypothesized that urea hydrolysis

increases the pHin and optimizes the activity of the glycolytic

enzymes, thereby increasing the rate of ATP synthesis. An increase

in the rate of ATP synthesis was detected in the absence of carbon

sources (Figure 1A), suggesting that high levels of glycolytic

intermediates were still present in the cells that were collected at

the beginning of the stationary growth phase. To corroborate

these hypotheses, the change in ATP concentration in the

presence of urea, lactose or a mixture of the two compounds

was studied in energetically discharged cells (EdC) prepared as

described in Materials and Methods S1. Urea hydrolysis effectively

increased the intracellular ATP pool (Figure 1B, C and D) only

when the EdC were activated with lactose (red line in Figure 1B).

An increase in the pHex confirmed that urease was still active in

the EdC. When EdC were provided with urea and lactose, the

extracellular pH increased, and there was a tenfold increase in the

intracellular ATP concentration, which was followed by rapid

acidification (Figure 1B) and lactic acid production (Figure 1C).

While urea did not affect the rate of lactose consumption by EdC,

it did cause a significant increase in lactic acid production

(Figure 1C). The high glucose concentration that was measured in

lactose-activated EdC (Figure 1C) indicates that in the absence of

urea hydrolysis, the production rate of glucose by S. thermophilus

Figure 1. Effects of urea hydrolysis on cellular ATP concentration and homolactic fermentation. A: Changes in the extracellular pH (pHex)
(filled circles), intracellular pH (pHin) (open circles), intracellular ATP concentration (squares), and 13C-urea concentration (diamonds) in a suspension
of wild-type S. thermophilus cells without (filled squares) or with (white squares) 10 mM of the urease inhibitor flurofamide during urea hydrolysis. The
intracellular ATP concentration was also evaluated in the urease-negative mutant A16(DureC3) (triangles). Shaded panel in B: Changes in pHex (circles)
and intracellular ATP concentration (squares) during the preparation of energetically discharged cells (EdC). White panel in B: changes in the pHex

(circles) and the intracellular ATP concentration (squares) in EdC in the presence of either 10 mM urea (white symbols), 28 mM lactose (green
symbols) or both lactose and urea (red symbols). In A and B the addition of urea and/or lactose is indicated by the arrows. C: the consumption of
lactose and production of glucose, galactose, and lactic acid in EdC that were activated with lactose (green bars) or lactose and urea (orange bars)
under the experimental conditions described in b (white panel). D: the intracellular ATP concentration (reported as light emission) and the
intracellular pH, E. MIM945 EdC were activated with 14 mM lactose (green symbols), 14 mM lactose and 0.5 mM urea (red symbols), 14 mM lactose
and 1 mM ammonia (blue symbols) or 14 mM lactose and 0.5 mM urea and 0.4 mM sodium oxamate (grey symbols). All of the experiments in this
panel were performed in the presence of 100 mg/ml of chloramphenicol to block the protein synthesis. The error bars represent the SEM.
doi:10.1371/journal.pone.0015520.g001
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was higher than the rate of glucose consumption; therefore, the

glycolytic pathway represents the rate-limiting step of metabolism.

To explore this phenomenon, we measured the intracellular

ATP concentration in the presence of D-luciferin via light emission

by the bioluminescent strain MIM945, which is a derivative of S.

thermophilus DSM20617T [16]. The light emission of the MIM945

EdC was significantly higher when the bacteria were supplement-

ed with lactose and urea or lactose and ammonia, compared to

lactose alone (Figure 1D). Furthermore, the inhibition of light

emission by sodium oxamate, a glycolytic inhibitor [17]

(Figure 1D), confirmed that the urea/ammonia-dependent ATP

synthesis, and the related light emission, were linked to glycolytic

enzymes activity. Sodium oxamate is an analogue of pyruvate

which blocks glycolysis by competitively inhibiting lactate

dehydrogenase [17]. The activation of metabolism in the EdC

by urea and ammonia indicates that urea hydrolysis accelerates

the glycolytic flux and homolactic fermentation by an intracellular

alkalisation that is generated by the release of ammonia into the

cytoplasm.

The evaluation of the intracellular pH variation during the

activation of the metabolism in EdC revealed an apparent

paradox: the highest decrease in intracellular pH was obtained

in presence of alkalizing molecules such as urea and ammonia.

Following EdC activation with lactose/urea or lactose/ammonia,

Figure 2. Dynamics of metabolite pools in S. thermophilus as determined by in vivo NMR. Time course for (1-13C)lactose (14 mM) (A), -
glucose (B), and -lactic acid (C), consumption/product formation in wild-type S. thermophilus. The metabolite concentrations were measured in in vivo
13C NMR experiments using EdC that were activated with 14 mM lactose (green symbols), 14 mM lactose and 0.5 mM urea (black symbols), 14 mM
lactose and 10 mM urea (red symbols), 14 mM lactose and 1 mM ammonia (yellow symbols) or 14 mM lactose, 0.5 mM urea and 0.4 M sodium
oxamate (white symbols). The (1-13C)-lactic acid concentration in EdC that were activated with 14 mM lactose was always below the detection limit
using the instrument parameters that are listed in Materials and Methods S1. The error bars represent the SEM.
doi:10.1371/journal.pone.0015520.g002
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the intracellular acidification rate was increased compared to

activation with lactose alone (Figure 1E). The cytoplasm

alkalization generated by urea hydrolysis, masked by the buffering

effect of the lactic acid produced by the homolactic fermentation,

was highlighted by treating the MIM945 EdC with the glycolysis

inhibitor sodium oxamate (Figure 1E).

The stimulation of S. thermophilus metabolism by urea hydrolysis

and ammonia was confirmed using in vivo NMR analysis of EdC

that were activated with (1-13C)-lactose. The dynamics of the

lactose, glucose and lactic acid concentrations (Figure 2) show that

the presence of urea and ammonia strongly affected the rate of

lactose consumption and the increase in lactic acid production,

which remained below the detection limit when the EdC were

supplied with (1-13C)-lactose only (Figure 2C). Similarly, in the

absence of urea or ammonia, the glucose concentration increased

to 8.6 mM, confirming that glycolysis is the rate-limiting step of

metabolism in S. thermophilus (Figure 2B).

Analogous experiments that were performed using L. lactis

IL1403 treated with (1-13C)-glucose with and without 1 mM

ammonia, showed that intracellular alkalization also caused

increased lactic acid production in this species (Figure S2).

Since cell metabolism is accompanied by enthalpy change, heat

dissipation measured by calorimetry represents a suitable proce-

dure to monitor metabolic activity. Based on calorimetric

experiments, the specific change in enthalpy (DH per g of protein)

in S. thermophilus increased 70% and 15% in the presence of

lactose/urea and lactose/ammonia respectively, compared to the

heat that was released by cells that were fermenting lactose only

(Figure 3). Similar data were obtained employing L. lactis cells that

were given ammonia as an alkalizing agent (Figure S3).

Urea hydrolysis has a cooperative behaviour in a mixed
bacterial community

Urea hydrolysis determines the release of ammonia into the

medium varying the pH towards alkaline values. Does the medium

alkalinization by urease-positive cells has an effect on the cell

bioenergetics of urease-negative microorganisms sharing the same

environment? To answer this question mixed-strains or –bacteria

suspensions of the urease-positive S. thermophilus wild-type

DSM20617T strain, the luminescent urease-negative A16-945

strain (a DureC3 derivative of strain DSM20617T) [2] and the

luminescent urease-negative Lactococcus lactis 1403-945 strain (a

derivative of strain IL1403) were analyzed by measuring the light

emission in presence of lactose or lactose and urea. The results

obtained clearly indicated that urea hydrolysis of the wild-type S.

thermophilus mixed-strain cultures coincided with a significant

increase in the light emission from the urease-negative cells,

indicating that there was an improvement in the energy flux of the

urease-negative strains. This result revealed a cooperative and

altruistic beneficial effect [18,19] of urease activity in mixed

microbe communities (Figure 4).

S. thermophilus metabolism is optimized to work at
alkaline pH

S. thermophilus cell suspensions were treated with the proto-

nophore uncoupler gramicidine to study the effect of pH on

Figure 3. Raw isothermal titration calorimetry data (heat flux versus time) of Streptococcus thermophilus lactose metabolism alone
(blue line) or in the presence of ammonia (green line) or urea (red line). Lactose (70 mmol), ammonia (5 mmol) or urea (2.5 mmol), was
injected into a 5 ml suspension of EdC at time zero. The inset represents the overall specific enthalpy (with respect to grams of total protein) versus
time. The details of the experimental conditions are provided in the supplementary materials.
doi:10.1371/journal.pone.0015520.g003
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glycolytic enzyme activity. Gramicidine is a protonophore carrier

that promote transmembrane movement of protons allowing the

equilibration between pHex and pHin. By adjusting the pHex

values, and therefore the pHin, it was possible to evaluate the

glycolysis and the homolactic fermentation efficiency by measuring

the glucose consumption and the lactic acid production in a

defined time period. The glycolytic enzymes had maximum

activity at alkaline pH values and the maximum glucose

consumption was observed between pH 8 and 11 (Figure 5).

Based on the glucose consumption measurements, the maximum

production of lactic acid occurred between pH 8 and 9 b-

galactosidase and lactate dehydrogenase, the two enzymes that are

upstream and downstream respectively, in the glycolytic pathway,

had optimum activity at alkaline pH values (Figure 6) [20,21].

Interestingly, the b-galactosidase activity was strongly influenced

by urea hydrolysis, and an increase in its activity was dependent

upon the urea or ammonia concentration (Figure 6A and B).

Because it was demonstrated that b-galactosidase increases the

efficiency of transport by hydrolyzing lactose and making galactose

available for the exchange reaction via the lactose permease LacS

[22], we could speculate that urea hydrolysis increases lactose

intake in S. thermophilus cells. This hypothesis was corroborated by

the time course of (1-13C)-lactose consumption in EdC activated

with lactose without or with 10 mM urea (Figure 2A).

Urea-mediated alkalisation is a non-transcriptional
mechanism to regulate cellular bioenergetics

All the previous experiments were carried out in presence of

chloramphenicol to avoid the interference of newly synthesized

proteins on the metabolic parameters measured during urea

hydrolysis or the cytoplasm alkalization induced by ammonia.

Here we evaluated the effect of cytoplasm alkalization on the

transcription of six different genes that encode enzymes directly

involved in the cellular bioenergetic machinery (lacS, lactose

permease; lacZ, b-galactosidase; gapA1, glyceraldehyde-3-phospha-

tedehydrogenase; pgk, phosphoglycerate kinase; pyk, pyruvate

kinase; ldh, lactate dehydrogenase). The experiments, performed

in absence of chloramphenicol, did not reveal significant change in

the transcript level of any of these genes in the presence of urea or

other alkalizing agents (Figure S4). This data allowed to conclude

that, in S. thermophilus, the modulation of the intracellular pH

toward alkaline values, controlled by urea hydrolysis and not a

transcriptional regulation, represents the main regulatory mech-

anism of cellular bioenergetics.

Figure 5. pH-dependent glucose consumption (red circles) and
lactic acid production (black triangles) in EdC of S. thermophilus
that were treated with 100 mM of the uncoupler gramicidine.
The error bars represent the SEM.
doi:10.1371/journal.pone.0015520.g005

Figure 4. The cooperative and altruistic behaviour of S. thermophilus urease activity in mixed bacterial communities. (A) The
intracellular ATP concentration presented as light emission, in S. thermophilus A16-945 (urease-negative) EdC in mixed cultures. The A16-945 EdC
were mixed with the wild-type EdC at the following ratios (v/v): 100% A16-945 (white triangles), 95% A16-945 (grey circles), 90% A16-945 (yellow
circles), 80% A16-945 (red circles), and 50% A16-945 (black circles). The EdC were activated with 14 mM lactose/0.5 mM urea. (B) The intracellular ATP
concentration, presented as light emission, in Lactococcus lactis 1403-945 (urease-negative) EdC in mixed cultures. The urease-negative EdC were
mixed with the wild-type EdC at a 1:1 ratio. The mixed EdC cultures were acitvated with 0.5 mM urea (white squares), 14 mM lactose (green squares)
or 14 mM lactose/0.5 mM urea (red squares). The error bars represent the SEM.
doi:10.1371/journal.pone.0015520.g004
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Discussion

Fermentation processes involve the oxidation of carbohydrates

to generate a range of products including weak organic acids.

Weak acids, such as lactic acid, have potent antimicrobial activity

because their undissociated form pass freely through the cell

membrane leading to the acidification of cytoplasm. Until now,

the acid resistance mechanisms have been investigated to clarify

how acidogenic bacteria can survive the by products of their own

metabolism and to understand the responses available to spoilage

and pathogenic organisms in low-pH environments [7]. The effect

of acid resistance mechanisms on cell bioenergetics has not yet

been experimentally investigated even if it is well established the

relatively acid-sensitivity of glycolytic enzymes [7]. Here we show

that urease is not a stress-response to a low environmental pH and

based on the data presented in this study, we propose the following

physiologic model of urease activity in S. thermophilus. Urease

activity which is stimulated when the milk pH is weakly acidic

(pH 5.8–6) [3,23], should be considered a regulatory system that

has evolved to optimize the activity of the glycolytic enzymes.

These enzymes are exposed to an increasingly acidic intracellular

environment and must maintain the cell energy homeostasis when

the pHex and pHin decrease as a result of lactic acid production.

Urease biogenesis [23] is only important when the cells are actively

growing, since it increases the fermentative capacity of S.

thermophilus and leads to rapid growth [15] and an increased

Figure 6. Urea-dependent b-galactosidase activity and pH-dependent lactate dehydrogenase activity. The dependence of b-
galactosidase activity on the urea (A) and ammonia concentration (B) in wild-type S. thermophilus wild-type (orange bars) and urease-negative
A16(DureC3) (green bars) permeabilised cell suspensions. The extracellular pH (¤) is indicated. (B). The pH-dependent lactate dehydrogenase activity
(C) was measured in crude cell extracts. All of the experiments in this panel were performed in presence of 100 mg/ml of chloramphenicol to block
the protein synthesis. The error bars represent the SEM.
doi:10.1371/journal.pone.0015520.g006
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acidification rate in milk. Since the activity of the bioenergetic

machinery modulates the intracellular pH, the mechanism of

metabolism regulation in other urease-positive bacteria, including

human pathogens, should be further analyzed. All of the metabolic

reactions that results in alkalisation of the cytosol of acidogenic

organisms, such as those involved in the arginine deiminase (ADI)

pathway, the citrate metabolism or those involved in the

malolactic conversion [7;24;25] should be analysed in light of

these novel findings. The conserved role of alkalizing reactions

across acidogenic bacteria is also supported by the data obtained

using the bioluminescents EdC of Lactococcus lactis IL1403 (ADI

positive) and S. pneumoniae SP292-945 (ADI-positive) activated with

glucose or cellobiose supplemented with ammonia (Figure S5).

The modulation of S. thermophilus metabolism by urease activity

provides a novel perspective on the complexity of the regulatory

mechanisms that governs cell biology [1]. The mechanism

presented here is a novel example of how the metabolism of

microorganisms has evolved in response to a defined environment.

It has been recently proposed that the highly efficient fermentative

capacity of the baker’s yeast Saccharomyces cerevisiae is a results of a

whole-genome duplication event that occurred during its specia-

tion in environmental habitat where glucose resources became

both large and dense [26]. According to another strategy, the

acquisition of urease operon by S. thermophilus confers a metabolic

advantage because the proteins encoded by this operon increase

the fermentative capacity in a lactose-rich environment that

contains urea, such as milk.

Materials and Methods

Bacterial strains and mutants
The bioluminescent derivatives mutants of S. thermophilus DSM

20617T, the urease-negative mutant A16(DureC3) [2] and Lacto-

coccus lactis IL1403, were created by electrotransformation with the

shuttle vector pCSS945, which contains the luciferase gene from

Pyrophorus plagiophtalamus [16].

Laboratory methods
A detailed description of the in vivo 13C- and 31P-NMR NMR

spectroscopy is provided in the supplementary materials. The

intracellular pH (pHin) was estimated using NMR as described by

Voit et al. [1] and Neves et al. [27]. The intracellular pH of S.

thermophilus was measured at external pH values of 6.0 to 9.0 using

a pH-sensitive fluorescence probe 5 (and 6-)-carboxyfluorescein

succinimidyl ester (CFSE) as described by Sawatari and Yokota

[28], which was based on the method originally described

by Breeuwer et al. [29]. The experimental protocol for the

preparation of energetically discharged S. thermophilus and

Lactococcus lactis cells (EdC) is provided in the supplementary

materials. The detailed experimental setup for the measurement of

the intracellular ATP concentration, light emission, pH and

glycolytic and homolactic fermentation in the EdC is also provided

in the supplementary materials. The ATP concentration in whole

cells, cell-free extracts and membrane-free extracts was deter-

mined as previously described by Jahns [12]. The change in

enthalpy measurements were performed using a calorimetric

approach that is described in the supplementary materials. The

measurement of the pH-dependent glycolysis and homolactic

fermentation activities were carried out as described by Nannen

and Hutkins [30] using 100 mM gramicidine as the membrane

uncoupling agent. Quantitative RT-PCR, as described in the

supplementary materials, was used to analysed the transcription of

genes that are involved in S. thermophilus metabolism. The glucose

and lactic acid concentrations were measured using HPLC, and

the assays used to determine the enzymatic activity were

performed as previously described by Krishnan et al. [31] and

Gaspar et al. [32].

Supporting Information

Table S1 S. thermophilus cells were incubated in the
presence of the indicated compounds for 5 min at 37uC
prior the addition of urea to a final concentration of 10
mM. The ATP content was determined 8 min later. a = values

are presented as the mean 6 standard deviation. The activity of

gramicidine, m-chlorophenylhydrazone (CCCP), N-dicyclohexyl-

carbodiimide (DCCD) and valinomycin on the overall metabolism

of S. thermophilus was evaluated by determining the minimal

concentration that inhibited the growth of S. thermophilus and

comparing the data obtained (expressed as mol of the chemical per

CFU) with the concentration of the same metabolic inhibitors used

for the evaluation of urea-dependent ATP synthesis. Gramicidine

inhibited S. thermophilus growth at a mol/CFU value of 3610-18

and was used for ATP measurement at a higher mol/CFU value

of 4610-17. CCCP, valinomycin and DCCD inhibited S.

thermophilus growth at a mol/CFU value of 8610-15, 8610-17 and

8610-15, respectively, and were used for ATP measurement at a

similar mol/CFU value of 4610-15, 4610-17 and 4610-15,

respectively. These data demonstrate that a similar concentration

of chemicals was used to inhibit S. thermophilus growth and during

the evaluation of the intracellular ATP concentration.

(DOC)

Figure S1 Measurement of the ATP concentration in
total cell extracts (Ec) or membrane-free extracts (MfEc)
of S. thermophilus after the addition of 10 mM urea
(grey bars) supplemented with 10 mM flurofamide (a
urease inhibitor; white bars) or 0.1% (v/v) Triton X-100
(dark grey bars). The black bars represent the ATP

concentration measured after the addition of urea to heat-treated

(100 uC for 5 min) Ec or MfEc. The errors bars represent SEM.

(TIF)

Figure S2 Time course of [1-13C]-glucose (14 mM). (A)

and -lactic acid (B) consumption/product formation in L. lactis

IL1403. The metabolite concentrations were measured in in vivo
13C NMR experiments using EdC that were activated with 14 mM

lactose (white circles) or 14 mM lactose/1 mM ammonia (black

circles). The error bars represent the SEM.

(TIF)

Figure S3 Raw isothermal titration calorimetry data
(heat flux versus time) of L. lactis IL1403 lactose
metabolism alone (blue line), or in the presence of
ammonia (red line). The effect of ammonia dilution is also

shown (green line). Lactose (70 mmol) or ammonia (5 mmol) was

injected into a 5 ml suspension of EdC at time zero. The inset

represents the overall specific enthalpy (with respect to grams of

total protein) versus time. The details of the experimental

conditions are provided in the supplementary materials.

(TIF)

Figure S4 The relative expression of S. thermophilus
genes involved in metabolism. lacS, lactose permease; lacZ, b-

galactosidase; gapA1, glyceraldehyde-3-phosphatedehydrogenase;

pgk, phosphoglycerate kinase; pyk, pyruvate kinase; ldh, lactate

dehydrogenase. Total RNA was extracted from EdC, EdC

activated with 14 mM lactose (EdCL), EdC activated with lactose

and 1 mM urea (EdCLU), EdC activated with lactose and 1 mM

Urease Activity Optimizes Cellular Bioenergetics
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ammonia (EdCLNH3) or EdC treated with NH3 (EdCNH3) or

urea (EdCU). The expression levels of analyzed genes was

normalized using polC, rpoC and murE as reference housekeeping

genes.

(TIF)

Figure S5 The intracellular ATP concentration present-
ed as light emission, in S. pneumoniae FP292-945 EdC
activated with 14 mM glucose (white circles) or 14 mM
glucose and 1 mM ammonia (black circles) (A). The

intracellular ATP concentration presented as light emission, in S.

pneumoniae FP292-945 EdC activated with 14 mM cellobiose (white

circles) or 14 mM cellobiose and 1 mM ammonia (black circles)

(B). The error bars represent the SEM.

(TIF)

Materials and Methods S1

(DOC)
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