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Abstract

The expression of protein phosphatase 32 (PP32, ANP32A) is low in poorly differentiated pancreatic cancers and is linked to
the levels of HuR (ELAV1), a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous
overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic
cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the
nucleoside analogs gemcitabine and cytarabine (ARA-C), but were sensitized to 5-fluorouracil; conversely, silencing pp32 in
pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are
treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA
encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK), causing a significant reduction in dCK protein
levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins
(e.g., VEGF and HuR), while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear
expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients’ tumors
with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic
HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide
novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target
mRNAs encoding key proteins for cancer cell survival and drug efficacy.
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Introduction

Pancreatic adenocarcinoma (PDA) is an aggressive malignancy

with a poor prognosis, even following surgical resection [1,2]. While 5-

fluorouracil (5-FU) and gemcitabine (GEM) with or without radiation

therapy constitute standard treatment in the adjuvant setting, they

provide little improvement in long-term survival [3,4,5]. Therefore, a

better understanding of acquired and de novo chemotherapeutic

resistance mechanisms is necessary for us to enhance current

treatment strategies. Although much has been learned about the

molecular changes involved in the process of pancreatic tumorigenesis,

there has been little success in our understanding of why pancreatic

cancer cells are resistant to chemotherapy [6,7].

pp32 (ANP32A) has a unique pattern of expression in many

human cancers [8,9,10,11]. pp32 functions as a tumor suppressor

protein [12], as demonstrated by its ability to inhibit k-ras-

mediated malignant transformation [13,14]. We previously

showed that pp32 expression correlates with the differentiation

status of PDA, with normal expression levels detected in well-

differentiated tumors but reduced-to-absent expression levels in

poorly differentiated tumors [14]. These findings are significant

because poorly differentiated forms of PDA are both common and

aggressive, yet little is understood about the specific molecular

characteristics of this form of PDA [15]. In a previous study,

introduction of pp32 into a poorly differentiated pancreatic cell

line caused cell cycle arrest and inhibited cell growth [14].

pp32 has been shown to be a binding partner of multiple important

proteins [14,16,17,18,19]. Previous work demonstrated that pp32 is

involved in: 1) stabilization of certain mRNAs bearing AU-rich

elements (AREs) in the 59 and 39 untranslated regions (UTRs) via the
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interaction of pp32 with the RNA-binding protein HuR (ELAVL1)

[18]; 2) the modification of histone acetylation through its role in the

inhibitor of acetyl transferase complex (termed INHAT) [17]; and 3)

the modulation of the cell cycle through its interaction with the

phosphorylated form of Rb [18,19,20,21].

Recently, we also discovered that a binding partner of pp32,

HuR [18,22], is central to GEM efficacy against pancreatic cancer

cells [23]. We demonstrated that HuR can associate with

deoxycytidine kinase (dCK) mRNA and thus regulate dCK

protein expression [23]. This association is enhanced when

pancreatic cancer cells are exposed to GEM. Upon GEM

exposure, dCK levels increase to metabolize GEM (a nucleoside

analog) from a prodrug into its active metabolites. Accordingly,

patients treated with GEM whose resected tumors expressed

elevated cytoplasmic HuR levels had a .7-fold increase in survival

compared to patients with resected tumors expressing low

cytoplasmic HuR [23]. This previous work provides the

framework to explore HuR and related proteins (pp32) in the

context of chemotherapeutic efficacy [24].

The exact role of pp32 as a tumor suppressor gene and in its

role in HuR’s post-transcriptional regulation of target mRNAs is

largely unknown. Previously, pp32 co-immunoprecipitated with

HuR in cell culture models and it was shown that pp32’s RNA

recognition motifs were critical for this interaction [18]. Further,

different investigators have claimed that pp32 is strictly nuclear or

cytoplasmic. Brennan et al. first described pp32 as a protein that

can shuttle between the nucleus and the cytoplasm along with

HuR [18]. Based on this work, we sought to explore functional

links between pp32 and HuR in regard to pancreatic cancer cell

survival (i.e., cancer cell growth and GEM efficacy).

Methods

Establishment of isogenic pp32-overexpressing and
control cell lines

MiaPaCa2 cells were transfected using Lipofectamine (Invitro-

gen, Carlsbad, CA). Full-length pp32 cDNA was subcloned into

the plasmid pc3.1 Zeo (Invitrogen), which possesses a ZeocinTM

resistance gene for selection as previously described [14,23].

For each sample, 5 uL of the VERIFY Antigen Standard

Origene overexpression lysate (1 ug/1uL) were placed with 5 uL

of 2x SDS Sample Buffer (OriGene Rockville, Maryland).

Overexpression of pp32, HuR, or empty vector were driven by

a pCMV6-Entry Vector plasmid that added a C-terminal Myc/

DDK tag to each gene (OriGene). Samples were prepared and

then loaded on a NuPage 10% Bis-Tris Gel and separated at 200

volts for 60 minutes. Proteins were then transferred to a PDVF

membrane at 30 volts for 90 minutes. The membrane was blocked

for 1 hour. The membranes were probed with primary antibodies

(thymidylate synthase, dCK, pp32, HuR, and alpha-tubulin; Santa

Cruz Biotechnology, Santa Cruz, CA) overnight. The concentra-

tions for primary antibody were as follows: HuR 1:1000, dCK

1:500, TS and alpha tubulin 1:200. Probed antibodies were then

washed with TBST solution and secondary antibody was applied

with Santa Cruz goat anti-mouse IgG-HRP antibody at a

concentration of 1:10,000. Membranes were then washed and

developed using the Immobilon Western Chemiluminescent HRP

Substrate detection system (Millipore, Billerica, MA).

Transient transfection of pp32 expression vector and

siRNA for Ribonucleoprotein immunoprecipitation binding

(RNP-IP) assays. Transient transfection was performed as

described above. siRNA knockdown was performed by using

a pp32 designed small interfering siRNA (Dharmacon,

Thermoscientific) with the use of oligofectamine (Invitrogen) as

previously described [9,23]. In brief, pancreatic cancer cell lines PL5

and MiaPaca2 cells were plated at 60% confluence and transfected in

Oligofectamine and Optimem (Invitrogen) using pp32 siRNA and a

negative control scramble sequence (Dharmacon). Cells were

collected after 48 hours for immunoblot, sensitivity assays, and

RNP-IP assays.

Isolation of RNA and genomic DNA detection of plasmids
To confirm the overexpression and reduction of pp32 mRNA in

cell lines, semi-quantitative RT-PCR was performed. MiaPaCa2

pp32-transfected (Mia.pp32) and empty vector (Mia.EV) cells were

trypsinized and collected as previously described [25] and our

generated do novo using the previously generated and purchased

parental pancreatic cancer cell line (ATCC, Manassas, VA).

Genomic DNA was isolated from Mia.pp32 and Mia.EV cell lines

and plasmid integration was confirmed by performing PCR with a

forward primer specific for the T7 sequence of the plasmid and a

reverse primer specific for pp32: FWD 59-TAATACGACTCAC-

TATAGGG-39, REV 59-CAGGTTCTCGTTTTCGCTTC-39.

Total RNA was isolated using RNeasy RNA isolation kit

(Qiagen) and then treated with Turbo-DNAfree (Ambion, Austin,

TX) to eliminate trace amounts of gDNA [25].

Ribonucleoprotein immunoprecipitation (RNP-IP) and

real-time quantitative PCR (qPCR). Cells were plated at

65% confluency and treated as indicated. Immunoprecipitation

was performed using either anti-HuR or anti-IgG control

antibodies as previously described (MBL International, Woburn,

MA) [23,26]. RT-PCR was then performed, after mass

normalization of RNA samples, to generate cDNA. Optical

Density of cDNA was measured and RT-quantitative PCR

(qPCR) was performed on an ABI 7500 instrument; 75 ng of

cDNA template was used per reaction to determine the relative

abundance of dCK, VEGF, and HuR mRNAs; samples were

normalized to GAPDH mRNA levels.

SDS-PAGE/Western Blotting
Mia.pp32 and Mia.EV cells were trypsinized and whole-cell

lysates were obtained using RIPA lysis buffer. Protein quantitation

was performed using a Bradford assay (BioRad, Hercules, CA).

Sample concentrations were equalized using RIPA. Samples were

then mixed 1:1 with 2X Laemmli buffer and separated using a

10% Bis-Tris polyacrylimide gel in 1x MOPS running buffer and

proteins were transferred and blotted with indicated antibodies as

previously described above [13].

Immunofluorescence
Mia.pp32 and Mia.EV cells were plated onto chamber slides

and treated with the indicated drugs. After treatment, cells were

washed in PBS, incubated with the indicated antibody and

processed as previously described [23]. Cell nuclei were stained

with DAPI and chamber slides were mounted for analysis with a

Zeiss LSM-510 Confocal Laser Microscope.

Cytoplasmic Extracts
MiaPaCa2 cells were plated at 60% confluence. Six h after treatment

with 1 mM gemcitabine (Eli Lilly) or no treatment, cytoplasmic extracts

were prepared as described [23,26], and immunoblot analysis

performed [23] using primary antibodies that recognized HuR

(3A2, 1:1000, Santa Cruz), hnRNP or pp32 (1:500) [13].

Growth assay
Using the same transfection protocol outlined above, MiaPaCa2

parental cells were transfected with equal amounts of pp32-

Influence of pp32 on HuR’s Regulation
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encoding and empty vector pcDNA in T-75 flasks. Media was

changed and ZeocinTM selection was performed as described

above. At the end of the two-week period, the medium was

aspirated and flasks were stained with crystal violet solution for 20

minutes, followed by thorough washes or cells were counted as

described in the figure legend.

Drug Sensitivity Assays
Sensitivity assays were performed using PicoGreenTM

(Invitrogen), a fluorescent dye that selectively binds double-

stranded DNA. The intensity of the fluorescent signal correlates

with the number of viable cells. In brief, 2000 cells were plated

per well of a 96-well plate and treated 24 h later [23].

Chemotherapeutic agents were purchased from Sigma unless

mentioned otherwise.

RNA binding assays
For ribonucleoprotein immunoprecipitation (RNP-IP) analysis,

MiaPaca2 cells were plated at a 65% confluency, treated 24 h later

with 1 mM gemcitabine for 3 h and IP performed using either

anti-HuR or IgG control antibodies as described [23,26]. After

RNA isolation, dCK mRNA levels were measured by PCR

analysis using primers TCTCTGAATGGCAAGCTCAA and

CTATGCAGGAGCCAGCTTTC [23].

Immunohistochemistry and patient samples
Formalin-fixed, paraffin-embedded blocks were processed as

described [23] using heat antigen retrieval and avidin-biotin

complex detection. Immunostaining was performed on 37 resected

PDA specimens from the Thomas Jefferson University pathology

archives after the Thomas Jefferson University Institutional

Review Board (IRB). We adhered to all ethical considerations

herein. All patient samples used were under the Thomas Jefferson

University Institutional Review Board (IRB) approved protocol.

Thus this study was performed with 100% patient consent. No

new cell lines generated directly from human tissue were used for

this study. Consent was written. IRB approval title is ‘‘Collection,

Banking, and Evaluation of tissues, blood, pancreatic juice and bile

from patients with pancreatic and related carcinomas undergoing

surgical resection.’’ In accordance with the US Department of

Health and Human services (IRB approved). The majority of

patients received GEM alone, or in combination with Xeloda or

radiation therapy. Antibodies recognizing pp32 [14] or HuR [23]

were used previously [23]. Cellular localization (nuclear versus

cytoplasmic) and staining intensity (strong versus weak) were

scored. Based on the percentage of stained cells (.50% versus 5–

50%) the expression was scored as diffuse or focal, respectively.

Survival curves were generated using GraphPad Prism (Version

4.0) and p values calculated using a log-rank (Mantel-Cox) test.

Results

Characterization of pp32 overexpressing cell lines
Plasmid integration into MiaPaCa2 cells was confirmed by PCR

amplification of genomic DNA (data not shown). Figure 1 depicts

confirmation of pp32 protein overexpression in the Mia.pp32 cell

line relative to Mia.EV. Equal protein loading was confirmed by

staining the membrane using Fast Green (Figure 1A). The strong

nuclear presence of pp32 in Mia.pp32 cells was detected by

immunofluorescence (Figure 1B). Periodic immunoblot analysis

was performed to validate continued overexpression of pp32

protein in the Mia.pp32 cells (Figure 1).

Pancreatic cancer cells have significantly reduced growth

potential compared to control cells. Numerous attempts to

generate Hs766T and PL5 cells overexpressing pp32 were

unsuccessful, while the empty vector plasmid generated colonies

routinely (unpublished data, see Methods)[14]. Similar results

were described in previous studies [8,14].

Mia.pp32 cells routinely required less frequent passaging than

Mia.EV cells. Growth assays (Figure 1C, left) performed as

described (see Methods) revealed that by day 5, there were 5-

fold fewer Mia.pp32 cells than Mia.EV cells. Note the typical

logartihmic growth of the Mia.EV compared to the blunted, linear

growth rate of Mia.pp32. We did not observe significant cell death

in either cell line in the sub-confluent state, supporting the

conclusion that reduced cell growth, rather than apoptosis,

accounted for the dramatic difference in cell counts, as previously

described [14].

We transfected the pp32 and empty vector plasmids into equal

amounts of parental MiaPaCa2 cells. A dramatic reduction in

growth in the MiaPaCa2 cells transfected with pp32 was detected

compared to the cells transfected with empty vector. We noted

markedly decreased staining in the pp32-transfected flask

(Figure 1C, right), demonstrating the decreased growth potential

of these cells compared to the control. Together, these

experiments ruled out the possibility that pp32 reduced cell

proliferation due to ‘position-effect variegation’ resulting from the

random integration of a gene into an undesirable region in the

genome.

Drug sensitivity assays revealed Mia.pp32 cells to be
resistant to nucleoside analogs

Once stably transfected Mia.pp32 and Mia.EV cell lines were

established, cells were treated with various chemotherapeutic

agents from different drug classes (Table 1). For most drugs such as

etoposide, cisplatin, oxaliplatin (Figure 2A), cyclophosphamide

and paclitaxel (Figure 2B, see Table 1 for drug class descriptions)

only negligible changes in chemosensitivity were seen between

Mia.pp32 and Mia.EV cells (Table 1 and Figure 2A and B). An

additional sub-line of pp32 transfected cells (Mia.pp32-2) was

included as an experimental control, and differences were found

between all pp32 overexpressing cell lines and the empty vector

control cells, thus ruling out an artifact of cloning (Figure 2). Both

Mia.pp32 lines and Mia.EV proliferated at the same rate, as

indicated by negligible differences observed in cell surivival

percentages between the cell lines at extreme low doses and

concentration of each drug tested (Figures 2A-C).

There was a modest increase in sensitivity of Mia.pp32 lines to

the protein kinase C inhibitor staurosporine (STS) compared to

Mia.EV (Figure 2B, right). Mia.pp32 cells were two-fold more

sensitive to 5-FU compared to Mia.EV cells (Figure 2C, left).

However, the most dramatic change was noted with drugs from

the same class that utilize dCK for cellular metabolism: GEM and

cytarabine (ARA-C) (Table 1 and Figure 2C, center and right).

Mia.pp32 cells displayed a ten-fold resistance to GEM compared

to Mia.EV, and a 2-fold resistance to ARA-C (Table 1 and

representative data, Figure 2C, center).

siRNA knockdown of endogenous pp32 expression
sensitizes cells to gemcitabine

The pancreatic cancer cell line PL5, with abundant pp32

expression, was transiently transfected using either pp32 siRNA

or a control scrambled sequence. Knockdown of pp32 expression

(Figure 3A) rendered cells approximately 3 fold more sensitive to

GEM compared to control cells (Figure 3B). pp32 knockdown did

not affect cell viability following etoposide (a negative control)

treatment (Figure 3C). We did not observe any changes in cell

Influence of pp32 on HuR’s Regulation
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growth parameters or cellular phenotype in the pp32 siRNA

cells.

Overexpression and reduction of pp32 disrupts VEGF,
HuR, and dCK mRNA transcript binding to HuR and
reduces dCK protein expression

Previously we demonstrated that dCK mRNA binds to HuR

and thus enhances dCK protein translation [23]. We manipulated

pp32 expression levels (Figure 4A) in isogenic cancer cells and then

quantitatively assessed the association of known HuR mRNA

targets dCK [23], vascular endothelial growth factor (VEGF) [27],

and HuR [28] mRNAs with HuR by ribonucleoprotein

immunoprecipitation (RNP-IP) assay as described previously

[23]. After a brief GEM treatment, the association between

HuR and dCK mRNA was detected in MiaPaCa2 cells

(Figure 4B). However, a significant reduction in dCK, VEGF,

and HuR mRNAs was detected in HuR antibody-immunopre-

cipitated-RNA from cells overexpressing pp32 (Figure S1 and

Figure 4A and B); while in the pp32 siRNA-transfected cells a

significant, consistent enhancement (.4-fold) in dCK, VEGF, and

HuR mRNAs bound to HuR (Figure 4A and B). Fold changes

were determined by comparing HuR antibody-immunoprecipi-

tated-RNAs from transfected cells to empty-vector transfected

cells, with normal, endogenous pp32 expression levels. For

Figure 1. Characterization of pp32-overexpressing cancer cells. (A) Immunoblot analysis of protein lysates from Mia.pp32 cells and controls.
Mia.pp32 cells express increased pp32 levels than Mia.EV cells. (B) Immunofluorescence with Mia.pp32 and Mia.EV cells (top). Immunofluorescence
was also performed with labeling of HuR, pp32, and DAPI under a higher magnification (bottom). Cells were then analyzed using laser confocal
microscopy. (C) Mia.pp32 cells have significantly reduced growth potential relative to Mia.EV cells. (Left) Cells were equally plated and collected on
days 3 and 5 and counted. Five-fold fewer Mia.pp32 cells were counted at 5 day compared to Mia.EV cells. (Right) MiaPaCa2 cells were transfected
with equal amounts of pp32 and empty vector pcDNA 3.1(Zeo). The flasks were treated similarly over a two-week period and subsequently stained
with crystal violet to quantitate the number of viable cells (see methods). Each flask is representative of 3 flasks.
doi:10.1371/journal.pone.0015455.g001

Influence of pp32 on HuR’s Regulation
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Figure 2. Cell survival assays of Mia.pp32 and Mia.EV cells treated with various chemotherapeutics (Table 1). Survival of Mia.pp32 and
Mia.EV lines was measured by the PicoGreen assay after 5–7 days of incubation with the indicated drug doses. (A) Drugs that cause no pp32-
dependent sensitivity; (B), drugs showing modest differences in sensitivity; (C) drugs for which pp32 conferred enhanced resistance. Graphs represent
single experiments (S.E.M.); each experiment is representative of .three individual experiments. Mia.pp32 lines are indicated as m& and the empty
vector control cells are indicated as ¤.
doi:10.1371/journal.pone.0015455.g002

Table 1. Class of drugs used in the drug sensitivity assays performed against Mia.pp32 and Mia. EV cell lines with respective IC50s
of each drug identified.

Drugs Class/Mechanism of Action Mia.pp32 IC50 Concentration Mia.EV IC50 Concentration

Etoposide Mitosis inhibitor; topoisomerase II inhibitor 200 nM 200 nM

Oxaliplatin Alkylating agent; DNA cross-linker 4.5 mM 6.5 mM

Cisplatin Alkylating agent; DNA cross-linker 2 mM 2 mM

Cyclophosphamide Alkylating agent; DNA cross-linker 1 mM 2 mM

Paclitaxel Mitosis inhibitor; microtubule stabilizer 11 nM 19 nM

Vinblastine Mitosis inhibitor; microtubule inhibition 300 pM 300 pM

Staurosporine Protein kinase inhibitor 15 nM 24 nM

5-Fluorouracil Antimetabolite; pyrimidine analog 1 mM 3 mM

Gemcitabine Antimetabolite; pyrimidine analog 350 nM 30 nM

ARA-C Antimetabolite 9 mM 5 mM

doi:10.1371/journal.pone.0015455.t001

Influence of pp32 on HuR’s Regulation
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specificity, we evaluated and did not find any binding of GAPDH

and pp32 mRNAs (Figure 4B and data not shown). Figure S1

shows the dramatic effect of stable overexpression of pp32

(Mia.pp32 cells) have on dCK mRNA binding to HuR.

Additionally, we found that dCK protein levels were reduced in

Mia.pp32 cells compared to control cells (Figure 4C). Finally, we

utilized a different cell culture model to validate these findings.

Protein lysates from Human HEK293T cells (see methods) that

overexpressed HuR, pp32 and a control vector. Validation of

HuR and pp32 overexpression was confirmed by immunoblotting

(Figure 4D). As expected, we detected enhanced dCK protein

expression in the HuR overexpression lysates [23] when compared

to control and decreased dCK protein expression in the pp32

overexpression lysates when compared to control (Figure 4D).

Alpha-tubulin and thymidylate synthase were used to show equal

protein loading. These data confirm that dCK is upregulated in a

setting when HuR is overexpressed and downregulated in a setting

when pp32 is overexpressed. Taken together, these data indicate

that pp32 can affect both dCK mRNA binding to HuR and dCK

protein expression (Figure 4).

Figure 3. siRNA knock down of pp32 increased sensitivity to GEM. (A) Immunoblot analysis of pp32 abundance in lysates from PL5 cells 48 h
after transfection. In cells transfected as explained in (A), the sensitivity to GEM (B) or etoposide (C) was tested by PicoGreen cell survival assay.
doi:10.1371/journal.pone.0015455.g003

Influence of pp32 on HuR’s Regulation
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STS and GEM enhanced cytoplasmic pp32 abundance
We confirmed previous reports [29] that STS can increase

the cytoplasmic levels of both HuR and pp32 in cancer cells

(Figure 5A). Similarly, GEM treatment increased pp32

cytoplasmic abundance, but to a lesser extent than HuR

(Figure 5A). The increase in pp32 and HuR cytoplasmic levels

after GEM treatment was assessed by Western blot analysis

(Figure 5B). No change in pp32 and HuR expression was

detected in whole-cell lysates from GEM-treated cells

(Figure 5B), in agreement with our previous results [23].

Monitoring the levels of hnRNP (C1/C2) confirmed the purity

of the cytoplasmic lysates (Figure 5B).

Figure 4. pp32 expression disrupts the association of HuR with dCK, HuR, and VEGF mRNAs. (A) pp32 mRNA levels normalized to GAPDH
mRNA levels in empty-vector transfected cells, pp32 siRNA transfected cells, and pp32 plasmid transfected cells. Number indicates fold change of
pp32 mRNA expression of labeled generated cell lines compared to empty vector control cells. (B) HuR binding to VEGF and dCK mRNAs was
detected by RNP-IP analysis in MiaPaCa2 cells transfected with pp32 siRNA, pp32 plasmid, or empty vector control (A). mRNA levels in HuR and IgG IP
samples were first normalized to GAPDH mRNA levels in the same IP reactions, and then plotted as relative fold enrichment in VEGF, dCK, and HuR
mRNAs in HuR IP vs IgG IP. Data show the mean from 3 independent data points. Two independent experiments were performed in order to confirm
the results. Numbers indicate fold changes compared to IgG control. (C) Western blot analysis of pp32 and dCK expression levels in protein lysates
from Mia.pp32 and Mia.EV cells. (D) Three lanes represent lysates from HEK293T cells generated that either left to right: overexpress HuR, empty
vector, or pp32 tagged with myc/DCK. Western blot analysis included antibodies recognizing pp32, HuR, dCK, alpha-tubulin, and thymidylate
synthase (TS) proteins.
doi:10.1371/journal.pone.0015455.g004

Influence of pp32 on HuR’s Regulation
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Nuclear pp32 intensity is a biomarker for poor prognosis
in PDA but does not enhance the predictive value of HuR
for GEM treatment

We separately detected both strong and weak nuclear and

cytoplasmic expression of both HuR and pp32 in PDA specimens

[14,23] (Table 2 and Figure 6A, HuR, left panel and pp32, right

panel). For all patients treated with GEM (n = 31) [23], pp32

nuclear intensity did not correlate significantly with GEM

response in regard to overall survival (Figure 6B). pp32 nuclear

expression levels in combination with HuR cytoplasmic status

(Figures 6C and D) did not enhance the predictive value of HuR

alone as a marker for GEM response (p = 0.0009, data now shown

[23]). We found a modest association between pp32 and HuR

subcellular localization expression levels (Table 3). Table 2

describes the association between low nuclear pp32 levels and

more aggressive tumors (higher grade, p = 0.0002, and positive for

lymph node metastasis, p = 0.0069, see Table 2). This evidence

supports our previous findings, in a separate clinical data set,

Figure 5. Subcellular localization of pp32 and HuR levels and sensitivity to stressors. (A) Immunofluoresence showing increased HuR and
pp32 cytoplasmic expression in cells treated with STS (1 mM for 3 h) and GEM (1 mM for 3 h), as indicated by the white arrows. (B)Immunoblot
analysis of HuR and pp32 levels in cytoplasmic and whole-cell lysates prepared from cells that were treated as explained in (Figure 5).
doi:10.1371/journal.pone.0015455.g005

Influence of pp32 on HuR’s Regulation
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showing that low pp32 expression correlated with poorly

differentiated PDAs [14,15].

Discussion

Numerous researchers have independently characterized pp32

as a tumor suppressor protein in a variety of experimental models

[8,9,12,13,30,31]. Early studies showed that pp32, through a

specific domain comprised of ,25 amino acids, acted like a tumor

suppressor by inhibiting K-ras, a mutant p53, c-jun, E1A, E6, and

E7 [12,13]. We found a strong correlation between both high-

grade tumors and lymph node metastasis with weak pp32 nuclear

expression (Table 2), supporting our previous findings that pp32

functions as a tumor suppressor protein in PDA [14]. Our results

suggest that pp32 expression levels directly disrupt or facilitate

HuR’s ability to support cancer cell viability and proliferation by

disrupting the stabilization of mRNA transcripts encoding proteins

Figure 6. pp32 and HuR expression in clinical samples and patient outcomes. (A) The abundance and subcellular localization of HuR (left)
and low to absent nuclear pp32 expression (right) in samples from pancreatic cancer patients were assessed by immunohistochemistry;
magnification, 200x. Samples are representative of the cohort analyzed in B–D. (B) Correlation between pp32 nuclear expression and response to
GEM treatment (p = 0.3, log rank test). (C) Correlation between high nuclear pp32-expressing tumor samples stratified into high or low HuR status in
regards to GEM response (p = 0.88, log rank test). (D) Correlation between high cytoplasmic HuR-expressing tumor samples stratified into high and
low pp32 nuclear expression correlated with GEM response (p = 0.25, log rank test).
doi:10.1371/journal.pone.0015455.g006

Table 2. Association of pp32 nuclear expression with clinicopathologic features.

Clinicopathologic features pp32 nuclear expression P value (fisher’s exact test)

High (n = 19) Low (n = 18)

Tumor grade

1 31%(6) 0%(0) 0.0002{

2 69%(13) 50%(9)

3 (0) 50%(9)

Stage

T1 5%(1) 6%(1) Not significant

T2 32%(6) 17%(3)

T3 63%(12) 77%(14)

Lymph node

No metastases 63%(12) 17%(3) 0.0069

Metastases 27%(7) 83%(15)

{indicates the p value between Grades 1 and 3.
doi:10.1371/journal.pone.0015455.t002
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necessary for tumor cell survival, such as dCK, VEGF, or HuR

(Figure 7). We postulate that the presence of pp32 can disrupt

HuR’s role in supporting tumorigenesis and cancer cell survival,

while the absence of pp32 facilitates tumorigenesis. Our work

supports and expands over a decade of research that has proven

that pp32 acts like a tumor suppressor gene in multiple models and

tumor systems [8,9,11,12,13,30,31,32] (Figure 7).

Modulation of pp32 expression through overexpression or

silencing altered the sensitivity of cancer cells to the nucleoside

analogs GEM and ARA-C (Figures 2C and 3). Further, enhanced

or reduced pp32 expression levels directly altered the interaction of

HuR with dCK mRNA (Figures 4) and significantly lowered dCK

protein expression (Figures 4C and D). These data indicate that

pp32 plays a role in HuR’s post-transcriptional regulation of dCK.

We verified earlier reports that cytoplasmic pp32 levels can increase

in the presence of specific stressors [22,33]. Perhaps different

stressors transport different pp32 gene family members in

conjunction with HuR. For example, Fries B et al. demonstrated

that APRIL and not pp32 acts as a ligand and can aid HuR in its

transcriptional regulation of CD83 [33]. Members of the pp32

protein family (e.g., APRIL, pp32r1, pp32) likely provide additional

regulatory mechanisms for HuR and its target mRNAs [31].

Although our data provide strong evidence that pp32 modulates

HuR’s function, our clinical data show that, prior to treatment,

endogenous pp32 expression and subcellular localization does not

alter HuR’s predictive value of GEM response (Figure 6).

Moreover, while an association was found between pp32 and

HuR subcellular localization in tumor specimens (Table 3), it

appears that each protein does not completely regulate the

subcellular localization of the other in vivo. Several possibilities may

explain this finding including the concept that the influence of

pp32 on HuR’s modulation of dCK expression may be transient,

and thus important at the time immediately after drug exposure.

We also note the paradoxic differences in sensitivity of our cells to

two antimetabolites, 5-FU and GEM, underscoring the impor-

tance of further investigation of how the pp32-HuR network may

respond uniquely to different chemotherapeutic stimuli and

specifically to DNA-damaging agents [24,34,35]. Further, STS

was more effective in the Mia.pp32 cells (Figure 2B, right) and can

stimulate transport of pp32 to the cytoplasm (Figure 5), indicating

that STS-metabolizing and/or sensitizing gene may be regulated

by the HuR/pp32 system.

We postulate four possibilities to explain how pp32 may

contribute to HuR’s regulation of target mRNAs, and thus GEM

efficacy and tumor suppression. First, pp32 may interact with

HuR in the nucleus and disrupt target mRNA binding to HuR.

Second, pp32 binding of a HuR-mRNA complex may block the

ability of the complex to be transported to the cytoplasm. Third,

pp32 may retain the HuR-mRNA complex in cytoplasmic foci

[22] inhibiting dCK mRNA from proper translation, however this

is less likely since we do not detect punctate distribution of pp32

(Figure 5). Fourth, it is possible that disruption of pp32’s

interaction with HuR (through low pp32 expression levels,

subcellular localization, and/or phosphorylation [36]) would allow

a HuR-mRNA complex to arrive at the polysomes for enhanced

dCK translation. Ongoing studies are aimed at elucidating the

exact mechanism(s) whereby pp32 affects HuR’s regulation of

Table 3. Correlation between pp32 and HuR subcellular
localization.

pp32 nuclear

HuR cyto High Low

High 8 13

Low 11 5

p value = 0.09, Fisher’s exact test.
doi:10.1371/journal.pone.0015455.t003

Figure 7. Schematic depiction of the functional, biologic, and clinical consequences of pp32 expression levels on HuR’s post-
transcriptional regulation of targets including dCK, VEGF, and HuR mRNAs. On the left side shows a scenario where pp32 is reduced or
absent (tumorigenesis) and HuR is available to associate and stabilize mRNAs that support cancer cell survival and viability. On the right side is a
scenario in which pp32 is present (tumor suppression) and HuR can not bind to mRNAs important for cancer cell survival. Note: GEM is more likely to
be metabolized from its prodrug form to its active metabolites by dCK in the scenario on the left.
doi:10.1371/journal.pone.0015455.g007
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different target mRNAs in cancer cells. Finally, we can not rule out

the possible contribution of other pp32 tumor suppressor functions

[12,17,19,29] that may help explain our observations.

In conclusion, we demonstrate that pp32 and HuR have a

complex molecular interplay that has clinical relevance with

regard to chemotherapeutic efficacy (i.e., GEM response) and

cancer cell survival. Subtle changes in pp32 expression levels may

potently inhibit multiple core signaling pathways involved in

tumorigenesis (Figure 7). By targeting pp32’s molecular interaction

with HuR, we may be able to achieve improved clinical outcomes

for this devastating disease. Future studies will uncover the

specificity and the extent in which pp32 can influence all HuR

mRNA targets.

Supporting Information

Figure S1 RNP IP assay to measure the association of
dCK mRNA with HuR in Mia.pp32 cells. RNA extracted

from the RNP IP assays were run as a control (the two right lanes

next to the dH20 lane). Equal amounts of RNA converted to

labeled cDNA (100 ng each) were amplified via PCR with dCK-

specific primers. Labeled ctrl cDNA was RNA converted to cDNA

from MiaPaCa2 parental cells and was used as control for the

PCR amplification (the right two lanes).
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