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Abstract

We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached
to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end
protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of
samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of
reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of
reads allowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-
organism derived species variants, an observation that has significant implications for sequence clustering of similar high-
throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most
cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is
taxonomically informative; these include the V3, V5 regions of the bacterial 16S rRNA genes and the eukaryotic V9 region
that is gaining popularity for sampling protist diversity.
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Introduction

Microbiome profiling is used to identify and enumerate the

organisms in samples from diverse sources such as soil, clinical

samples and oceanic environments [1–3]. This profiling is an

important first step in determining the important bacterial and

protist organisms in a biome and how they interact with and

influence their environment.

Microbiome profiling is usually achieved by sequencing PCR-

amplified variable regions of the bacterial 16S and of the protistan

small subunit ribosomal RNA genes [4,5]. Other sequences, such as

the GroEL genes may also be targeted for independent validation [6].

The microbial profile of a sample may be determined by traditional

Sanger sequencing, by terminal restriction length polymorphism

analysis or by denaturing gradient gel electrophoresis (reviewed in

[7]). The recent introduction of massively parallel 454 pyrosequen-

cing has resulted in a radical increase in the popularity of microbiome

profiling because a large number of PCR amplicons can be

sequenced for a few cents per read [4,8]. However, while constituting

a tremendous improvement over previous methods, pyrosequencing

is constrained by cost limitations and a relatively high per-read error

rate. The high error rate has led to some discussion in the literature

about the existence and importance of the ‘rare microbiome’ [9].

New methods for analyzing pyrosequencing output suggest that

much of the rare microbiome is composed of errors introduced by the

sequencing method [10].

Until recently, the Illumimna sequencing-by-synthesis method of

parallel DNA sequencing was thought to be unsuitable for

microbiome profiling because the sequencing reads were too short

to traverse any of the 16S rRNA variable regions. This can be

partially circumvented by identifying maximally informative sites

for specific groups of organisms (eg. [11]). A recent report

demonstrated that short sequences derived from Illumina sequences

could be used for robust reconstruction of bacterial communities.

This group used Illumina sequencing to determine the partial

paired-end sequence of the V4 16S rRNA region in a variety of

samples using single-end sequence tagged PCR primers [12].

Here we report the methods used to perform microbiome

analysis of the V6 region of 272 clinical samples using the Illumina

sequencing technology. We used paired-end sequencing in

combination with unique sequence tags at the 59 end of each

primer. The overlapping paired-end reads gave us complete

coverage of the V6 region. The combination of sequence tags at

each end of the overlapped reads allowed us to use a small number

of primers to uniquely tag a large number of samples. The

Illumina sequencing method generated *12 million useable reads

at a cost of *0:03 cents per read, an approximate order of

magnitude cheaper than the per-read cost of pyrosequencing. The

cheaper per-read costs allows economical experiments on large

numbers of samples at very large sequencing depths. Since

Illumina sequencing is now capable of *100 nt long reads from
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each end of a DNA fragment, the methods described here can be

easily adapted for paired-end sequencing of the microbial V3, V5,

V6 and the eukaryotic V9 rRNA regions. Similarly to others [12],

we found that methods used to analyze pyrosequencing micro-

biome data were often unsuitable for reads generated by Illumina

sequencing and we present a workflow that can be used for rapid

and robust generation of the relative abundance of organisms in

each sample.

Importantly, we found that the Illumina sequencing method has

an exceedingly low error rate and that the majority of errors arise

during the PCR amplification step. We argue that the error profile

has profound implications for choosing the appropriate seed

sequence for clustering using the data generated by Illumina

sequencing.

Results

Description of the Data
The DNA samples analyzed by this method were derived from a

study designed to examine the vaginal microbiota in HIV+ women

in an African population. A separate manuscript details the clinical

findings of the study [13]. In all we analyzed 272 clinical samples

by a single Illumina paired-end sequencing run.

The Illumina sequencing platform is currently restricted to read

lengths of *100 nucleotides from each end of a DNA fragment,

and was limited to *75 nt at the time of experimental design.

Thus, a paired-end sequencing run could only traverse the short

16S variable regions: V3, V5 and V6. The expected distribution of

amplified fragment sizes, including the primer, for each variable

region is shown in Figure 1. We decided to use the V6 region for

two main reasons. First, the V6 region was expected to produce

amplified fragments between 110 and 130 bp, ensuring that the

majority of paired-end reads would overlap. Secondly, the V6

region provided resolution for a number of organisms of interest in

our samples down to the species and in some cases the strain level

[14]. The Illumina platform currently provides reads long enough

to overlap in either the bacterial V3 [1,14] or V5 regions or in the

eukaryotic V9 region [5]. We suggest the region(s) chosen for

sequencing should be characterized for the resolution of taxa of

interest, and several studies have examined this in detail [7,11].

Figure 1. Expected amplified product size using constant regions flanking eubacterial variable regions.
doi:10.1371/journal.pone.0015406.g001
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PCR Primer Characterization
The primers were located within two conserved 16S rRNA

segments that flanked the V6 region. The left and right primer

sequences mapped to the 967–985 (CAACGCGARGAACCT-

TACC) and 1078–1061 (ACAACACGAGCTGACGAC) using

the coordinates on the Escherichia coli 16S rRNA segment, and were

chosen to amplify the majority of species expected to be found in

the vaginal environment. The potential ability to amplify the

regions flanking the V6 region was tested computationally by two

methods. First, the primers were assessed using the probematch

service from the Ribosomal Database Project [15]. The forward

and reverse primers were found to match 96.8% and 99.3% of the

good quality, long 16S rRNA sequences with 2 or fewer

mismatches. The forward primer was strongly biased against

amplification of sequences in the Tenericutes and Thermotogae

phyla, amplifying 201/1438 and 8/82 in these groups. The reverse

primer was unbiased. Secondly, we used a method similar to

Wang and Qian [16]. Unaligned 16S rRNA sequences were

downloaded from the Ribosomal RNA Database Project [15] and

the 187260 sequences longer than 1400 nucleotides were

extracted. Sequences of this length are nearly-full length and are

expected to contain the V6 region. These sequences were filtered

to remove entries where the only entry on the annotation line was

‘unidentified bacterium’ or ‘uncultured bacterium’, leaving 97987

entries. Approximate string matching (agrep) with the TRE

regular expression library [17] was used to determine that the left

and right primers matched 94101 and 96432 of 97987 sequences

with the requirements of perfect matching at the 5 nucleotides at

the 39 end and up to 2 mismatches in the remainder of the primer.

Using this measure, the left primer matched over 96% and the

right primer over 98% of the sequences in the dataset. However,

as shown in Table 1, either the left or right the primers did not

match the majority of sequences annotated as Sneathia, Leptotrichia,

Ureaplasma or Mycoplasma. We found that relaxing the parameters

somewhat resulted in matching to the majority of species in these

groups (Table 1). We suggest that these primers would allow

amplification of the majority of species in each of these groups, but

that amplification may occur at lower efficiencies in some groups.

The primers were tested for their ability to amplify the 16S

rRNA V6 region of Lactobacillus iners, Lactobacillus rhamnosus,

Gardnerella vaginalis and Atopobium vaginae. All were amplified

equivalently using the following PCR parameters: denaturation

940, annealing 510, extension 720 all for 45 seconds over 25

amplification cycles.

Sequence Tag Choice
The Illumina sequencing platform uses dye-terminated primer

extension to sequence DNA [18] and the base-calling algorithm

uses the intensities from the first several nucleotides incorporated

to normalize the fluorescent signal from subsequent nucleotide

incorporation events [19,20]. Thus, we chose sequence tags to

ensure all 4 nucleotides were represented in each of the first four

positions of the primers using parameters similar to those in the

barcrawl program [21]. This was achieved, in part, by varying the

length of the tags between 3 and 6 nucleotides long. The tag length

variation was expected to reduce the likelihood that adjacent spots

on the Illumina solid support would be scored as one during the

sequencing of the amplification primers [19,20]. All sequence tags

were checked with a primer design program to ensure that they

would not induce primer-dimer formation [22]. The sequence tags

are given in Table 2. The right-side sequence tags can be uniquely

identified if they are full-length, or if they are truncated by 1

nucleotide, as commonly occurs during oligonucleotide synthesis.

Three of the left-side sequence tags (GTA, CTA, TGA) could

derived from three longer left-side sequence tags (AGTA, GCTA,

ATGA) by N-1 truncation. Only reads with full-length sequence

tag sequences were used in this analysis. The three nucleotide-long

sequence tags have been redesigned for subsequent experiments to

remove any ambiguities that arise from N-1 truncation. The

sequence tags were incorporated at the 59 end of the PCR primers.

Extracting Sequence Reads and Sample Assignment
As stated by others [12] the large number of sequences and the

short sequence reads present a challenge. The number of and the

short length of the reads prevented the application of many common

pyrosequencing data analysis pipelines. We therefore developed the

data analysis pipeline shown schematically in Figure 2. A full

description of each step is given below. All programs to extract the

sequence reads and to index them into individual sequence units

(ISUs) were developed in-house. A Bash shell script referencing C,

Perl and R programs and scripts that are able to recapitulate this

analyses on OS X are available from the authors.

We received 18047860 reads that were 76 nt long from each

end of the PCR amplified region. Of these, 6236435 and 5491692

reads contained one or more low quality positions in the left and

right end reads (defined as having the lowest base quality scores).

However, there were only 53598 and 88498 reads that contained

one or more ‘N’ character in the sequence calls.

Table 1. Number of species matching each primer in a
filtered RDP dataset.

Taxon Total species Left1 Righta

Escherichia 322 320 318

Citrobacter 113 111 110

Bacteroides 275 265 270

Streptococcus 1249 1243 1244

Staphylococcus 704 696 694

Lactobacillus 1922 1908 1910

Lachnospiraceae 82 82 82

Peptostreptococcus 28 28 28

Anaerococcus 29 29 29

Megasphaera 38 38 38

Dialister 21 21 21

Candidatus 579 377 566

Mobiluncus 25 25 25

Propionibacteriaceae 12 12 12

Bifidobacterium 146 145 143

Porphyromonas 111 109 111

Prevotella 269 264 264

Fusobacterium 103 102 103

Sneathia 4 4 0(4)b

Leptotrichia 60 60 1(58)b

Gardnerella 3 3 3

Ureaplasma 36 0(34)c 36

Mycoplasma 414 95(331)d 336

anumber of hits with identity at the 39 5 nucleotides and up to 2 mismatches in
the rest of the primer:

bnumber of hits requiring identity at the 39 4 nucleotides:
cnumber of hits allowing 3 mismatches and identity at the 39 5 nucleotides:
dnumber of hits allowing 4 mismatches and identity at the 39 5 nucleotides.
doi:10.1371/journal.pone.0015406.t001
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A custom program was written in C to identify the overlapping

segments of the forward and reverse reads. The program first

identifies perfect overlaps between the two reads, and then finds

reads that overlap if a single mismatch is allowed. The quality

score is used to identify the most likely nucleotide in the

overlapped segment, and a new fastq formatted file is generated

for the combined reads. With this strategy 14960488 reads were

obtained that had a perfect overlap between 10 and 50 nucleotides

and an additional 1922084 reads had a single nucleotide mismatch

in the overlapped region. The extraction of overlapping reads with

proper primer sequences and correct sequence tags was performed

with a custom Perl program. We found that 12035329 sequences

contained two valid sequence tags and both primer sequences;

allowing up to 3 mismatches per primer. The sequences derived

from the perfectly overlapping reads form the basis of the

remainder of the analysis.

Inspection of sequences with incorrect sequence tags showed

that the single largest contributor to the difference between the

number of reads with proper primer sequences and the number of

reads with proper sequence tag sequences was an N-1 truncation

of the sequence tag, which presumably arose during the primer

synthesis. The next largest class of sequence tag error was

complete lack of the left or right end sequence tag. Together, these

classes account for slightly more than half of the missing reads.

The remaining missing reads are composed of a large number of

classes of sequence tag sequences each containing small numbers

of errors including additional 59 bases, misincorporated bases or

difficult to classify errors that presumably arose during the PCR

amplification.

Sequence Clustering
Clustering was used to group identical sequences into ISUs, and

these ISUs were further clustered into operational taxonomic units

(OTUs). The variation in an OTU can come from sequence

differences between closely related taxa in the underlying

population, through errors introduced into the amplified fragment

from the PCR amplification, or from DNA sequencing errors.

ISUs were produced by collecting and collapsing identical

sequences located between the primers and collapsing. A custom

Perl program was written that associated each ISU with the

number of identical sequences in it, that indexed each read to the

appropriate ISU and, later the OTU. The 12035329 reads were

collapsed into 126832 ISU sequences, with the most abundant

ISU containing 4321348 identical reads.

The occurrence of chimeric sequences was examined using

UCHIME, a part of the UCLUST package. Chimeric sequences

Table 2. sequence tag and primer sequences.

L-tag Name R-tag Name

catgcg 0-v6L cgcatg 0-v6R

gcagt 1-v6L actgc 1-v6R

tagct 2-v6L agcta 2-v6R

gactgt 3-v6L acagtc 3-v6R

cgtcga 4-v6L tcgacg 4-v6R

gtcgc 5-v6L gcgac 5-v6R

acgta 6-v6L tacgt 6-v6R

cactac 7-v6L gtagtg 7-v6R

tgac 8-v6L gtca 8-v6R

agta 9-v6L tact 9-v6R

atga 10-v6L tcat 10-v6R

tgca 11-v6L tgca 11-v6R

act 12-v6L agt 12-v6R

tcg 13-v6L cga 13-v6R

gta 14-v6L tac 14-v6R

cta 15-v6L tag 15-v6R

tga 16-v6L

gcta 17-v6L

doi:10.1371/journal.pone.0015406.t002

Figure 2. Conceptual workflow of the data analysis. PCR products derived from the eubacterial V6 rRNA region were sequenced on a single
paired-end Illumina run. Reads were filtered for quality, overlapped and clustered as outlined in the text. Only reads with 0 mismatches in the
overlapping region were used for further analysis.
doi:10.1371/journal.pone.0015406.g002
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can arise during PCR [23] or because of overlapping spots on the

solid support when imaged during DNA sequencing [18]. The

default settings of UCHIME identified 5211 putative chimeric

ISUs, containing 18614 reads. Thus, 5.6% of the ISUs were

putative chimeric sequences, but these composed only 0.15% of

the total reads. There were 21 abundant putative chimeric ISUs

that contained w100 reads; the most abundant contained

contained 1271 reads.

Each of the abundant putative chimeric ISUs were tested for

chimerism with BLAST using the ISU sequence as the query and

using the bacterial subset of nucleotide sequences at NCBI as the

database. We found only two putative chimeric sequences had

sequence derived from two different species and had a UCHIME

chimera score w10, the other 19 putative chimeric ISU sequences

matched multiple independent sequences in the dataset with

§98% identity for their entire length. Thus, the occurrence of

chimeric sequences was re-evaluated using a chimera score cutoff

of 10 and only 497 ISUs containing 1834 total reads (0.015% of

the dataset) were above this threshold. We concluded that

chimeric sequences composed a very small subset of the total

number of ISUs, probably because the primers amplified across a

variable region only. The dataset was used without further regard

to chimeric sequences because putative chimeric sequences

composed a minuscule fraction of reads.

The ordered ISU sequences were clustered into OTUs,

operational taxonomic units, by UCLUST which clusters each

ISU to a seed sequence at a fixed sequence identity threshold using

sequences as seeds in the order they are encountered in the file.

We ordered the ISU sequences from the most to the least

abundant, under the assumption that read abundance correlated

with the abundance of the sequences in the underlying population.

Several lines of analysis were used to decide on appropriate

clustering values.

It is expected that the abundance of sequence variants per OTU

will decrease according to a power law if the variants are

generated stochastically. However, if a variant represents a distinct

taxon in the underlying microbial population, the frequency of the

variant is expected to reflect the proportion of the bacterial DNA

in the sample.

Figure 3 shows a plot of the number of reads in an OTU having

n mismatches compared to the most frequent read in the OTU at

a cluster percentage of 92%. For an OTU with a length between

72–80 bp this corresponds to *5 mismatches with the seed

sequence. The red line in Figure 3 shows the plot for the 37 bp

concatenated left and right primer sequences, which are expected

to have half the per-nucleotide PCR-dependent error rate as the

sequence between the primers, because 50% of the sequence is not

derived de novo but is contributed by the primer sequence. Because

the concatenated sequence is about one-half the length of the

sequence between the primers, the overall slope of the primer line

should approximate the slope of a single-species OTU that

includes errors arising only from the PCR and sequencing. Note

that the line for the primer sequence is nearly linear and, in line

with our expectations, the number of reads having additional

Figure 3. The proportion of reads in the 25 most abundant OTUs clustered at 92% identity as a function of the number of
differences with the seed ISU. The red line shows the plot for the concatenated primer sequences, and the blue line shows the plot for the OTU
containing the most abundant ISU.
doi:10.1371/journal.pone.0015406.g003
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differences with the seed sequence for the OTU is far less

abundant than the reads with one fewer difference. Also plotted

are the results for the 25 most abundant OTUs, with OTU 0, the

most abundant OTU comprising 51% of the total reads, shown in

blue. The line for OTU 0, and several other OTUs closely follow

the line for the concatenated primers until 4 or 5 differences with

the seed sequence are included. The simplest interpretation is that

one or more additional rare taxa having 4 or more mismatches

with the seed sequence for OTU 0 are now being included at this

level of clustering. The lines for 11 of the 25 OTUs show a similar

pattern with a sharp increase at 4 or more mismatches. Only 3 of

the OTUs show a continuous decline for all number of

mismatches with the seed member of the OTU suggesting that

clustering at 92% identity was including sequences not derived

from PCR or sequencing error.

We next calculated the Levenshtein distance — the minimal

number of substitutions, insertions or deletions needed to convert

one sequence into another — for all pairs of the 108 ISU

sequences that occurred with a frequency of §1% in any of the

272 samples. Examination of the neighbour-joining tree drawn

from these distances showed that there was a continuum of

distances between ISU sequences, but that there seemed to be a

natural distance cutoff of three substitutions in this dataset. This is

illustrated in Figure 4 where the branches sharing red nodes

connect ISU sequences that clustered together at 95% identity,

and branches sharing green nodes connect ISU sequences

clustered at 92% identity. Several of these are instructive. The

clade at 2 o’clock is anchored around ISU 0. The other ISU

sequences in this clade differ from ISU 0 by one or two

substitutions, and, as we show below, represent substitutions

because of PCR error. All the members of this clade are well-

separated from all other clades. The other extreme can be

illustrated by the clades at 4 and 6 o’clock. Here, as shown below,

the grouping at 95% identity includes differences derived from

PCR errors and from underlying sequence diversity in the

microbial sample. However, grouping at 92% identity (Levensh-

tein distance of 5) clearly groups outlier clades with the main

group. It is standard to assume that clustering at 97% identity

represents species units [12]. However, taking the two extremes as

examples, clustering at greater than 95% identity would result in

splitting clades that contain differences derived only from PCR

error (i.e. ISU 0 and associated ISUs) and clustering at less than

95% identity would group sequences that should be distinct.

Based on these analyses a cluster percentage of 95% was used

for the analysis given below because it allowed up to 3 nucleotide

differences with the seed sequence per OTU. At the 95%

clustering threshold, 15 of the OTUs showed ISU mismatch

frequency decay characteristics similar to that expected for errors

introduced only via PCR or sequencing error; i.e., their

abundance profiles decayed at a rate similar to that seen for

Figure 4. Neighbour-joining tree derived from Levenshtein distance between the 108 most abundant ISU sequences. ISUs clustered
into OTUs at 95% identity are connected with red branches and ISU sequences clustered at 92% identity are connected with green branches. The
seed sequence for each 95% identity OTU cluster is identified by a red dot.
doi:10.1371/journal.pone.0015406.g004
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errors in the primer sequences. This indicates that these 15 OTU

sequences may be well differentiated from their neighbours at this

level of clustering and may represent distinct sequence species in

the underlying population. On the other hand, the most abundant

ISU in several OTUs was outnumbered by clustered ISU

sequences. In the most extreme cases, OTUs 46, 97 and 119,

ISU species with 2 and 3 differences from the seed ISU

outnumbered the seed ISU by 2–3 orders of magnitude. An

example of this characteristic profile is labeled with an arrow in

Figure 3. As shown below, these OTUs represent clusters of errors

derived from very abundant organisms in the underlying

population.

Assignment of OTUs to Taxonomic Groups
The tools used for taxonomic assignment are not designed to

work with the short sequences derived from this type of analysis

[15]. Therefore, similar to others we designed a simple classifica-

tion scheme based on sequence comparison with BLAST [12,24]

vs. eubacterial sequences (taxid 2), excluding uncultured and

environmental samples, in the GenBank database [25]. In essence,

sequences were identified at the species level if a fully-sequenced or

classified type-species sequence matched the OTU with 100%

identity and 100% coverage and no other sequence matched with

w97%identity. Sequences that matched with less than 100%

identity were classified at the genus level if another genus matched

with a lower percent identity. Sequences with less than 95%

identity were matched to the taxonomic level supported by the

groups of reads. With these rules we were able to assign the 63

OTU sequences that were at an abundance of §1% in any of the

272 samples unambiguously. As discussed below, three of the

OTUs were derived from PCR errors from the G. vaginalis strains

and were classified accordingly. The classifications of these OTUs,

and the supporting evidence for each is shown in Supplementary

Table S1. The sequence of the seed ISU for each OTU has been

deposited in Genbank with sequential accession numbers between

HM585291–HM585350 inclusive.

Systematic Sources of Error
Recently, Quince et al [10] examined the effect of pyrosequen-

cing errors on the classification of organisms in high-throughput

microbiome analyses. They concluded that a large fraction of the

‘rare microbiota’ was composed of pyrosequencing errors and

introduced a method to accurately cluster the reads based on their

expected errors. Since the Illumina sequencing platform has a

substantially lower error rate than does the 454 pyrosequencing

platform, and the read length is deterministic rather than random

[19] we were thus interested in identifying the sources of error in

the *13 million overlapping reads in our dataset. Most notably

the Illumina platform is not susceptible to miscalling the number

of nucleotides in homopolymeric regions; this type of base-call

error is more pronounced in pyrosequencing reads when sequence

coverage is relatively low [19].

If the major source of error in the data came from DNA

sequencing, we would expect that errors should increase as a

function of distance from the sequencing primer until the region of

overlap and that the errors should be much less frequent in the

overlapped region. This hypothesis can be assessed by comparing

the Q, or quality, score assigned by the Illumina base-calling

algorithm in the overlapped 16S sequences with the error

frequency per position.

Figure 5 shows a box-plot of the Q scores for the reads of length

120 nt, which composed 24% of the *12000000 overlapping

reads. Similar results were obtained for reads between 113 and

126 nt, which together compose w99% of the overlapping reads.

Two important conclusions can be drawn. First, as expected, the

median Q score decreases and the range of scores increase as the

distance from the sequencing primer becomes greater. Second, the

Q scores, and the variability in these scores for the region of

overlap are greater than for the region of single coverage.

Initally, the concept of stochastic error contributing to sequence

variation was examined by measuring the frequency of occurrence

of each nucleotide in the left and right primers. Figure 6 shows a

plot of the number of times that each nucleotide occurred at each

position in the left and right V6 primers. This figure illustrates

several points. First, the most frequent variant at each position is

usually a transition rather than a transversion, although several

positions did not follow this pattern. Secondly, the frequency of the

residues differing from the primer sequence are found in a

relatively consistent range. Thirdly, position 9 in the left primer,

which was synthesized as a mixture of G and A, shows a strong

deviation from the background frequency. Thus the underlying

nucleotide frequency in the population of molecules being

amplified strongly affects the nucleotide frequency at the

polymorphic position. Finally, the variation is constant across

the entire length of the primers except for position 9 and is not

dependent on the distance from the sequencing primer. These

Figure 5. Quality scores for all overlapped 120 bp composite reads. The Q scores a log-odds score of the likelihood of error in the base call,
higher Q scores represent lower likelihoods of error [40]. They are expected to decrease with distance from the left or right sequencing primer, and to
be highest in the region of perfect overlap because Q scores are additive.
doi:10.1371/journal.pone.0015406.g005
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observations support the hypothesis that stochastic errors may

contribute significantly to sequence variation in our dataset.

The relationship between the Q scores and the abundance of

sequence variants for each OTU was examined by mapping the

variants onto seed ISUs as was done for the primer sequences. All

ISU sequences in each OTU were used to make a BLAST

database for that OTU and the OTU seed sequence was used as

the query sequence. An additional 6 nucleotides were added onto

both ends of both the OTU sequence and the ISU sequences

because of the edge effects in the BLAST algorithm [26]. These

nucleotides were later trimmed for the analysis. The number of

sequence variants at each position, weighted by the number of

reads that the variant occurred in was tabulated and converted

into graphical representations of nucleotide counts at each position

in the OTU.

Two representative examples for the rRNA V6 region are given

in Figure 7, and a summary of the distributions is given in Figure 8.

Figure 7 shows the number of reads that contain an individual

residue at each position plotted in color. The entropy of each

position is plotted as open or filled diamonds; higher entropy

values correspond to greater variability at the position. Both of

these OTUs contain several million reads, and the predominant

nucleotide corresponds to the OTU seed sequence. However,

there are many variants that were clustered together in these

OTUs.

Figure 8 shows a summary plot of the distribution of differences

in the frequency across each OTU between the most commonly

occurring residue and the other 3 residues at each position. The

OTUs are arranged approximately from those with the most to

the least number of reads. Several interesting observations can be

made from these bar-plots. First, the frequency differential varies

between 10{2 and 10{5 for the vast majority of sequence variants

from the seed ISU sequence. Second, about half of the OTUs

contain one or more strongly outlying values. These correspond

directly to the common variant residues seen in Figure 7.

Compare, for example, the uniform distribution of variants in

the top panel of Figure 8 (OTU 0) and the three outlying variants

in the bottom panel (OTU 1) with the nucleotide distributions in

Figure 7 for these OTUs. Third, the evidence for outlying

positions becomes progressively weaker as the the number of

sequences in the OTU decreases.

The data in these two figures can be summarized numerically

by examining the distribution of the entropy of the positions in

each OTU. Skew in the entropy values is calculated by:

SK~Hmedian{H|100. The SK value tells us if the distribution

of entropies is strongly skewed by the occurrence of highly variable

positions. Values near or greater than 1 indicate a strongly skewed

entropy distribution and represent a situation where several to

many positions are highly variable.

Z and ZQ both measure how different the maximum entropy

value is to the central tendency of the entropy distribution, and are

calculated as follows: Z~(Hmax{H)=sH and ZQ~(Hmax{

Hmedian)=(H95thpercentile{Hmedian). Thus Z represents the number

of standard deviations that the maximum entropy value is from the

mean, and ZQ is the number of 95 percentile deviations of the

maximum entropy value from the median. Both values are required

since Z is not informative if a distribution has a large variance. ZQ

has extreme values in the instances of a skewed distribution with small

number of extreme values. Inspection of the plots suggests that values

of SKw1, Zw6 or ZQw6 represent situations where the nucleotide

Figure 6. The frequency of each nucleotide observed at each position in the left and right primers derived from the Illumina
dataset. There are w12 million sequences, and the difference in frequency between the correct and altered nucleotide is relatively constant. Note
that the errors are at the same frequency at each end of the primers.
doi:10.1371/journal.pone.0015406.g006
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distribution for a suggests a mixed population of reads. Conversely,

OTUs where all 3 values are less than these cutoffs strongly suggest

that the variability seen in the OTU arose from stochastic errors

inherent in the experimental protocol.

Supplementary Table S2 summarizes these statistics for each

OTU. The complete set of Figures, shown in Supplementary

Figure S1, and the associated summary statistics provide

information about the potential mixture of sequences found in

each OTU.

The information in Figure 7 and in 8 and the associated entropy

information, allow us to classify the OTUs into groups that contain

a homogeneous population of reads that differ from each other

only because of variations introduced during the PCR step (eg.

OTU 0) and OTUs that contain sequence variants derived from

the underlying population (eg. OTU 1).

As an example, the top panel in Figure 7 corresponds to OTU

0, and the seed sequence in this OTU is identical to the V6 region

of Lactobacillus iners in both the RDP and NCBI nucleotide

databases. The bottom panel corresponds to OTU 1, and the seed

sequence is identical to one annotated as Gardnerella vaginalis 409-

05. The second most common sequence is identical to one

annotated as G. vaginalis NML060420, and the third and fourth

Figure 7. The sequence variation in OTU 0 and OTU 1. The plot shows the number of times that each nucleotide occurred at each position in
two example OTUs.
doi:10.1371/journal.pone.0015406.g007

Figure 8. Boxplot summaries of the difference between the frequency of the most in common residue at each position and the
frequency of each sequence variant. The OTU numbers are given at the top of the graph.
doi:10.1371/journal.pone.0015406.g008
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most common sequences are identical to sequences annotated as

uncultured G. vaginalis sequences. All four of these sequences differ

from each other by a single diagnostic nucleotide, and the variant

counts match the counts of the 4 major ISUs. These 4 ISUs make

up the 88.9% of the reads in OTU 1. Based on the analysis of

these two OTUs and the similar analyses of the remaining OTUs,

we conclude that OTUs that exhibit the pattern of variation seen

in OTU 0 represent distinct sequence entities in the underlying

dataset and that those exhibiting a pattern of variation similar to

OTU 1 represent the grouping of sequence entities in the

underlying dataset based on sequence similarity. In the case of

OTU 0, no sequence in the RDP database [15] could be clustered

with it without including at least 5 nucleotide substitutions, leading

us to conclude that OTU 0 represents a distinct taxonomic group

at the sequence level. In the case of OTU 1 there are several

sequences, all annotated as different strains of the same species

that are grouped together, and like OTU 0, all are well-separated

from other V6 sequences. Thus, we conclude that OTU 1 is a

cluster of distinct G. vaginalis strains.

OTUs 46, 97 and 119 in the dataset, had distinct distributions

when plotted as in Figures 7 and 8. The nucleotide frequency

difference between the seed sequence and the nucleotide variants

in these three OTUs was much smaller than in the other 61

OTUs. Inspection of the sequences making up these OTUs

showed that they were most similar to one or more of the G.

vaginalis strains. We propose that these OTUs are composed of

ISU sequences derived solely from PCR errors that failed to cluster

with the seed sequence in OTU 1. We are currently working on a

clustering procedure that explicitly accounts both for edit distance

and read abundance to more accurately cluster sequences derived

by very high throughput sequencing.

Organism Diversity and Data Reproducibility
We found that one right-end tag, GCGAG, was composed of a

mixture with the ratio 69.5/30.5 of the full-length and the unique

N-1 truncation-derived GCGA tag. This oligonucleotide synthesis

error was exploited to determine the effect of the number of reads

on within-sample variability; in essence the N-1 truncated tag

allowed an examination of the technical replication of the

experiment. The GCGAC tag was used in 17 samples. The

black-filled circles in Figure 9 show the number of reads from the

full length GCGAC tag compared to the truncated GCGA tag in

these samples. The red open circles in Figure 9 show an example

of the read replication observed from independent samples. The

replication of the read numbers in the full length and N-1 samples

is extremely high for reads occurring at least 30 times in the full-

length tag set, and at least 10 reads in the N-1 tag set. As expected

the read replication for independent samples is much poorer. The

correlation coefficients for the 17 full-length and N-1 samples

ranged from 0.97 to 0.99 when the N-1 sample contained at least

10 reads. Thus, we conclude that the number of reads in a sample

is reproducible, if at least 10 reads are observed. Similar

conclusions about the minimum read abundance have been

drawn from RNA-seq experiments [27].

Rarefaction Curves
A second way to examine reproducibility is to generate

rarefaction curves where the number of species sampled per unit

of effort is estimated by resampling the dataset [28,29].

Rarefaction curves for the dataset from each sample were

generated by performing 10000 random samples with replacement

[30] on the complete set of OTUs or ISUs or by including only

those OTUs and ISUs that occurred in a sample more than twice.

The values for resampling without replacement will approach the

observed value (i.e. will saturate) only if the sample is of sufficient

size to encapsulate all possible diversity [30]. Thus, if the values do

approach saturation when resampling with replacement, we can

be confident that we have sampled most, if not all, of the available

sequence species [30,31].

Figure 10 shows rarefaction curves generated for ISUs and

OTUs in sample 1 using different protocols for a representative

sample in our dataset; it is worth pointing out that this rarefaction

curve is one of the few curves that does not reach saturation. The

white-filled symbols show curves generated for unclustered ISUs in

this sample, and the black-filled symbols are for OTUs generated

at 95% sequence clustering. Here, the effect of removing rare

sequence species is clear. The curve saturates when sampling only

50% of the reads if either rare ISU or rare OTU sequences are

removed, but does not saturate for either the ISUs or OTUs even

with the full set of reads. Inspection of the full set of rarefaction

curves shows that this failure to reach the limit is commonly

observed when the sample is dominated by one or a few species,

which is the case in many of the microbiota samples in our

complete dataset. Samples containing a broader range of species

show rarefaction curves that generally reach the limit near 20000

reads, suggesting that this is an appropriate number of reads to

sample the microbiome in the vaginal environment. Rarefaction

curves for each of the 272 samples are given in Supplementary

Figure S2.

Estimating Species Richness
Another method of examining species richness is to use the

Chao1 or ACE methods to estimate the number of unseen species

in the sample [32,33]. We used both methods to determine the

number of species expected in each of the 272 samples with the

VEGAN package for biodiversity analysis [34]. There were 37 and

Figure 9. Plot of the reproducibility between and within
samples. The black-filled circles plot within-sample variation, and the
red circles plot the between-sample variation for the GTCGC tag. The
count of sequences composing OTUs clustered at 95% identity for
samples containing the GTCGC tag and the GTCG N-1 tag are in black.
This shows the technical replication of the data when amplified from
the same sample in the same tube. The open red circles plot the
correspondence for between-sample OTU counts.
doi:10.1371/journal.pone.0015406.g009
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31 of 272 samples where the Chao1 and ACE estimates indicated

that we observed v90% of the real species. The correspondence

between the Chao1 and ACE measures is plotted in Figure 11 and

it is clear by these two measures that the vast majority of samples

were expected to contain the majority of the available species.

Included in this plot is the fraction of species found when the

rarefaction analysis was performed with the number of reads in the

sample. Rarefaction with a saturating number of reads again

showed that the 206 of 272 samples identified all or almost all of

the available species.

Diversity vs. Number of Reads
Finally, species richness can be examined as a function of the

number of reads across all 272 samples. This is plotted in Figure 12

for ISU and OTU sequences. In this case the white-filled symbols

represent populations derived from samples classified as ‘normal’,

and are expected to be dominated by one or a few species, and the

red or blue-filled symbols represent populations classified as

bacterial vaginosis (BV), where there is expected to be a more even

distribution of species [35,36]. There are strongly diminishing

returns when more than 20000–25000 reads are obtained

regardless of the diversity of the population; sampling more than

50000 reads was sufficient to sample all the available OTU

diversity in the samples. Interestingly, the number of distinct ISU

sequences increases linearly with the number of reads, providing

further evidence that increasing the number of reads increases the

background number of ISUs that contain PCR-derived errors.

Taken together with the rarefaction, Chao1, ACE data, we

conclude that the number of reads obtained by this Illumina

sequencing is adequate to sample nearly saturating numbers of

species in this environment.

Comparison with DGGE
Results from Illumina sequencing were compared to those from

dideoxy chain termination sequencing of bands isolated from

following denaturing gradient gel electrophoresis (DGGE) analysis

of amplified PCR products; a method traditionally used for the

separation of bacterial species. A total of 20 samples were selected

that were expected to have a diverse population of organisms by

extrapolation from the 272 samples sequenced by Illumina. DNA

fragments from the bands were sequenced and each OTU

sequence and each sequence from the DGGE bands were assigned

to taxonomic groups by BLAST using the GenBank nucleotide

database as described above. OTU sequences were assigned to

species if they matched 100% of their length at 100% identity, and

to genus or other groups as outlined in Supplementary Table S3.

DGGE was found to detect only those bacterial species of greatest

abundance in the sample, with a minimal Illumina read

abundance of 11%. In two cases, one shown in Figure 13A-lane

89, a distinct band was excised and sequenced that had an

Illumina abundance of between 2–3%. Figure 13B shows that a

total of 8 organisms were detected through DGGE analysis,

compared to 59 organisms detected through Illumina analysis in

the same 20 samples, and that the organisms identified by DGGE

analysis were a strict subset of those identified by Illumina

sequencing.

Discussion

We present and characterize a low-cost, high throughput

method for microbiome profiling. The method uses combinatorial

sequence tags attached to the 59 end of PCR primers that amplify

the rRNA V6 region, but may be easily adapted for use in other

bacterial and eukaryotic sequences. Illumina paired-end sequen-

cing of the amplified sequences generates millions of overlapping

reads. The combinatorial sequence tags allows the investigator to

examine hundreds of samples with far fewer primers than is

required for single-end bar-code sequencing. We propose that this

method will be useful for the deep sequencing of any short

sequence that is informative; these include the V3 and V5 regions

of the bacterial 16S rRNA genes and the eukaryotic V9 region that

is gaining popularity for sampling protist diversity. The use of the

V3 and V5 regions is currently being attempted by our group.

Two other groups recently used strategies similar to ours. One

collected overlapping paired-end reads, but without the sequence

tags, to examine genomic DNA from mixed bacterial populations

[37]. The other used a small number of sequence tags on one of

the two amplification primers to examine microbial diversity using

paired-end Illumina sequencing [12]. However, their method

required three Illumina sequencing reads instead of two: two of the

reads to sequence each end of the amplified product and a third

using a custom primer to identify the sequence tags. In contrast, in

our study, we attached very short sequence tags to both the left

and right primers and read the sequence of the tags directly in the

paired-end run. Furthermore, we used a simple set of rules to

choose short sequence tags that balanced the nucleotide composi-

tion in the first 4 positions of the reads, that maximized the stagger

in the primer sequences when attached to the solid surface and

Figure 10. An example rarefaction curve. The top panel shows
rarefaction curves generated for sample 1 by resampling with
replacement either all OTUs or ISUs, or OTUs and ISUs where at least
3 reads were observed. The bottom panel shows the rarefaction curve
and the 95% and 99% confidence interval for all OTUs in sample 1.
Rarefaction curves for all 272 samples are given in Supplementary
Figure S2.
doi:10.1371/journal.pone.0015406.g010
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Figure 11. Correspondence between Chao1, ACE and rarefaction curves for the 272 samples. The X and Y axes show the fraction of
species that were found in each sample for the two estimates. Red-filled circles highlight those samples where the limit rarefaction value was less
than 0.97.
doi:10.1371/journal.pone.0015406.g011

Figure 12. Plot of the number of distinct ISU or OTU classes in each sample as a function of the number of reads. The number of ISU
classes increases with the number of reads, but the number of OTU classes becomes constant above 20000–30000 reads.
doi:10.1371/journal.pone.0015406.g012
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that minimized the possibility of primer-dimer formation. Using

these simple principles and avoiding the N-1 generation of non-

unique sequences, short sequence tags should be easily derived

that are suitable for primers specific to any small region of interest.

Sequence tags can be chosen automatically using the barcrawl

program [21] or can be chosen by hand.

We observed very few chimeric sequences in our dataset. There

are several reasons. First, we used a relatively small amount of

input DNA and used a small number of PCR cycles for

amplification [23]. Secondly, many chimeric sequences may have

been removed because of the strict requirement for proper

sequence tag and primer sequences on the left and right ends, and

because of a requirement for long overlapping segments of a

defined length. In this case, the deterministic read lengths of the

Illumina protocol combined with our narrow window for

overlapping segments would have resulted in many chimeric

sequences being filtered out. Indeed, inspection of a fraction of the

read pairs that failed to overlap, or that failed to pass the sequence

tag and primer requirements showed that many of these were

chimeric or deleted at one or both ends (data not shown). Thus,

while the Illumina sequencing protocol is limited to short segments

these can be combined into longer segments using the paired-end

approach as long as there is a significantly overlapping segment.

The utility of the method is further demonstrated by the near-

saturating number of ISU and OTU sequences obtained from a

large number of clinical samples. We used several lines of evidence

to show that 20000 reads are sufficient to capture all or virtually all

of the sequence diversity in the vaginal microbiome, and that

obtaining over 50000 reads results in no new sequence species.

Thus, assuming a requirement for 50000 reads, up to 200 samples

can be combined into a single Illumina lane, while up to 500

samples are possible if only 20000 reads are required. This is much

greater depth at a much lower cost than is possible with current

pyrosequencing technology. Strikingly, we observed that none of

our samples contained the full range of species in the microbiome

as a whole, and that we found fewer species than in a recent report

that used pyrosequencing in the same niche [38], despite

averaging 20-fold greater sequence coverage. We suggest that

the higher fidelity Illumina sequencing may have resulted in fewer

taxa because of a lower error rate contributing to fewer ‘rare

microbiome’ taxa.

Finally, we showed that the spectrum of errors could be examined

for each OTU to help determine if the OTU was derived from a

single underlying sequence in the sample population. The large

number of reads presented a challenge for sequence-based

clustering because sequencing millions of reads ensured that much

of the read variation was derived from PCR-amplification. We show

that sequence clustering of the large number of reads derived from

Illumina sequencing would be more accurate if it took both the

sequence variation and the underlying error rates into account. We

are currently working on developing methods to cluster that use

both sequence similarity and read abundance.

Figure 13. DGGE analysis of selected samples. Panel A shows representative PCR amplicons from 3 of 20 clinical samples (Subjects 40, 48 and
89) were electrophoresed on a denaturing gradient gel. Bands were excised, sequenced and identified as in the Materials and Methods. Bands are
labeled as follows: le = Leptotrichia amnionii; in = Lactobacillus iners; ga = Gardnerella vaginalis; cr = Lactobacillus crispatus; pr = Prevotella amnii (also
named P. amniotica). Panel B shows a Venn diagram of the organisms identified by Illumina sequencing of the V6 rRNA region and by sequencing
DGGE bands amplified from the V3 rRNA region.
doi:10.1371/journal.pone.0015406.g013

Microbiome Analysis with Combinatorial Barcodes

PLoS ONE | www.plosone.org 13 October 2010 | Volume 5 | Issue 10 | e15406



Materials and Methods

Ethics Statement
The medical ethical review committee of Erasmus University

Medical Centre, The Netherlands, and the medical research

coordinating committee of the National Institute for Medical

Research, Tanzania, approved the study design and protocol.

Subjects were informed of the purpose of the study and gave their

signed informed consent before participation. The study was

registered at www.clinicaltrials.gov NCT00536848.

Sample Preparation and Amplification
DNA was prepared from clinical swabs as part of a clinical study

[13]. Amplification was initiated with a 610 annealing temperature

that dropped to 510 in 10 increments followed by 15 cycles of:

denaturation 940, annealing 510, extension 720 all for 45 seconds

with a final elongation for 2 minutes. A constant volume aliquot of

each amplification was run on a 1.4% agarose gel for to determine

the approximate amount of product. The amount of product was

scored on a 4 point scale and, based on this scale, between 2 and

40 ml of the PCR products were mixed together to give the final

sample sent for Illumina sequencing at The Next-Generation

Sequencing Facility in The Centre for Applied Genomics at the

Hospital for Sick Children in Toronto. The library was prepared

without further size selection.

Denaturing Gradient Gel Electrophoresis Analysis
Clinical samples were amplified using eubacterial primers

flanking the V3 region of the 16S rRNA gene: HDA-1 (5-

ACTCCTACGGGAGGCAGCAGT-3) at position 339–357 (with

a GC clamp located at the 5 end), and HDA-2 (5-GTAT-

TACCGCGGCTGCTGGCA-3) at position 518–539, with an

annealing temperature of 560C. PCR reactions were carried out in

50 ml reactions for 30 cycles using the profile: 940C, a gradient of

annealing temperatures 71{510C at 45sec each, elongation 720C
all for 45sec.

Preparation of the 8% polyacrylamide denaturing gradient and

gel electrophoresis was done according to the manufacturers

instructions for the D-Code Universal Detection System (Bio-Rad)

with a 30–50% gradient of urea and formamide. The gel was run

in Tris-acetate buffer and pre-heated to 590C. The gel was run at

130V for 2 hours or until the xylene cyanol dye front reached the

lower end of the gel. DNA was visualized by UV irradiation

following stain with ethidium bromide. Bands were excised and re-

amplified, using the same primers and profile but without the GC

clamp. This second PCR product was purified and sequenced with

the HDA forward primer via dideoxy chain termination. Analysis

of results was carried out using the GenBank nucleotide database

and BLAST algorithm [39].

Supporting Information

Figure S1 Plots of the sequence variation in each of the
operational taxonomic units (OTUs). The plot shows the

number of times that each nucleotide occurred at each position in

two example OTUs. The identifier at the top gives the OTU

number, followed by the skew, ZQ and Z values described in the

text. Note that OTUs 46, 97, and 119 show sequence variation

that is significantly different than the variation observed in the

other OTUs for the reasons described in the text. (PDF)

Figure S2 Rarefaction curves, calculated as described
in the text, for each of the OTUs. (PDF)

Table S1 Organism identifications and the associated
evidence for each of the OTUs. (TXT)

Table S2 Summary statistics on the distribution of
sequence variation found in each of the OTUs. Given is

the median, mean and maximum entropy (h) and the ZQ and Z
values calculated as described in the text. (TXT)

Table S3 Comparison of organisms identified by DGGE
or by Illumina sequencing in selected samples. (PDF)
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