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Abstract

Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded
by the lack of a universal statistical standard. Providing an E-value calibration protocol, we demonstrated earlier the
feasibility of translating either the score or heuristic E-value reported by any method into the textbook-defined E-value,
which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics
and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a
new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific E-values for additive scoring functions. Given a
selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding
score histograms of all possible peptides using dynamic programming. Using these score histograms to assign E-values
enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four
different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score
histogram given a MS/MS spectrum and a scoring function, (iii) reassign E-values for a list of candidate peptides given a MS/
MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In
modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific
statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux,
Windows, and Mac OS X are available from the same page.
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Introduction

General Background
Gaining popularity in biology over the last decade, mass

spectrometry (MS) has become the core technology in the field of

proteomics. Although this technology holds the promise to identity

and quantify proteins in complex biological mixtures/samples,

such a goal has not yet been achieved due to the presence of a

number of difficulties ranging from experimental design and

experimental protocol standardization to data analysis [1–3]. This

paper mainly focuses on the data analysis, especially providing

accurate statistical significance assignments for peptide candidates

in peptide identifications. There are many peptide identification

methods that are available to the proteomics community. Because

different identification methods process (filter) the MS/MS spectra

differently and also have different scoring functions, it is natural for

users to wish to compare search results from different search

methods or to combine these results to enhance identification

confidence. Nevertheless, there are important issues to be

addressed prior to successfully reaching this goal.

Due to intrinsic experimental variability, differences in the

peptide chemistry, peptide-peptide interactions, ionization sources,

and mass analyzers used, it is natural to expect among tandem

mass spectra variations in signal to noise ratios even when each

peptide in the mixture has equal molar concentration. That said,

one anticipates the noise in a mass spectrum to be spectrum-

specific and the meaning of a search score depends on its context,

i.e., the spectrum used. That is, although search score can be used

to compare candidate peptides associated with the same query

spectrum, it is no longer a valid measure when one wishes to

compare peptides identified across spectra. Not only posing a

challenge for ranking identified peptides within a single experi-

ment, this also raise a serious problem when one wishes to

compare or combine search results from different scoring functions

(or search methods).

If one knows how to translate the score or reported E-value of

one method to that of another method, or to a universal standard,

it helps significantly the task of comparing/combining search

results. This is particularly true when one wishes to combine

search results from multiple scoring functions. We showed in an

earlier publication [4] that it is possible to use the textbook-defined

E-value as that universal standard. Providing an E-value

calibration protocol, we demonstrated the feasibility of translating

either the score or heuristic E-value reported by any method to the

textbook-defined E-value, the proposed universal statistical

standard. This protocol, although robust, may (a) lose spectrum-

specific statistics, and may (b) require a new calibration when

changes in experimental set up occur.

Without attempting a universal statistical standard, several

machine-learning based approaches have been developed to either
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re-rank identified candidate peptides [5,6] or to combine search

results from several search methods [7,8]. These approaches

require for their analyses training data set(s), either pre-constructed

or obtained on-the-fly, to aid the parameter selections for their

discriminant functions. For methods with feature vector (allowed

to contain some spectrum-specific quantities) updated on-the-fly

[6,8], the spectrum-specific bias may be partially compensated, but

not giving rise to spectrum-specific statistics. This is because the

feature vector, although may be trained with spectrum-specific

quantities, aims to categorize the whole training set into finite

number of classes but does not solely reflect the properties of any

individual spectrum.

To address the issue of spectrum-specific statistics, we developed

a new MS/MS search tool, RAId_aPS (a new module of the RAId

suite), that is able to provide spectrum-specific E-values for additive

scoring functions that do not have known theoretical score

distributions. RAId_aPS provides the users with four different

modes to choose from: (i) compute the total number of possible

peptides (TNPP), (ii) generate score histogram, (iii) reassign E-

values, and (iv) database search. In modes (iii) and (iv), RAId_aPS

is also capable of combining results [9] from different scoring

functions. Founded on the algorithm published earlier [10], mode

(i) is a straight implementation of an existing idea. However,

modes (ii) to (iv) are novel, albeit at different levels. Mode (ii) uses

the algorithm published earlier [10], nevertheless, generating the

all-possible-peptide (APP) score histograms of different scoring

functions was never done. Mode (iii) is novel from the concept to

its implementation. Modes (i–iii) do not have counter-parts in

other components of RAId suite. Mode (iv) is similar to

RAId_DbS [11] in the sense that it performs database searches.

However, the difference between mode (iv) of RAId_aPS and

RAId_DbS lies in the use of statistics. The theoretical score

distribution of RAId_DbS fits score histogram of database

peptides per spectrum, while mode (iv) RAId_aPS uses score

distributions of APP and is able to provide statistics for multiple

scoring functions.

The term ‘‘all possible peptides’’ (or APP) deserves some

deliberation. The pool of APP includes any linear arrangement of

amino acids. Therefore, when considering peptides of L amino

acids without modification, the APP pool includes all the (20)L

combinations. For the purpose of mass spectrometry data analysis,

instead of peptides with a fixed length one is more interested in

APP within a specified molecular mass range. The number of

possible peptides (PP) within a molecular mass range is much

larger than the number of database peptides within the same

molecular mass range. For example, for the molecular mass range

½2208Da,2304Da�, there are approximately 10,000 peptides in the

Bos Taurus database, while there are in total 1:385|1026 PP with

lengths (number of amino acids) ranging from 13 to 39.

Using dynamic programming, RAId_aPS generates the score

histograms from scoring APP. These score histograms are then

used to assign accurate, spectrum-specific E-values. Since

RAId_aPS uses the score histograms, or the (weighted) rank of

each candidate peptide considered among APP, it is already in

conformity to the textbook defined P-value and thus there is no

need to translate the score or heuristic E-value into the universal

standard. Consequently, RAId_aPS is able to provide a calibra-

tion-free protocol for accurate significance assignment and for

combining search results.

In order to provide a clear exposition, it is necessary for us to go

into some technical details. Readers not interested in the details,

however, may want to read the results section first and then come

back to read other sections. To make the paper easier to read and

more modular, we outline below the organization of this paper. In

the Technical Background subsection below, we will review the

similarities and differences between two major approaches in

dealing with peptide identification statistics, describe how one may

achieve calibration-free, spectrum-specific statistics. In the Method

section, we first describe the dynamic programming algorithm

needed to generate the score distribution of APP, followed by

spectral filtering procedures each associated with a scoring

function implemented. The incorporation of the four scoring

functions are then reported since some of them are nontrivial to

encode via dynamic programming. We then describe how the APP

statistics are implemented in practice, how to include modified

amino acids in APP statistics, and how to combine search results

from different scoring functions. In the Results section, we describe

several tests performed using various modes of RAId_aPS, as well

as the E-value accuracy assessment. The paper is then concluded

by the Discussion section. All the technical aspects that are not

most essential in understanding the basic idea are provided either

as supplementary texts or supplementary figures. The most

important message is that RAId_aPS serves as a calibration-free,

statistically sound method for comparing or combining search

results from different scoring functions.

Technical Background
Since this paper is focused on the statistical aspect of peptide

identifications, we will start with such an example. In general, it is

rather easy to rank candidate peptides given a tandem mass

spectrum. Once a scoring function is selected to score peptides,

qualified database peptides (those within a molecular mass range

and with correct enzymatic cleavages) can be ranked based on

their scores. However, it becomes difficult to rank candidate

peptides across all spectra. Although a number of publications

have proposed different ways tailored to deal with various aspects

of this difficulty [4,12], this problem remains very challenging.

Should one take the best candidate peptide per spectrum and then

postprocess to globally re-rank those best hits or should one devise

something different to achieve the maximum robustness? Instead

of discussing the differences between these two possibilities, we first

wish to point out a common theme that is often unnoticed:

spectrum-specificity.

Spectrum Specificity
As mentioned in the Introduction section, spectrum-specificity

has not been emphasized enough. However, there does exist

evidence of community’s recognition of this point. For example, by

picking the best hit out of each spectrum, one is acknowledging

spectrum-specificity, because one has chosen to keep the best

candidate per spectrum regardless of the fact that the best hit in

one spectrum might have lower score than the second best hit in

some other spectrum. In other words, by picking only the best hits

one has endorsed the view that the score should not be used as an

objective measure of identification confidence across all candidate

peptides; or more precisely, the meaning of score depends on its

context, i.e., the spectrum used.

There exists another route to apply the concept of spectrum-

specificity. That is to use a spectrum-specific score distribution to

assign an E-value to each candidate peptide of a spectrum.

Although the term spectrum-specific statistics was not explicitly

mentioned, the proposal of Fenyo and Beavis [13] to fit per

spectrum the tail of score distribution to an exponential represents

the first attempt, to the best of our knowledge, in this direction.

The concept of spectrum-specific statistics was formally introduced

by Alves and Yu [14]. The same group also developed RAId_DbS

[11], so far the only database search tool with a theoretically

derived spectrum-specific score distribution. The importance of
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spectrum-specific statistics is then emphasized through a series of

publications [4,9,11,15]. The key point of this type of approach is

to exemplify spectrum-specificity via spectrum-specific score

statistics. After describing the common theme, spectrum specific-

ity, we now turn to features associated with different types of

approaches to elucidate the usefulness of an even more general

statistical framework.

Best hit per spectrum versus Accurate E-value
When keeping only the best hit per spectrum, a global re-

ranking among those best hits becomes necessary in order to

decide which best hits to trust over the others. This is usually

achieved in one of the two ways to be described. The first possible

choice is to use the original score in conjunction with either false

discovery rate (FDR) or q-value analysis through introduction of a

decoy database. The second choice is to use some kind of refined

score in conjunction with an empirical expectation-maximization-

based Bayesian approach [5]. This global re-ranking type of

strategies, unfortunately, makes assumptions contradicting spec-

trum-specificity, a fundamental fact that is respected when only

the best hit per spectrum is retained.

In the FDR (be it global or local) or q-value analyses, one pools

together the best hits across spectra and order the hits by their

scores. This contradicts the idea of picking best hit per spectrum,

which essentially endorses the notion that the meaning of a peptide

score is spectrum-dependent and can’t be used to rank peptides

globally across spectra. For the Bayesian type of analyses [5], one

assumes the existence of two score distributions: one for the score

of correctly identified spectra, in terms of best hit, and another for

the score of incorrectly identified spectra. This means that all

correctly identified spectra –in terms of best hit– should be ranked

according to the best hit’s refined score, implying that one may use

the refined score to assign relative identification confidence across

spectra. This again contradicts the idea that the meaning of a

peptide score is spectrum-dependent. Furthermore, to perform the

expectation maximization procedure, one often needs to assume the

parametric forms of the two distribution functions, which might

not be applicable to all scoring functions.

When the reported spectrum-specific E-value (assigned to each

of the candidate peptides per spectrum) is in agreement with its

definition, it can serve as an objective measure of identification

confidence. For a given spectrum and a score threshold, the E-

value associated with that score threshold is defined to be the

expected number of false hits that have score better than or equal

to that threshold. In simple terms, the E-value associated with a

candidate peptide in the database may be viewed as the number of

false positive hits anticipated, from querying a spectrum, before

calling the peptide at hand a true positive hit. However, a previous

study [11] showed that most E-value reporting methods

investigated report inaccurate E-values. To rectify this problem,

we provided a protocol [4] to calibrate E-values reported by other

search methods, including search tools that don’t report E-values

such as ProbID [16] and SEQUEST [17]. However, the

calibration procedure cannot restore/recreate spectrum-specificity

for methods not reporting E-values or reporting E-values that are

not obtained via characterizing the score histogram for each

spectrum (spectrum-specific score modelling).

Nevertheless, spectrum-specific statistics can be obtained

provided that one extracts statistical significance from the score

histogram for each spectrum [4]. A recent reimplementation [18–

20] of the SEQUEST XCorr follows exactly this idea. To avoid

possible confusion, however, we must first note that the p�-value in

reference [18] is actually the E-value. Authors of reference [18]

assume that the XCorr from every spectrum can be fitted by a

stretched exponential without providing, like most other methods,

a measure on the agreement between the best fitted parametric

form and the score distribution per spectrum. To ensure the

accuracy of statistics, a measure of the goodness of the model

[11,21] is actually necessary even for scoring systems that have a

theoretically characterized distribution. This is because very biased

sampling might lead to a discrepancy between the theoretical

distribution and the score distribution, not to mention a

discrepancy between a fitted parametric form and the score

distribution.

One way to circumvent the aforementioned problem is to apply

a target-decoy strategy at the per spectrum level. This means that one

uses the hits from decoy database to estimate the identification

confidence of peptides from the target database. This approach,

unfortunately, is not computationally efficient because one will

need a decoy database that is much larger than the target database

in order to have a good estimate of the E-value for each hit in the

target database. For example, if the number of qualified peptides

in the decoy database is 1,000 times that in the target database,

and if a peptide in the target database scores between the third and

the fourth decoy hits, then that peptide will acquire an E-value

between 3|10{3 and 4|10{3. And if there are target hits that

score better than the best decoy hit, all one can say is that they all

have E-values smaller than 10{3. If one keeps increasing the size

of the decoy database, one will eventually be able to globally rank

the candidate peptides from all spectra using E-value. However,

computational efficiency prevents us from using this strategy.

These aforementioned problems associated with obtaining

spectrum-specific statistics can be avoided provided that one uses

a search method that has a theoretically derived score distribution

[11]. However, restricting to methods that have theoretically

derived statistics is not necessarily the best strategy since each

search method does have different strengths [9,22]. It can be

advantageous to combine different types of search scores.

Therefore, for assigning peptides’ identification confidence, it is

desirable to have a unified framework which we now turn to.

APP Statistics (calibration-free)
Alves and Yu in 2005 proposed [14] using the de novo rank as the

statistical significance measure. Despite the simplicity of this idea,

it was never fully carried out. Since it is this idea that inspired the

development of RAId_aPS, we need to describe the basic concept

to some detail so that various extensions employed in RAId_aPS

can be properly explained.

The fundamental idea is as follows. For a given MS/MS

spectrum s with parent molecular mass MW and a given mass

error tolerance d, we denote by P(s,d) the set of APP subjected to

enzymatic cleavage condition in the mass range ½MW{d,
MWzd�. We also denote by D(s,d,C) the set of peptides in the

(target) database, subjected to a set of conditions C, in the mass

range ½MW{d,MWzd�. The set of conditions C may contain,

for example, the enzymatic cleavage constraints, number of

miscleavage sites per peptide allowed, and others [23]. The

following argument is also applicable to the case when one wishes

to weight each peptide in the APP set by its elemental composition.

This may be used to form a background model mimicking the

amino acid composition in the target database [10,24].

Let N(S,s) be the (weighted) number of peptides out of P(s,d)
that have scores greater than or equal to S. We then define the

APP P-value corresponding to score S by N(S,s)=DP(s,d)D, with

DP(s,d)D representing the total (weighted) number of peptides in

the set P(s,d). In general, for a given spectrum s and a score

cutoff S, the P-value P(SDs) refers to the probability for a qualified

random peptide to attain a score greater than or equal to S when

MS/MS Analysis with Multiple Scoring Functions
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using spectrum s as a query. If a database contains Nd qualified,

unrelated random peptides, one will expect to have

E(SDs)~NdP(SDs) number of random peptides to have quality

score greater than or equal to S. This expectation value E(SDs) is

by definition the E-value associated with score cutoff S.

The E-value associated with a peptide of score S using the APP

P-value will therefore be

E(SDs)~DD(s,d,C)D
N(S,s)

DP(s,d)D

where the spectrum-specific E(SDs) represents the E-value for a hit

with score S when the spectrum s is used as the query and

DD(s,d,C)D represents the total number of peptides in the set

D(s,d,C). When cast in the aspect of per spectrum target-decoy

approach, P(s,d)\D(s,d,C) represents the largest possible decoy

database, which is supposed to provide numerically the finest E-

values for candidate peptides in the target database. (The symbol \

is called ‘‘setminus’’. A\B can be called A minus B in the set sense

or called complement of B provided that set A is the largest set

considered and every set is a subset of A.) Let N ’(SDs) be the

(weighted) number of peptide hits in the target database with score

greater than S. The per spectrum target-decoy approach will have

E(SDs)~DD(s,d,C)D
N(S,s){N ’(S,s)

DP(s,d)\D(s,d,C)D
&DD(s,d,C)D

N(S,s)

DP(s,d)D

where the last result comes from N ’(S,s)%N(S,s) and

DP(s,d)\D(s,d,C)D&DP(s,d)D for any practical applications.

For a typical molecular mass of 1500 Dalton (Da) and in the

absence of weighting, DP(s,+1Da)D&5|1015. For a typical

organismal database, such as that of Homo sapiens, the total

number of peptides within the molecular mass range without any

condition is only DD(s,+1Da)D&3|103. Therefore, 5|1015
§

DP(s,+1Da)\D(s,+1Da,C)D§5|1015{3|103, and DP(s,+
1Da)\D(s,+1Da,C)D&5|1015. In the presence of peptide

weighting, one still has DP(s,+1Da)D=DP(s,+1Da)\D(s,+1Da,
C)D&1. Therefore, DP(s,d)\D(s,d,C)D&DP(s,d)D. As for N ’(S,s)
versus N(S,s), by definition N ’~0 for best target hit and N(S,s)
typically increases much faster than N ’(S,s) when S is lowered,

thus N ’(S,s)%N(S,s), a fact also observed in reference [24].

Consequently, N(S,s){N ’(S,s)&N(S,s) is a very good approx-

imation. Therefore, the APP statistics also serve as the best per

spectrum target-decoy statistics. The only question now is how

does one get the score distribution of APP?

It turns out that if the score of a peptide is the sum of local

contributions, meaning each term in the sum is uniquely

determined by specifying a fragment’s m/z value, then it is

possible to construct the score histogram of APP via dynamic

programming [10,24]. When there exists intrinsically nonlocal

contribution in peptide scoring, it is no longer possible to obtain

the full histogram by dynamic programming. However, it is still

possible to estimate the de novo rank via a scaling approach [15]

similar to that used in statistical physics. The key point, as will be

shown later, is that for the four scoring functions implemented in

RAId_aPS, by using the APP statistics, it is no longer critical to

theoretically characterize the score distribution obtained from the

database search. This is because the E-value obtained via

RAId_aPS does agree well with the textbook definition. The

APP statistics employed by RAId_aPS may be extended to provide

robust spectrum-specific statistics for scoring functions that do not

have theoretically characterized score distributions. One advan-

tage to having a method that can provide robust spectrum-specific

statistics for different scoring functions is that if the E-value

reported by each method agrees with its definition, one can compare

and combine search results from different search methods [9].

Methods

Basic Dynamic Programming Algorithm
To generate the score histogram of APP in a speedy manner,

RAId_aPS does not score every possible peptide individually. As a

matter of fact, it is impossible to score every possible peptide

individually. For example, consider a typical parent ion molecular

mass of 1,500 Da. It can be shown that the TNPP within 1 Da of

this molecular mass is more than 1015. Even if one has a simple

scoring function and a fast computer that can score one hundred

millions peptides per second, it will take more than 116 days of

computer time to generate the score histogram for a single spectrum.

In real application, one needs to analyze a spectrum in a short

time. How could one achieve this? One may use a 1-dimensional

(1D) mass grid to encode/score APP [10,24]. At each mass index

of the grid, the local score contribution associated with all partial

peptides reaching that location is computed only once and this

information may be propagated forward to other mass entries via

dynamic programming, making it possible to generate the score

histogram of APP without individually scoring all peptides. In the

score histogram, instead of counting number of peptides associated

with a certain score, it is also possible to weight each peptide

sequence according to its elemental composition. For a peptide

sequence ½a1,a2, . . . ,aM �, one may assign it a weight [10,24]

p(a1)p(a2) . . . p(aM ) with p(ai) being the emitting probability of

amino acid ai.

For illustration purposes, the mass grid of 1Da resolution is used

in Figure 1. Each mass index contains a score histogram, with each

entry in the left column indicating a score and the corresponding

entry at the right column recording the number of partial peptides

reaching that mass index with that score. The score histogram is

obtained using a backtracking update rule. For example, at the

mass grid 558, the local score contribution from evidence peaks in

the spectrum is assumed to contribute D amount of score. Looking

back to mass grid 501 (57 Da less than 558 Da), one knows that by

attaching a glycine residue to the partial peptides reaching mass

index 501 one will then advance these peptides to index 558.

Similarly, any partial peptides reaching mass index 487 will move

to mass index 558 by adding an alanine residue. Therefore, at

mass index 558 the score histogram is the superposition of score

histograms associated with the other twenty lighter mass grids

corresponding respectively to the twenty amino acids. For

simplicity, the illustration is drawn as if there are only two amino

acids, glycine and alanine. When one weights each peptide by its

elemental composition, the counts next to the scores in the

histogram are weighted and no longer integers. For example, the

weighted count n(558) at mass index 558 will be given by

n(558)~
P20

a~1 pa n(558{ma) where ma is the mass of amino

acid a rounded to the nearest Da and pa is the emitting probability

associated with amino acid a. In addition to attaching a score

histogram to each mass grid, one may also include other internal

structures such as peptide lengths, peak counts, etc. as shown in

the caption of Figure 1. When one suppresses the score and only

counts number of partial peptides reaching a certain mass index,

the update rule readily provides the total number of peptides

within a given mass range.

Spectral Filtering
Before describing the scoring functions, the major component of

peptide database search tools, we first mention spectral filtering,

MS/MS Analysis with Multiple Scoring Functions
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an often under-emphasized but equally important ingredient.

Starting with a raw tandem mass spectrum, spectral filtering

produces a processed spectrum that is used to score candidate

peptides in the database. Apparently, information kept in the

processed spectrum plays an important role in the effectiveness of

a tool’s performance in database searches. Customized for

different scoring functions, different filtering strategies are

employed by different search tools. In order for RAId_aPS to

capture the essence of a scoring function, it is very important for

RAId_aPS to produce, for every input raw spectrum, a filtered

spectrum that is as close as possible to the one produced by other

search tool’s filtering protocol. For most search tools, the filtering

heuristics are not clearly documented. For that reason, it becomes

necessary to delve into the source code of the search program to

find out each method’s spectral filtering protocol. We are thus

limited to search tools whose source programs are available or

those with filtering strategies clearly documented.

For RAId score, the spectral filtering strategy was described in

an earlier publication [11]. For Hyperscore [25], XCorr [17], and

K-score [26,27], the details of spectral filtering will be described in

Text S1. Since the SEQUEST source code is not available, for

XCorr score we attempt to replicate the filtering of Crux [20], a

search method that has been shown to reproduce SEQUEST

XCorr [20]. That the filtering strategies extracted are accurate can

be seen from Figure S1. The spectral correlation histograms

between the filtered spectra produced by RAId_aPS’s Hyper-

score/XCorr/K-score with the filtered spectra from X!Tandem/

Crux/X!Tandem(with K-score plug-in) show that RAId_aPS is

able to produce filtered spectra identical to those generated by the

canonical programs. Although the spectral filtering strategies

associated with various search tools investigated seem stable, it is

still possible that the developers may change their filtering

strategies in the future. When that happens, one should be able

to update RAId_aPS to reflect the filtering changes provided that

the source programs are still accessible and clearly documented.

Instead of elaborating on various filtering strategies, let us first

use a experimentally obtained spectrum to demonstrate the effect

of spectral filtering employed by different methods. Figure 2 shows

the raw spectrum, and the filtered spectra processed by the four

scoring methods mentioned. The general trend is as follows: RAId

score usually produces the filtered spectrum that resembles the

original spectrum the most; Hyperscore filtering also produces a

processed spectrum that is similar to the original spectrum; for

XCorr and K-score the filtered spectra in general look quite

different from the original spectrum. The differences in the filtered

spectra might be a major factor contributing to the fact that

different search methods have different and often complementary

strengths. The correlation between any pair of filtering strategies

can be quantified. Starting with a large set of raw spectra, one may

process these spectra with a pair of different methods. For each

raw spectrum, one obtains two different filtered spectra and can

compute their correlation. The correlation between every pair of

filtered spectra can then be collected to form the correlation

histogram, reflecting the correlation between a pair of filtering

strategies. Figure 3 and Figure S2 exhibit the correlation

histograms between each pair of filtering strategies using different

data types: centroid (A1–A4 of ISB data set [28], Figure 3) and

profile (NHLBI data set [4], Figure S2). The large correlation

between XCorr and K-score may be the cause of their significant

scoring correlation observed.

Scoring Functions
To better express the scoring functions, let us first define the

following notations. For a given peptide p, the set of corresponding

theoretical mass over charge (m/z) ratios taken into consideration

by a scoring function is called T(p), which is also used to indicate

the number of elements in the set T(p) whenever no confusion

arises. The set T(p) varies from software to software. However, the

fragmentation series (an,bn,bn{18,bn{17,cn,xn,yn,yn{18,yn{

17,zn) include what most methods consider. The Heaviside step

function h(x) is defined by h(xv0)~0 and h(xw0)~1. We

introduce Ii as a shorthand notation for I(mi), the peak intensity

associated with theoretical mass mi in the processed spectrum. In an

experimental spectrum, the mass giving rise to Ii usually does not

Figure 1. Illustration of APP mass grid with internal structure. In addition to show the basic mass grid, this figure illustrates,using the peptide
lengths as an example, the possibility of including additional structures in the (raw) score histogram associated with each mass index. The basic idea
of obtaining the score histogram via dynamic programming is explained in the Method section. The key step to incorporate additional structure is to
let the (weighted) count associated with each (raw) score be further categorized by the lengths of partial peptides reaching each mass index. In the
end, one will apply the length correction factor to the raw score to obtain the real score histogram. Apparently, one may also keep track of the
number of b (y) peaks accumulated within the raw score histogram. Again, the factorial contribution can be added at the end prior to the
construction of the final score histogram.
doi:10.1371/journal.pone.0015438.g001
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Figure 2. Example processed spectra from different scoring functions versus the original spectrum. The centroid spectrum used has a
parent ion mass of 1640:80 Da. In panel (A), the original spectrum is displayed; (B) shows the processed spectrum generated by the filtering protocol
of RAId_DbS scoring function; (C) exhibits the processed spectrum generated by the filtering protocol of K-score; while (D) and (E) correspond
respectively to the processed spectra produced by XCorr and Hyperscore.
doi:10.1371/journal.pone.0015438.g002

Figure 3. Histograms of correlations between filtering strategies. Used in this plot are 38,424 raw centroid spectra from the ISB data set [28].
Each raw spectrum will have four different processed spectra come from each of the four different filtering strategies. The mass fragments of every
filtered spectrum are then read to a mass grid. The spectrum is then viewed as a vector with non-vanishing components only at the populated
component/mass indices. One then normalizes each filtered spectrum vector to unit length. An inner product of any two filtered spectral vectors
represents the correlation between them. When the spectral quality does not pass a method-dependent threshold, the corresponding filtering
protocol may turn the raw spectrum into a null spectrum without further searching the database. For a given pair of filtering methods and a raw
spectrum, if each of the two filtering methods produces a nonempty filtered spectrum, one may turn those filtered spectra into spectral vectors and
compute their inner product, i.e., their correlation. For each pair of filtering methods, these inner products are accumulated and plotted as a
correlation histogram. All six pairwise combinations are shown.
doi:10.1371/journal.pone.0015438.g003
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coincide with mi. The absolute difference between the experi-

mental mass (giving rise to Ii) and the theoretical mass mi is

denoted by Dmi. The notation I ’i is used in place of Ii when the

preprocessing of the spectrum involves a nonlinear transformation

of the peak intensity or involves generation of additional peaks. We

now list the four different scoring function implemented:

RAId S(p)~
1

T(p)

XT (p)

i~1

ln (Ii) e{Dmi h(1{Dmi) ð1Þ

Hyperscore S(p)~4log10

XT (p)

i~1

I ’i

 !
b! y!

" #
ð2Þ

XCorr S(p)~
1

10000

XT(p)

i~1

wiI ’i ð3Þ

K{score S(p)~
1000 ln (l)

3
ffiffi
l
p

XT(p)

i~1

wiI ’i ð4Þ

The first scoring function listed is employed by RAId_DbS [11];

the second one mimicks the Hyperscore (XII ) of X!Tandem [13];

the third one mimicks the XCorr score used in SEQUEST and is

similar to what was implemented in Crux [19,20]; the last one

mimicks K-score [26], a plug-in for X!Tandem. For the RAId

score, the set T(p) includes only the b- and y-series peaks. For the

Hyperscore, T(p) includes fbn,yng. For XCorr, T(p) includes

fbn,yn,bn{1,bnz1,yn{1,ynz1,bn{18,bn{17,yn{17,ang with

the corresponding weights given by f50,50,25,25,25,25,10,10,
10,10g. For K-score, T(p) includes fbn,yn,bn{1,bnz1,yn{1,
ynz1g with the corresponding weights given by f1,1,0:5,
0:5,0:5,0:5g. To speed up the code, we have chosen to rescale

the weights for XCorr (see the ‘‘Crux Filtering and XCorr’’ section

of Text S1 for detail).

Very often it is useful to include the peptide length in the scoring

of a peptide. Using RAId score as a simple example, two peptides

of length 11 and 16 may achieve the same raw score

S’11~S’16~10, sum of the logarithm of evidence peak intensity.

A longer peptide consists of a longer list of theoretical peaks to look

for and may thus score higher by chance. RAId_DbS scoring

function [11] deals with this issue by dividing the raw score by the

length of the theoretical peak list. Upon doing so, one has

S11~S’11=(2|(11{1))~1=2 and S16~S’16=(2|(16{1))~
1=3. This score normalization may help in discriminating true

positives from false positives. The other scoring function utilizing

the peptide length information is the K-score. Hyperscore,

employed by X!Tandem, uses a slightly different score renorma-

lization strategy. Inside the logarithm, the Hyperscore contains

two factorials, b! and y!. For each candidate peptide, b (y)

represents the total number of b-series (y-series) evidence peaks

found in the spectrum. At any specified mass index in the mass

grid, unlike the peak intensity associated with that index, neither

the peptide length nor the total number of the b (y) peaks has a

unique corresponding value. Therefore, one needs to extend the

basic algorithm outlined in the previous subsection to accommo-

date these additional information needed for scoring.

As documented in reference [10], it is possible to introduce

additional structures in the score histogram associated with each mass

index. The flexibility to introduce additional structures of various

dimensions makes RAId_aPS a versatile tool: it can accommodate

the scoring functions that utilize length information or the number of

b-series (y-series) peaks to compute the final peptide score. Using

peptide length as an example, Figure 1 demonstrates the inclusion of

additional structures. More detailed exposition about the inclusion of

internal structures can be found in reference [10].

Although the spectral filtering parts of various scoring functions

are replicated exactly, a candidate peptide may receive different

scores from RAId_aPS and the original programs. This phenom-

enon can be seen in Figure 4: the ordinate of each data point

displays the search score of the best hit of a centroid spectrum

using the original programs, while the abscissa of the same data

point shows the score reported by RAId_aPS. The corresponding

plots for profile data are shown in Figure S3.

The major source of score difference is due to RAId_aPS’s

omission of heuristics while implementing a published scoring

function. For each scoring function, many scoring heuristics are

present in the source code. While some of the heuristics cannot be

included via dynamic programming, all these heuristics are either

not described or not justified in the original papers. For these

reasons, RAId_aPS does not include those unpublished heuristics.

Therefore, the Hyperscore/XCorr/K-score scoring functions

implemented in RAId_aPS should be regarded as our attempt

to mimick the original Hyperscore/XCorr/K-score scoring

functions. Although the scoring functions we implemented are

not exact replicas of the original ones, due to omission of

heuristics, we can see from Figure 4 (and also Figure S3 when

tested on profile data) that there exist strong correlation between

each scoring function implemented in RAId_aPS and the original,

corresponding scoring function. In other words, the scoring

functions implemented in RAId_aPS do capture the essence of

these original scoring functions.

APP Statistics: practical implementation
In the APP statistics section, we described how to use APP

statistics to obtain P-values and E-values with or without

weighting each peptide by its elemental composition. In this

subsection, we will complement the theoretical presentation by

describing some pragmatic aspects of the implementation.

In order to build the score histogram quickly, it is necessary to

discretize the score, thereby compromising to some degree the

score precision. However, this rounding of scores does not affect

peptide scoring when using RAId_aPS as a database search tool or

a tool to provide statistical significance for a list of peptides.

Specifically, the evidence score collected at each mass index is

stored in two formats: one with much higher precision and the

other rounded to nearest integer. The rounded values are used in

dynamic programming to propagate the score histogram forward,

facilitating a speedy construction of the score histogram. The slight

error introduced in individual peptide scoring does not influence the

accuracy of the score histogram much since these errors largely

cancel each other when lumping the scores into a histogram. In the

database search mode, RAId_aPS will sum the high precision

evidence scores in the mass indices traversed by the candidate

peptide being scored. Therefore the score associated with each

candidate peptide in the database search mode has a better

resolution than that in the score histogram. To obtain the statistical

significance associated with each candidate peptide, RAId_aPS

performs an interpolation procedure to obtain the P-value,

P(S,s)~
N(S,s)

DP(s,d)D
:
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Multiplying the P-value by the number of qualified peptides

DD(s,d,C)D in the target database provides the E-value

E(S,s)~DD(s,d,C)DP(S,s):

APP Statistics including PTM amino acids
Since proteins do contain PTM amino acids, it is important for

peptide identification tools to consider amino acid modifications in

the statistical analysis. By scoring only qualified peptides, database

search methods have little problem including PTM amino acids

provided that the score distribution is theoretically characterizable.

For APP based statistics, even though the score distribution is not

always characterizable, information from qualified peptides in

database search may be used to generate the emission probabilities

of all the amino acids, PTMs included, needed for APP based

statistics.

Given a parent ion mass and a database, once the allowable

PTMs are specified, the number of peptides along with possible

types of modifications are fixed. This renders a parent-ion-mass

specific and database specific emission probabilities for PTMs.

Nevertheless, the list of qualified peptides may vary with molecular

mass error tolerance while the allowable PTMs may also vary with

users’ specification for a search. Once the list of qualified peptides

for a spectrum is given, the emission probabilities of each amino

acid (including PTMs) are computed as follows: for each amino

acid B, RAId_aPS first counts the number of occurrences of the

unmodified amino acids n(B) and the number of occurrences

n(Bi) of B modified into a different form Bi, with i~1, . . . ,k.

RAId_aPS then proportionally distributes the emission probability

p0(B) associated with amino acid B to all the possible modified

forms using the following formulas

p(B)~
n(B)z1

n(B)z1z
Pk

i~1 n(Bk)
p0(B) ð5Þ

p(Bi)~
n(Bi)

n(B)z1z
Pk

i~1 n(Bk)
p0(B): ð6Þ

Effectively, one pseudocount is always given to each unmodified

amino acid.

Therefore, for a given list of peptides, RAId_aPS will count the

total number of distinct amino acids modifications. In principle,

RAId_aPS can incorporate all those modified amino acids in the

score histogram construction. However, for reasons to be

described below, RAId_aPS retains no more than the ten most

abundant PTMs in calculating the new emission probabilities.

First, the estimated emission probabilities of PTMs become less

trustworthy when the occurrences of those PTMs are rare.

Second, inclusion of many PTMs can slow down the process,

although not very much. Assume that one incorporates M
modified amino acids in the score histogram construction, the

Figure 4. Score correlations. A subset of the ISB centroid data set [28] was used to perform this evaluation. For each scoring function, when the
best hit per spectrum (analyzed using the analysis program that the scoring function was originally used for) is a true positive, that candidate peptide
is scored again using the corresponding scoring function implemented in RAId_aPS. Each true positive best hit thus gives rise to two scores and
plotted using the following rule: the first score is used as the ordinate while the second score (from RAId_aPS) is used as the abscissa. Including 500
spectra, panel A is for the RAId score. Panel B is for Hyperscore and contains 248 spectra. The result of K-score is shown in panel C with 220 spectra.
Shown with 500 spectra, panel D documents the results for XCorr.
doi:10.1371/journal.pone.0015438.g004
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number of trace backs per mass index becomes 20zM instead of

20. This introduces a factor of (20zM)=20 compared to the

original construction. Further, the size of score array associated

with each mass index needs to be larger than before and thus

require more time to compound the score histogram. This

approximately introduce another factor of (20zM)=20 to the

computation speed. Thus, introducing M modifications will

introduce a multiplicative factor of (1z
M
20

)2 to the computation

time. To ensure that the average run time does not grow more

than two fold, we set the maximumM allowed to be ten. The new

set of normalized background frequencies (with the most abundant

PTMs included) may then be fed into RAId_aPS to compute the

corresponding APP score histogram. The histogram obtained is

then used to calculate the statistical significance of each reported

peptide.

Although rare PTMs in the peptide list might be omitted in

constructing the APP score histogram, the impact on the statistical

significance accuracy is minute. For if one were to include those

PTMs, due to their small normalized emission probabilities,

peptides containing those PTMs would be weighted substantially

less than others and thus would not significantly affect the shape of

the score histogram. As for the emission probability p0(B) —

needed in eqs. (5–6)— associated with amino acid B, one may use

either known amino acid background frequencies such as the

Robinson-Robinson [29] frequencies or can calculate the number

of occurrences of all amino acids in a parent-ion-mass-specific and

database-specific manner. The former approach is adopted by

RAId_aPS when the number of peptides (provided by the user or

extracted from the database) is less than 2,000; otherwise, the

latter approach is employed. There exists, of course, room for

improvement in terms of including PTMs in the APP statistics.

Alternatives are currently under investigations.

Combining Search Results from Different Scoring
Functions

When the user select multiple scoring functions in mode (iii) and

mode (iv), RAId_aPS is able to combine statistical significances

reported by the different scoring functions. For database search

(mode (iv)), the protocol to combine search results is identical to

what was described before [9]. In this section, we will briefly

review this method.

For a given spectrum s, to combine search results from m
scoring functions (say scoring function A1, . . ., Am), we first

construct a union peptide list L(s):LA1
(s)| . . .|LAm

(s),
where LAi

(s) is the reported list of peptide hits by method Ai

for spectrum s. A peptide in the union list has at least one, and

may have up to m E-values derived from APP P-values,

depending on how many scoring functions reported that specific

peptide in their candidate lists. Each of the E-values associated

with a peptide will be first transformed into a database P-value [9],

representing the probability of seeing at least one hit in a given

random database with quality score larger than or equal to S. If

one assumes that the occurrence of a high-scoring random hit is a

rare event and thus can be modeled by a Poisson process with

expected number of occurrence E(SDs), one may obtain the

database P-value mentioned earlier via

Pdb(SDs)~1{e{E(SDs): ð7Þ

The database P-value of peptide p is set to one for methods that

do not report p as a candidate. After this procedure, each peptide

in the list L(s) has m database P-values (P1,P2, . . . ,Pm). Assume

that these P-values are independent, the combined P-value (with

t:Pm
i~1 Pi) for peptide p is given by [9]

Pcomb(p)~t
Xm{1

k~0

½ln (1=t)�k

k!
ð8Þ

Once Pcomb(p) is obtained, we may invert the formula in Eq. (7) to

get a combined E-value Ecomb via

Ecomb(p)~ ln
1

1{Pcomb(p)

� �
: ð9Þ

We then use Ecomb(p) as the final E-value to determine the

statistical significance of peptide candidate p, similar to what is

used in reference [30]. From a theoretical stand point, one might

ask whether or not eq. (8) always gives rise to a smaller combined

P-value than any of the input P-values. The answer is no. For

example, consider P1~pv1 and P2~1. One then has combined

P-value p½1z ln (1=p)� larger than P1. Readers interested in more

details are referred to Appendix B of reference [9].

The combining P-value strategy outlined by eqs. (7–9) is founded

on the assumption that P-values resulting from different search

scores are independent. That is, the resulting significance assignment

is valid only when scoring functions considered are uncorrelated, or

at most weakly correlated. In our earlier investigation [9], we found

that although many scoring functions are looking for similar scoring

evidences, the pairwise correlations among scoring functions

investigated are weak, perhaps due to different spectral filtering

methods employed. The weak pairwise correlations among different

scoring functions implies that the outlined strategy above may still

provide decent significance assignment. How to properly take into

account method correlations while combining the search results is of

course a very important and open problem.

Suppose one has obtained a list of candidate peptides from some

analysis tools that provides only crude statistical significance

assignment or no significance assignment at all, it is possible to

upload this list of peptides along with the spectrum to RAId_aPS

to get a reassignment of statistical significance via mode (iii) of

RAId_aPS. The fundamental idea here is to first obtain the score

histograms corresponding to the list of scoring functions selected.

With the histograms constructed, one can generate the P-values

for any score specified. Therefore, for a chosen scoring function

and a given list of peptides, RAId_aPS can provide for each

peptide an APP P-value by scoring each peptide and then

inferring from the normalized score histogram.

In practical implementation, RAId_aPS sorts the list of peptides

according to their molecular masses and identifies their corre-

sponding mass indices on the mass grid. Using these indices as

terminating points, but one at a time, RAId_aPS constructs score

histograms assuming that the parent ion weight is given by the

mass indices considered. Each peptide in the list is then rescored

using the user-selected scoring versions implemented in RAId_aPS

and the P-values corresponding to these scoring functions are

obtained. If no further information other than a flat list of peptides

is given, RAId_aPS will combine these P-values using eq. (8) and

return a combined P-value for each peptide in the list. When the

number of qualified database peptides is known –which is the case

if one directly uploads to RAId_aPS any of the output files of

Mascot, SEQUEST, or X!Tandem– RAId_aPS will first trans-

form the P-values into E-values and then into database P-values

(eq. (7)). For each peptide in the list, RAId_aPS will then combine

their database P-values using eq. (8) and then obtain the final E-

value via eq. (9).
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Results

E-value Accuracy
In the APP statistics subsection of Technical Background, it was

demonstrated that statistical significance assignment based on the

APP score histogram is spectrum-specific. However, one must verify

E-value accuracy before claiming that accurate spectrum-specific

statistics are achieved via APP statistics. A straightforward way to

test E-value accuracy [11] is to compare the averaged number of

false positives (the textbook definition) versus reported E-value

using a spectral dataset resulting from a known mixture. To be

specific, one will first eliminate true positives from a database, and

then use the spectra from a known mixture as queries to look for

peptide hits. Since the true positives are removed from the

database beforehand, all the peptide hits are false positives. One

then aggregates all the false positives together –there might be

many false positives from one spectrum– and then sorts them in

ascending order of E-value. Let M be the total number of spectra

used for evaluation and let NEƒEc
be the total number of false

positives with E-values smaller than or equal to Ec. If the E-values

reported are accurate, one expects to see that

Ec~
NEƒEc

M
,

subject to fluctuations due to finite sampling.

Figures 5 and S4 assess E-value accuracy when E-values are

obtained from APP P-values. Figure 5 displays, based on searching

a random database of size 500MB, the measured average number

of false positives as a function of the reported E-value. The six-

panel figure demonstrates statistical stability against allowed mass

error. For parent ion mass of 2,000 Da, what is displayed in

Figure 5 covers the resolution range from 1,500 ppm to 5 ppm.

Figure S5 displays the corresponding result for profile data. The

statistical stability shown is important since the use of high

resolution mass analyzers such as Orbitraps have gained

popularity. Figure S4, using the NCBI’s nr database, examines

the E-value accuracy when used in biological context. Since the

biological database is not a collection of random peptides, the

validity of statistical theory founded on random databases should

be tested. As shown in Figure S5, the same statistical robustness

holds for both centroid and profile spectra while searching the

biological protein database tested.

Both the centroid data set and profile data set are tryptic and

are identical to the ones used in reference [4]. The E-value for a

peptide hit is obtained by multiplying that peptide hit’s APP P-

value by a numerical factor Nd , the number of qualified database

peptides with similar masses. In terms of enumerating qualified

peptides, we employ the RAId_DbS strategy. Specifically, we

further divide the qualified peptides into ones with correct and

incorrect N-terminal cleavages [11] and have separate counters for

them. If a candidate peptide has correct N-terminal cleavage, its

Nd factor is the total number of database peptides with both

correct N-terminal cleavages and with masses similar to that of the

peptide considered; otherwise, it will have a considerably larger Nd

factor that counts all database peptides with masses similar to that

of the peptide considered. The protein database used is the NCBI’s

nr (same version as in reference [11]) with identical cluster removal

procedure [11]. As shown in Figure 5 and Figures S4, S5, the E-

values reported by RAId_aPS using the various scoring functions

Figure 5. E-value accuracy assessment. The agreement between the reported E-value and the textbook definition is examined using centroid
data (A1–A4 subsets of ISB data set). The random database size used is 500 MB. The molecular weight range considered while searching the database
is ½MW{d,MWzd�. In each panel, the dashed lines, corresponding to x~5y and x~y=5, are used to provide a visual guide regarding how close/
off the experimental curves are from the theoretical curve.
doi:10.1371/journal.pone.0015438.g005
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implemented are within a factor of five of the textbook definition.

For any two scoring functions, if they are independent, one may

combine the statistics using eqs. (7–9) and the combined E-value

should also follow the theoretical curves.

How well the combined E-values reported trace the theoretical

line can be used as a measure of how independent these two

scoring functions are, provided that each scoring function already

has E-value reported in agreement with the textbook definition. As

in reference [9], the combined E-value from any two methods in

general shows a larger deviation from the textbook definition. This

may be due to correlations between search methods. We are

currently investigating the possibility of taking into account the

search method correlation, which we suppose to be spectrum-

specific too, while combining the statistics. We will incorporate the

corrected statistics into RAId_aPS if the investigation along this

direction turns out to be fruitful.

Combine Database Search Results
The primary feature of RAId_aPS is the ability to combine, in a

statistically sound way, search results from different scoring

functions. If the retrieval performance of each scoring function

implemented is poor, then even if one combines the search results,

the final outcome might still be poor. Below we assess the retrieval

performance of each scoring function implemented using the

Receiver Operating Characteristic (ROC) curves.

First assessment of scoring functions
Here we investigate the performance of the four implemented

scoring functions –RAId score, K-score, XCorr, and Hyperscore–

each of which is a standard scoring function, often employed with

program-specific heuristics, for a known search program. The

retrieval efficiency is assessed using a centroid data set (Figure 6,

ISB data set). Since many search methods report only one or very

few candidate peptides per spectrum, we also include this type of

ROC curve (Figure 7) where only the best hit per spectrum is

taken from the search results. The performance of this ad hoc

truncation apparently leads to better retrieval at small number of

false positives, indicating the existence of false hits whose evidence

peaks are homologous to that of the true positive(s) associated with

a spectrum. We are currently investigating the impact of the

existence of these types of false positives on the statistical

significance assignment. The results will be reported in a separate

publication. The corresponding plots when using a profile data set

(NHLBI data set) are shown respectively in Figure S6 (similar to

Figure 6) and Figure S7 (similar to Figure 7).

Different ROC analysis
When the true positive peptides are not known a priori, there

exist various strategies in classifying hits into true or false positives

when making a ROC plot. These strategies, unfortunately, will

make a notable difference in retrieval assessment. For example, in

Figure 6. ROC curves for the centroid data (A1–A4 of the ISB data set [28]). For each of the four scoring functions considered, a set of ROC
curves is shown. These ROC curves include the results from running the designated program associated with that scoring function, the results from
running RAId_aPS in the database search mode, and the results from combining with each of the three other scoring functions. Panel (A) shows the
results from RAId score, whose designated program is RAId_DbS. Panel (B) displays the results from K-score, whose designated program is X!Tandem.
Panel (C) exhibits the results from XCorr, which is mostly employed by SEQUEST. Panel (D) presents the results from Hyperscore, whose designated
program is also X!Tandem. Instead of using only XCorr (like RAId_aPS), SEQUEST first selects the top 500 candidates using SP score. As shown in panel
(C), for centroid data there is an advantage to filtering candidates with the SP score. However, it is also seen that by combining XCorr with either RAId
score or Hyperscore, equally good results can be attained without introducing the SP score heuristics.
doi:10.1371/journal.pone.0015438.g006
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a cell lysate experiment of a certain organism, it is customary to

estimate the number of false positive hits by introducing a decoy

database during the data analysis. The main idea there is to first

sort the peptide hits according to their scores. Then for each decoy

hit, one assumes that there is just one corresponding false hit in the

target database. This strategy has been used extensively [24].

ROC analyses done this way generally count false positives, which

are highly homologous to the target peptides, towards true

positives. This has two effects: an overcount of true positives and a

undercount of false positives. As a consequence, the ROC curves

will appear more impressive. To mimick this situation, we used

BLAST to find in the NCBI’s nr database highly homologous

proteins to the target proteins used in the experiment and include

those proteins in our true positive set. This strategy produces ROC

curves shown as the solid curves of Figure S8. When compared to

Figure 6 and Figure S6, the ROC curves produced by this strategy

seem much more impressive.

Not counting highly homologous proteins as false positives

would probably be agreeable. However, counting those peptides/

proteins as true positives could be exaggerating. Therefore one

may use a slightly different strategy: removing from consideration

proteins homologous to the target proteins, which is called the

cluster removal strategy [11]. The dashed curves of Figure S9 are

ROC curves obtained this way. This strategy also produces slightly

more impressive ROC curves than in Figure 6 and Figure S6.

Apparently, this indicates the highly homologous false positive hits

are the ones that degrade the retrieval performance. Thus, it can

be useful to remove those false positives from consideration.

Keeping only the best hit per spectrum turns out to be one way to

achieve this goal.

Combining Multiple Scoring Functions
Since different scoring functions have different spectral filtering

strategies, it is often advantageous to combine the search results

from several scoring functions. RAId_aPS provides a simple user

interface, allowing users to select several scoring functions at a

time. A example output when several scoring functions are

selected is shown in Table 1.

Figure 8 illustrates the performance when RAId_aPS combines

three different scoring functions in its database search mode.

Panels (A) and (B) of Figure 8 should be compared with Figure 6

and Figure S6 respectively. The ROC curves obtained by

combining three randomly chosen scoring functions indicate

better performance than individual scoring functions. Panels (C)

and (D) should be compared with Figures 7 and Figure S7

respectively. The results in those plots are obtained from keeping

only the best hit per spectrum prior to further analysis. As shown

in those plots, the ROC curves obtained by combining three

Figure 7. ROC curves for the centroid data (A1–A4 of the ISB data set [28]) when considering only the best hit per spectrum. For each
of the four scoring functions considered, a set of ROC curves is shown. These ROC curves include in the consideration only the best hit per spectrum
from running the designated program associated with that scoring function, the best hit per spectrum from running RAId_aPS in the database search
mode, and the best hit per spectrum from combining with each of the three other scoring functions. Panel (A) shows the results from RAId score,
whose designated program is RAId_DbS. Panel (B) displays the results from K-score, whose designated program is X!Tandem. Panel (C) exhibits the
results from XCorr, which is mostly employed by SEQUEST. Panel (D) presents the results from Hyperscore, whose designated program is also
X!Tandem. Instead of using only XCorr (like RAId_aPS), SEQUEST first selects the top 500 candidates using SP score. As shown in panel (C), for centroid
data there is advantage to filter candidates with the SP score. However, it is also seen that by combining XCorr with either RAId score or Hyperscore,
equally good results can be attained without introducing the SP score heuristics.
doi:10.1371/journal.pone.0015438.g007
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randomly chosen scoring functions indicate significantly better

performance than individual scoring functions, except for the case

of RAId_DbS.

Other modes
Examples of using mode (iv) were already shown above. We

demonstrate here other features of RAId_aPS to illustrate its

versatility.

Compute TNPP: mode (i)
Given a parent ion mass, RAId_aPS is also able to compute

efficiently the TNPP associated with that molecular mass within a

user-specified mass error. The user interface for computing TNPP

is self-explanatory. One simply types in the molecular mass of

interest, chooses a specific digesting enzyme or considers no

enzymatic restriction by choosing ‘‘no enzyme’’, and then presses

the ‘‘Submit a job’’ button. If one wishes to change the default

mass error tolerance, it can be done under the ‘‘more parameter’’

toggle. One may also elect to include PTMs or deselect certain

amino acids from consideration, those choices are available under

the ‘‘Amino acids and PTMs’’ toggle. When using search methods

that do not have a theoretical model for the score distribution or

when the quality of the score model [11] is poor, one may wish to

use a more conservative statistical significance assignment. In this

case, a user may set 1=TNPP as the lower bound for the best P-

value for any given parent ion mass. This may help in preventing

exaggerated/inappropriate statistical significance assignments.

Generate score histogram: mode (ii)
Extraction of the statistical significance from a score distribution

often requires a model, be it theoretically derived or empirically

assumed, for the score distribution. One may test the robustness of

a score model by examining how well the score model fits the

database search score histograms. When using search methods

that have a score model, one may first test how well the same score

model applies when dealing with APP. If the score model loses

stability, this may indicate that the score model is not robust in

general. Given a query spectrum and a user-selected scoring

function, RAId_aPS can be used to generate a score histogram of

APP under the selected scoring scheme. Using an example

spectrum, Figure 9 shows score histograms corresponding to the

four scoring functions implemented in RAId_aPS.

Reassign E-value : mode (iii)
Statistical significance inference from RAId_aPS only depends

on the total number of qualified peptides inside the database

searched but is not dependent on the peptide content inside the

database. This is because RAId_aPS bases its statistics on the

(weighted) score histogram obtained from scoring APP. As a

consequence, without going through the database search again,

RAId_aPS can be used to reassign statistical significance to a

collection of candidate peptides. The candidate peptides may

come from a flat list provided by the user, or they can also come

from the output files of various search engines. RAId_aPS allows

users to upload the output files from SEQUEST, X!Tandem, and

Mascot for statistical significance reassignment.

Although scoring functions similar to XCorr, K-score and

Hyperscore have been implemented in RAId_aPS, other search

engines’ scoring functions might not be suitable for score

histogram construction using dynamic programming. In this case,

the user may wish to compare the statistical significance reported

by a search engine with what is reported by RAId_aPS and even

combine these reported significances. As an example of this usage

and to test RAId_aPS’s performance, we use as queries 10,000
profile spectra (the NHLBI data set) as well as 12,628 centroid

spectra (A1–A4 of the ISB data set), each produced from a known

mixture of target proteins. Using Mascot as the search engine, we

searched in the NCBI’s nr database with proteins highly

homologous to the target proteins removed [11]. The output files

were analyzed to produce ROC curves, the black solid curves in

Figure 10. We then reanalyzed the candidate peptides’ statistical

significance by combining the statistical significance reported by

Mascot with that reported by RAId_aPS using one additional

scoring function. For both profile and centroid spectra, when

combined with either the RAId score, K-score, or XCorr, one

may obtain a retrieval performance that is comparable with or

slightly better than that from Mascot alone (see Figure 10).

Since all the implemented scoring functions are accessible from

RAId_aPS, one can score any new PTM peptide using any of the

scoring functions available to RAId_aPS even when the original

program does not yet include the PTMs of interest. This way,

annotated PTM found by RAId_DbS [23] may be confirmed with

other scoring functions in a natural manner and one may even

combine the statistical significance as described below to increase

the sensitivity in finding annotated PTMs and single amino acid

polymorphisms (SAP).

Discussion

In this section we will discuss another proposed use of the APP

statistics in confidence assignment, remark on the effectiveness of

combining search results using a different measure than ROC,

propose avenues for improvement, and describe future directions.

When combined with database searches, the score histogram

obtained by RAId_aPS also provides two useful quantities. First, it

gives us the best peptide score SAPP among APP. Although we did

not pursue this way, it has been advocated that the difference

between SAPP and the best database hit score per spectrum may

serve as a statistical significance measure for the highest-scoring

peptide hits found in the database [24]. Second, the score

histogram provides us with Ns, the (weighted) number of APP with

score better than or equal to S. This number Ns may also be used

in conjunction with the (relative) difference between SAPP and the

best database search score per spectrum while constructing statistical

significance measures other than E-value.

A natural question to ask is: how much retrieval gain can one

anticipate if one combines multiple scoring functions? Since FDR

has been among the most popular metrics for assessing the

performance, we briefly investigate this issue using FDR.

Employing a frequently used procedure [31], we used the reverse

Homo sapiens protein database as the decoy database to estimate the

number of false positives and hence the FDR, by searching target

database and decoy database separately for each query spectrum.

All 15 possible combinations of the four scoring functions available

in RAId_aPS are tested using the data set PRIDE_Exp_mzDa-

ta_Ac_8421.xml (containing 15,916 spectra), downloaded from

the PRoteomics IDEntifications (PRIDE) database (http:www.ebi.

ac.ukprideppp2_links.do). The results are summarized in Table 2

along with the average behavior associated with using one to four

scoring functions. Since it is known that performance of a search

engine may vary when the data to be analyzed changes [32], we

like to focus more on the average behavior rather than individual

performance of a scoring function or any specific combination of

scoring functions. Based on the average retrieval result of Table 2,

we first observe that on average there is an overall retrieval

increase at 0%{10% FDR rates when one combine two scoring

functions versus using only one scoring function. We also note that

MS/MS Analysis with Multiple Scoring Functions
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there is an increase in retrieval performance at medium FDR rate

when more scoring functions are combined. However, at very low

FDR rates, it seems that combining more than two scoring

functions stop helping the retrieval. Apparently, the performance

boost does not continue indefinitely as more scoring functions are

included. This is evidenced by an observable performance decline

at low FDR rate when one combine all four scoring functions and

compared to combine only three. The saturation of performance

gain is reasonable if one takes into account the fact that most

scoring functions seek similar evidences, the scope covered by

combining more scoring functions can’t keep increasing indefi-

nitely.

By integrating existing annotated information into organismal

databases, RAId_DbS is now able to incorporate during its data

analysis annotated information such as SAP, PTM, and their

disease associations if they exist [23]. This feature enables users to

identify/include known polymorphisms/modifications in their

searches without needing to blindly allow all possible SAPs and

PTMs first and then post process to look up the literature/

databases for explanations. Since all the implemented scoring

Table 1. An output example of the combined E-value from RAId_aPS.

E_comb RAId Hyperscore XCorr K-score Peptide

4:93e{24 1:69e{13 8:26e{11 5:87e{12 7:99e{13 NYQEAKDAFLGSFLYEYSR

1:43 379:00 0:08 453:00 101:00 APTSAGPWEKPTVEEALESGSR

1:85 28:50 1:94 9:01 0:15 LERMTQALALQAGSLEDGGPSR

3:38 13:60 0:30 88:40 4:32 TEDQRPQLDPYQILGPTSSR

4:04 15:80 18:40 0:38 18:30 NYKAKQGGLRFAHLLDQVSR

8:81 257:00 1:48 1170:00 1280:00 DTPMLLYLNTHTALEQMRR

9:58 8:76 1:66 353:00 37:20 EKTESSGQETTAKCDRASKSR

9:75 1:71 8:15 82:80 6:99 LLAQQSLNQQYLNHPPPVSR

10:80 358:00 1:95 311:00 269:00 IQHGQCAYTFILPEHDGNCR

doi:10.1371/journal.pone.0015438.t001

Figure 8. Illustration of RAId_aPS performance when combining three different scoring functions. Panel (A) shows the results from the
profile data (NHLBI data set [4]), while panel (B) exhibits the results from the centroid data (A1–A4 of the ISB data set [28]). Panel (C) shows the results
from the profile data but keeping only the best hit per spectrum, while panel (D) exhibits the results from the centroid data but keeping only the best
hit per spectrum.
doi:10.1371/journal.pone.0015438.g008
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functions of RAId_aPS are now within the same framework, we

can let each plug-in scoring function incorporate in its scoring the

new SAP/PTM peptides. This way, annotated SAP/PTM found

by RAId_DbS may be confirmed by other implemented scoring

approaches in a natural manner and one may even combine the

statistical significances as described earlier to increase the

sensitivity in finding annotated SAPs/PTMs.

In the near future, we also plan to include more scoring

functions in RAId_aPS if their presence would enhance the

retrieval performance without sacrifice statistical accuracy. For

example, we will investigate the effect of a new scoring function,

the compound Poisson. This is a natural way to incorporate

intensity information into Poisson count statistics. The other

scoring approach we will investigate is to deconvolute the peptide

length information. The reason to consider this alternative arises

from the observation that many scoring functions introduce

different heuristics to correct for the scores associated with

candidate peptides of different lengths. The purpose of these

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

Figure 9. Example score PDF (normalized histogram) output by RAId_aPS. An MS2 spectrum of parent ion mass 1640:80 Da is queried with
default parameters, and the resulting score PDF for RAId, K-score, XCorr, and Hyperscore are shown respectively in panels A, B, C, and D. The number
of APP within + 3Da of parent ion mass is about 1019.
doi:10.1371/journal.pone.0015438.g009

Figure 10. Example of reanalyzing output files from other search engine by combining with statistical significance assignment from
RAId_aPS. In this example, we use the Mascot output files resulting from querying profile spectra (panel (A), the NHLBI data set) and centroid
spectra (panel (B), A1–A4 of the ISB data set [28]) to the NCBI’s nr database with proteins highly homologous to those that were present in the
mixture removed. Since each data set is from a known mixture of proteins, it is possible to remove the proteins homologous to the true positives
from the nr database. We then combine the calibrated E-value [4] of Mascot with the E-value obtained from RAId_aPS when either RAId score,
Hyperscore, K-score or XCorr is used.
doi:10.1371/journal.pone.0015438.g010
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peptide length correction factors is to balance the fact that longer

peptides are likely to find more evidence peaks and thus the

collected evidence scores may require some length correction in

order to make the comparison among peptides of various lengths

impartial. If we group peptides of the same lengths and obtain

statistical significance separately for peptide candidates of each

length, we no longer need to introduce any length correction

factor. This approach is not feasible for regular database searches

since the sample size of peptides of a fixed length may be too small.

For our APP scheme, however, we always have a large number of

peptides participating in our score histogram even if the peptide

length is fixed. Therefore, the idea of deconvoluting the peptide

lengths becomes feasible for RAId_aPS.

Supporting Information

Text S1 Spectral Filtering and Scoring Functions. The

main objective of this supplementary text is to document what we

found from the source codes of various search methods about their

spectral filtering strategies. Although effort is invested to faithfully

reproduce these filtering strategies, we do no intend to provide a

logical explanation of these filtering methods. Readers interested

in obtaining logical explanations of these strategies should contact

the original code authors. There also exist other heuristics in

various scoring functions that we chose to ignore. As shown in

Figure 6 and Figure S6, and in dashed curves of Figures S8 and

S9, the performance of these scoring functions without heuristics

do not suffer from poorer retrieval compared to their original

implementations with heuristics included. (PDF)

Figure S1 Filtering accuracy assessment. For every raw

spectrum, one generates six filtered spectra:three associated with

Hyperscore/XCorr/K-score implemented in RAId aPS and the

other three respectively produced by X!Tandem/Crux/X!Tan-

dem(with K-score plug-in). The mass fragments of every filtered

spectrum are then read to a mass grid. The spectrum is then

viewed as a vector with non-vanishing components only at the

component/mass indices populated. One then normalizes each

filtered spectrum vector into unit length. An inner product of any

two filtered spectral vectors represents the correlation between

them. When the spectral quality does not pass a method-

dependent threshold, the corresponding filtering protocol may

turn the raw spectrum into a null spectrum without further

searching the database. Therefore the total number of spectra

passing through the filtering stage might be smaller than the total

number of raw spectra, which is also reected in the histograms.

Two sets of data are used for this evaluation. The centroid data,

consisting of 38; 424 spectra, are from the ISB data set [1]. The

pro_le data, consisting of 10; 000 spectra, are from the NHLBI

data set [2]. Panel A(D) shows the histogram of correlation

between the RAId aPS K-score and the X!Tandem K-score plug-

in using centroid(profile) data. Panel B(E) shows the histogram of

correlation between the RAId aPS XCorr and the Crux XCorr

using centroid(profile) data. Panel C(F) shows the histogram of

correlation between the RAId aPS Hyperscore and the X!Tandem

Hyperscore using centroid(profile) data. The correlation strength

being always one means that RAId aPS is able to faithfully

reproduce the filtering strategies originally designed for Hyper-

score, XCorr, and K-score. (PDF)

Table 2. Example retrieval tests based on FDR.

Combination FDR cutoff 0% FDR cutoff 2.5% FDR cutoff 5.0% FDR cutoff 10%

R 377 822 856 948

K 83 709 790 977

H 568 775 849 908

X 467 821 885 996

S(sS) 373 (182) 781 (57) 845 (34) 957 (39)

RK 485 956 1127 1654

RH 925 1143 1599 2375

RX 871 1024 1140 1574

KH 528 1019 1210 1679

KX 588 860 964 1146

HX 895 1064 1205 1532

D(sD) 715 (186) 1011 (87) 1207 (196) 1660 (365)

RKH 485 849 2689 5328

RKX 474 792 1074 2425

RHX 725 867 1942 4795

KHX 443 658 910 1691

T(sT ) 531 (116) 791 (86) 1653 (716) 3559 (1537)

RKHX (Q) 332 662 1336 4148

All 15 possible combinations of the four scoring functions available in RAId_aPS are shown along with the average behavior associated with using one to four scoring
functions. The dataset PRIDE_Exp_mzData_Ac_8421.xml is used. The first column documents various combinations of scoring functions with the following
abbreviations: R for RAId, K for K-score, H for hyperscore, and X for XCorr. The rest of the columns display the number of peptides identified at the false positive rate
specified at the top of the column. The rows with bold characters indicate the average behavior of using a single (S) scoring function, combining two (D) scoring
functions, combining three (T) scoring functions, and combining four (Q) scoring functions. Within these rows, except the last one where only one combination
possible, the standard deviation associated with each average is shown inside the parentheses to the right of the average.
doi:10.1371/journal.pone.0015438.t002
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Figure S2 Histograms of correlations between filtering
strategies. This Figure is the same as Figure 3 except that the 10,

000 raw spectra used are profile data from the NHLBI data set [1].

(PDF)

Figure S3 Score correlations. A subset of the NHLBI profile

data set [1] was used to perform this evaluation. For each scoring

function, when the best hit per spectrum (analyzed using the

analysis program that the scoring function was originally used for)

is a true positive, that candidate peptide is scored again using the

corresponding scoring function implemented in RAId aPS. Each

true positive best hit thus gives rise to two scores and plotted using

the following rule: the first score is used as the ordinate while the

second score (from RAId aPS) is used as the abscissa. Including

500 spectra, panel A is for the RAId score. Panel B is for

Hyperscore and contains 495 spectra. The result of K-score is

shown in panel C with 310 spectra. Shown with 500 spectra, panel

D documents the results for XCorr. (PDF)

Figure S4 E-value accuracy assessment. The agreement

between the reported E-value and the textbook definition is examined

using profile data (panel (A–B), 10, 000 spectra of the NHLBI data

set) as well as centroid data (panel (C–D), A1–A4 subsets of ISB data

set). The NCBI’s nr (of size 500 MB) database with true positives

removed is used for this assessment. The molecular weight range

considered while searching the database is [MW 2 ,MW + ]. In each

panel, the dashed lines, corresponding to x = 5y and x = y/5, are

used to provide a visual guide regarding how close/off the

experimental curves are from the theoretical curve. (PDF)

Figure S5 E-value accuracy assessment. The agreement

between the reported E-value and the textbook definition is

examined using profile data (the NHLBI data set: 10, 000 spectra).

The random database size used is 500 MB. The molecular weight

range considered while searching the database is [MW 2 , MW +
]. In each panel, the dashed lines, corresponding to x = 5y and x

= y/5, are used to provide a visual guide regarding how close/off

the experimental curves are from the theoretical curve. (PDF)

Figure S6 ROC curves for the profile data (NHLBI data
set [1]). For each of the four scoring functions considered, a set of

ROC curves is shown. These ROC curves include the results from

running the designated program associated with that scoring

function, the results from running RAId aPS in the database search

mode, and the results from combining with each one of the three

other scoring functions. Panel (A) shows the results from RAId

score, whose designated program is RAId DbS. Panel (B) displays

the results from K-score, whose designated program is X!Tandem.

Panel (C) exhibits the results from XCorr, which is mostly employed

by SEQUEST. Panel (D) presents the results from Hyperscore,

whose designated program is also X!Tandem. (PDF)

Figure S7 ROC curves for the profile data (NHLBI data
set [1]) when considering only the best hit per spectrum.

For each of the four scoring functions considered, a set of ROC

curves is shown. These ROC curves include in the consideration

only the best hit per spectrum from running the designated program

associated with that scoring function, the best hit per spectrum from

running RAId aPS in the database search mode, and the best hit per

spectrum from combining with each of the three other scoring

functions. Panel (A) shows the results from RAId score, whose

designated program is RAId DbS. Panel (B) displays the results from

K-score, whose designated program is X!Tandem. Panel (C)

exhibits the results from XCorr, which is mostly employed by

SEQUEST. Panel (D) presents the results from Hyperscore, whose

designated program is also X!Tandem. (PDF)

Figure S8 ROC curves when highly homologous proteins
[1] are also counted as true positive proteins. Plots done this

way are analogous to the ROC plots obtained using a decoy database

to estimate the number of false positives. Each panel displays the

results of a scoring function. The resulting ROC curves from using

RAId aPS implementation and the implementation in the original

search program are both shown. The results from profile data

(NHLBI data set [2]) are shown in solid curves, while the results from

centroid data (A1–A4 of ISB data set [3]) are shown in long-dash

curves. Panels (A,B,C,D) respectively display the results from using

RAId score, K-score, XCorr, and Hyperscore. Except for RAId score,

the RAId aPS implemented scoring functions performs comparably to

the original implementation in other search methods. (PDF)

Figure S9 ROC curves when highly homologous pro-
teins [1] are removed from the nr database and thus are
not counted towards true positives or false positives.
Each panel displays the results of a scoring function. The resulting

ROC curves from using RAId aPS implementation and the

original implementation in other search program are both shown.

The results from profile data (NHLBI dataset [2]) are shown in

solid curves, while the results from centroid data (A1–A4 of ISB

data set [3]) are shown in long-dash curves. Panels (A,B,C,D)

respectively display the results from using RAId score, K-score,

XCorr, and Hyperscore. The RAId aPS implemented scoring

functions performs comparably to the original implementation in

other search methods. (PDF)
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