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Abstract

Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are
associated with an array of physical and mental health maladies, including marked deficits in human cognitive function.
Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this
possibility has not been experimentally examined.

Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag’ (i.e., phase advances
of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with
reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating
glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the
contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in
learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly,
deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption,
but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function.

Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal
neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning
and memory.
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Introduction

Frequent transmeridian travel, rotating shift work schedules,

and irregular sleep patterns result in an incongruence between the

endogenous circadian timing system and the external environment

[1,2,3,4]. This loss of synchrony is associated with a number of

clinical pathologies, including a higher incidence of cancer [5,6],

diabetes [7], hypertension and cardiovascular disease [8,9],

reduced fertility and fecundity [10,11], and an exacerbation in a

number of pre-existing psychological pathologies [12,13] relative

to individuals with consistent schedules. Most relevant to the

present series of studies, several lines of investigation using human

and animal models suggest a pronounced influence of circadian

timekeeping on learning and memory [14,15,16,17].

In mammals, the master circadian pacemaker is located in the

suprachiasmatic nucleus (SCN) in the anterior hypothalamus

[18,19]. The SCN generates endogenous oscillations with a period

of approximately, but not precisely, 24 hours, resulting in a

desynchrony between internal and environmental time in the

absence of an external synchronizing cue. This desynchrony is

prevented through entrainment, with light being the primary

zeitgeber (time giver; ZT) in mammals [20]. At the cellular level,

circadian rhythms are generated by 24-hour autoregulatory

transcriptional/translational feedback loops consisting of ‘clock’

genes and their protein products [21,22,23,24]. Importantly, clock

gene expression is ubiquitous and allows the CNS and periphery to

exhibit system-specific rhythms in daily activity, a necessity for

optimal health and functioning.

Several correlational studies suggest an association between

circadian disruptions and impaired cognitive function in humans

[2]. For example, learning and memory deficits and reduced

temporal lobe volume are observed in chronically jet-lagged

female flight attendants relative to controls [16,17]. These

cognitive deficits are associated with elevated circulating cortisol

concentrations relative to flight attendants permitted recovery

following transmeridian travel [17]. However, in order to establish

a cause-effect relationship between alterations in circadian timing

and learning and memory deficits, experimental studies in which

circadian perturbations are controlled and applied to a homog-

enous population are required.
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In addition to the effects of circadian timing, numerous lines of

evidence point to a strong association between neurogenesis and

learning and memory, suggesting that new cell birth/maturation

might be negatively affected by disruption of daily rhythms. For

example, newly born hippocampal cells markedly increase

following a hippocampus-dependent learning task [25,26,27].

Importantly, learning tasks that are hippocampus-independent do

not result in increased dentate gyrus neurogenesis [25,28]. More

recent studies using antimitoic and DNA alkylating agents,

irradiation, targeted viral vector, and genetic approaches to more

specifically disrupt neurogenesis provide further support for the

importance of new neuron proliferation/maturation in learning

and memory [29,30,31,32].

Given the impact of circadian perturbations on the stress and

reproductive axes [10,11], and established effects of glucocorti-

coids and estrogen on hippocampal cell proliferation/neurogenesis

[33,34] and learning and memory [34,35,36,37,38,39], it is

possible that disruptions in circadian timing negatively impact

cognitive function through glucocorticoid- and/or ovarian hor-

mone-dependent changes in neurogenesis. Alternatively, circadian

disruption may impact brain function more directly, as mice

lacking one of the core clock genes, Period2, that drives circadian

rhythms at the cellular level, exhibit alterations in neural/

progenitor cell proliferation in the hippocampus [40]. This finding

suggests that the state of the circadian system may directly affect

the cell cycle and cell proliferation [41].

In the present series of studies, we sought to establish whether or

not disruptions in circadian timing impact learning and memory.

Additionally, given the association between adult neurogenesis and

learning and memory, we examined the possibility that hippo-

campal cell proliferation and neurogenesis are affected by

disturbances in circadian timing. We examined dentate gyrus cell

proliferation and neurogenesis in female Syrian hamsters exposed

to 4 weeks of twice weekly phase advances in the LD cycle (i.e., a

6-hr experimental ‘jet lag’). Similar manipulations have been

previously used to assess the impact of experimental jet lag on

mortality [42] and tumor progression [43]. We intentionally chose

repeated phase advances for this initial characterization because

these manipulations require significantly more time for behavioral

and physiological re-entrainment than phase delays

[3,42,44,45,46]. Likewise, these behavioral manipulations allow

for the study of circadian disruption on variables of interest

without invasive surgical manipulations or global disruption of the

molecular circadian clockwork. The relative contribution of

alterations in the stress and reproductive axes to any observed

deficits were controlled through adrenalectomy or ovariectomy

and hormone replacement (corticosterone or estrogen, respective-

ly). Hippocampal-dependent memory was assessed using a

conditioned place preference (CPP) paradigm during the time of

circadian perturbations, and well after the cessation of jet lag, to

explore whether or not any impact on cognitive functioning

persists following re-entrainment.

Materials and Methods

Ethics Statement
All animal experiments were in accordance with NIH guidelines

regarding the care and use of animals and all protocols were

approved by the Institutional Animal Care and Use Committee of

the University of California, Berkeley (Protocol R295).

Animals
Adult (.60 days of age) female LVG hamsters (Mesocricetus

auratus; Charles River, Wilmington, MA) were maintained on a

14:10 light:dark (LD) cycle (lights on at 0700 h) prior to the onset

of all experiments, with a light intensity ranging from 100–300 lux

at the level of each cage. All animals were maintained in a colony

room at 2361uC and provided with ad libitum access to water and

food. Estrous cyclicity was monitored for all animals by daily

inspection for preovulatory vaginal discharge [47]. Only animals

with regular, 4-day estrous cycles were used in the experiments.

The first cohort of hamsters either remained intact or was

ovariectomized or adrenalectomized to assess the influence of

estrogen and glucocorticoids on cell proliferation and neurogenesis

(n = 27). All surgeries were conducted under isoflurane anesthesia.

Ovariectomized hamsters received a SILASTIC brand capsule

(Downing Corning Corp., Midland, MI; 10 mm length, 1.45 inner

diameter, 1.93 out diameter) containing powdered 17-b estradiol

(OVX+E2). These capsules result in proestrous concentrations of

plasma estradiol [48]. Adrenalectomized hamsters were given a

solution of 0.9% saline, 5% sucrose and corticosterone (25 mg per

ml of 0.9% saline; Sigma) to mimic basal glucocorticoid

concentrations and maintain electrolytes (ADX). This treatment

results in basal levels of corticosterone, the dominant hamster

glucocorticoid in non-stressed animals [48,49,50]. Two weeks after

surgery, hamsters were placed into their respective lighting

conditions. A second cohort was used to investigate the impact

of jet lag on learning and memory (n = 20). The final cohort of

hamsters was used to assess the impact of jet lag on behavior and

the stress axis (n = 14).

Jet Lag and Hippocampal Cell Proliferation/Neurogenesis
Hamsters either remained intact or were adrenalectomized and

provided with basal corticosterone concentrations or ovariecto-

mized and provided with proestrous estradiol concentrations. Half

(n = 4–5/group) of the animals from each condition were exposed

to a 6-hr phase advance every 3 days for 25 days (Jet Lag) while

the other half remained in a 14:10 LD (lights on at 0700 hr) cycle

for the same duration as jet-lagged animals (Control). All animals

were injected with the thymidine analog, bromodeoxyuridine

(BrdU), to label the dividing cell population. BrdU (50 mg/kg

body weight; Sigma) was injected intraperitoneally (i.p.) 7 hours

after lights on, one day after every second phase advance (i.e.,

every 6 days) for the jet lag condition or at the same time and day

for control hamsters (Figures S1 and S2). Multiple injections of

BrdU were used to estimate the total population of newly-

generated cells throughout the 25-day temporal disruption, as well

as to maximize the number of cells surviving until differentiation

[51,52].

Hamsters were then anesthetized with sodium pentobarbital

(200 mg/kg) and perfused transcardially with 150 ml of 0.9%

saline followed by 300 ml of 4% paraformaldehyde in 0.1 M PBS

(pH 7.4) 24 hours after the last BrdU injection. Brains were

postfixed in 4% paraformaldehyde for 3 hours at 4uC and

cryoprotected in 30% sucrose in 0.1 M PBS overnight (Figure
S2).

Histological Procedures, Microscopy, and Quantification
Brains were sectioned in the coronal plane at 40 mm thickness

using a cryostat (Leica, CM3050-S, Leica Microsystems Inc.,

Bannockburn, IL). For BrdU immunofluorescence, sections were

rinsed in 0.4% Triton X-100 (PBT) followed by 10 min in 0.9%

saline. Sections were then denatured in 2 M HCl for 30 min at

37uC, rinsed in PBT, and incubated in normal donkey serum

(1:50; Jackson ImmunoResearch) in PBT for 1 hr. Sections were

then co-incubated for 48 hr at 4uC in rat anti-BrdU (1:1000;

Accurate Chemical), guinea pig anti-glial fibrillary acidic protein

(GFAP) (1:1000; Advanced Immunochemical), and mouse anti-
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neuronal nuclei protein (NeuN) (1:1000; Chemicon). Following

incubation in the primary antibodies, sections were rinsed in PBT

and incubated in the dark for 1 hr with DAPI which binds strongly

to DNA and labels cellular nuclei (1:1000: Sigma), CY2 donkey

anti-rat (1:500; Jackson ImmunoResearch), CY5 donkey anti-

guinea pig (1:500; Jackson ImmunoResearch), and CY3 donkey

anti-mouse (1:500; Jackson ImmunoResearch) to visualize BrdU,

GFAP, and NeuN, respectively.

GFAP was used to assess gliogenesis while NeuN, a vertebrate

nervous system nuclear protein ubiquitous in the CNS, was used to

label mature neurons. This same protocol was followed for

proliferating cell nuclear antigen (PCNA), a co-factor for DNA

polymerase and a convenient endogenous marker for newly

proliferated cells, immunofluorescence using mouse anti-PCNA

(1:4000; Santa Cruz) as the primary antibody. PCNA was

visualized with CY3 donkey anti-mouse (1:500; Jackson Immu-

noResearch). Sections were then rinsed, mounted on gelatin-

coated slides, dehydrated with a graded series of alcohols, and

coverslips were applied.

All cell counting was performed by individuals blind to the

experimental conditions. All sections were counted using a Zeiss

Z1 microscope (Carl Zeiss, Thornwood, NY) at 4006 using the

standard wavelengths for FITC (485 nm), CY3 (546 nm), CY5

(640 nm), and DAPI (359 nm). For BrdU-positive cells or PCNA-

positive cells, every 12th unilateral section throughout the extent of

the dentate gyrus (including the subgranule zone, the granule zone

and the hilus) was counted, excluding those cells in the outermost

field of focus. Volume reconstruction was conducted by multiply-

ing the number of BrdU-positive or PCNA-positive cells per

dentate gyrus by 24 to estimate the total number of labeled cells

per brain [50]. The volume of the analyzed region was determined

using Cavalieri’s principle with NIH ImageJ software [53]. 25

BrdU-labeled cells from at least 4 sections/animal were randomly

chosen and assessed for double-labeling with NeuN or GFAP [54].

Images were digitally captured at 4006 in 8-bit greyscale using a

cooled CCD camera (Zeiss). At least 20% of those BrdU-labeled

cells assessed for double-labeling were analyzed in confocal scans

to ensure that counts using conventional microscopy did not result

in false positives. In all cases, those cells identified as double-

labeled at the conventional microscopy level were identified as

double-labeled in the confocal microscopy analysis.

Assessment of Learning and Memory: Conditioned Place
Preference

Intact, adult, female LVG hamsters (4–5 weeks of age) were

used to assess hippocampal-dependent learning and memory using

the conditioned place preference (CPP) paradigm (n = 20),

considered an ideal hippocampal-dependent memory test in

Syrian hamsters. Hamsters do not perform well on other

established hippocampal-dependent memory tests, including the

Morris water maze or the Olton radial arm maze [15,55]. In the

CPP paradigm animals learn an association between a specific

context and a rewarding stimulus (a running wheel in the present

case) [15,56]. Learning is indicated by an increase in dwell time -

the total time spent in the context previously paired with the

rewarding stimulus compared to the non-rewarded. The animal

was considered to enter a chamber when both forepaws were

within the chamber. Estrous cyclicity was monitored daily for

2 wks prior to testing to ensure that pre-testing occurred on the

same day of the estrous cycle for all hamsters to control for

estrogenic effects on learning and memory [57]. Stainless steel

wheels, 17.5 cm diameter, were placed in the home cages of all

hamsters 2 wks prior to onset of the testing to acclimate the

animals to wheel running. All testing occurred in a dark room

illuminated by dim red light to encourage exploration, particularly

of the white compartment.

The CPP apparatus included two boxes (60645640 cm), one

white and one black, connected by a clear pathway

(30625618 cm). Sliding partitions that matched the color of the

compartments were used to isolate animals in one of the chambers

during training. To further distinguish the boxes, a unique odor

was placed into a wall-mounted plastic container matching the

color of each chamber. Before each session a cotton ball saturated

with either 0.5% isoamyl acetate or eucalyptus oil was added to

each of the chambers. Each box was associated with one of the

odors for the duration of the experiment. Between tests the

compartments were cleaned with 70% ETOH. Tests for context

preferences were determined by recording the total amount of

dwell time in each context. The CPP consisted of three phases:

Pretest, Training and Probe trials.

Pretests commenced during estrus with Probe trials occurring

on diestrus. Hamsters were exposed to the CPP apparatus at the

same time of day for the entire behavioral protocol, with all

Pretest, Training, and Probe trials occurring within 4 hrs of lights

off. Because Syrian hamsters show a place preference for a reward-

paired context only when the training and probe trials occur at the

same time of day (ZT) or the same circadian time (CT) [15], we

elected to train hamsters at the same ZT (i.e., within 4 hrs of lights

off). Pretest 1 occurred on Days 13 through 16 of the jet lag

paradigm, depending on the estrous state of the animals. Probe 1

occurred on Days 21 through 25 (Figure S2). After Probe 1, jet-

lagged animals were returned to a static light:dark cycle (14:10

LD). Pretest 2 was conducted after all hamsters were maintained in

a static LD cycle for 28 days to determine if jet lag had lingering

effects on learning and memory long after cessation of the

temporal disruption. Control animals were housed in 14:10 LD for

the duration of the experiment. Specific procedural details are

below:

CPP test 1. Pretest 1 - Animals were placed into the clear

center partition and allowed to explore the entire apparatus for

10 min. Videos were scored to determine the total amount of time

spent in each compartment. If the hamster exhibited a preference

for one of the boxes (white or black), the wheel was assigned to the

box opposite their preference to remove the possibility of bias for a

particular box for each individual animal. Video recordings were

also examined to calculate the total amount of time the animals

were active or ambulating to ensure that control and jet-lagged

hamsters were equally motivated to explore the apparatus. Initial

Training – Hamsters were trained for 25 min/day with the wheel

placed in the compartment assigned to each animal based on

Pretest preferences. Each animal received 4 training sessions in

which it was confined to the box containing the wheel and 4

training sessions in which it was confined to the box without the

wheel (alternating days). Probe 1 – On the test day, the wheel was

not present in the apparatus. Hamsters were tested to determine if

they retained a memory for the chamber paired with the wheel by

placing the hamsters into the clear center partition and permitting

them to freely explore the entire apparatus for 10 min. Hamsters

were videotaped and the total amount of time spent in either the

black or white compartment was recorded as in Pretest 1.

CPP test 2. Pretest 2 – One month after all hamsters were

placed into a static LD cycle, they were tested to determine if they

maintained a memory for the previous learning task. Hamsters

were placed into the center partition and permitted to freely

explore the apparatus for 10 min. During this test, no wheel was

present to assess whether animals recalled the location of the wheel

during CPP Test 1. Videos were assessed and the amount of time

spent in each chamber was recorded as in Pretest 1. Reversal
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Training – For this training experience, the wheel was now placed

into the opposite chamber from that which each individual

hamster experienced during the first training session. All other

training conditions were implemented as in the Initial CPP Test 1

Training Session. Reversal Probe – To determine if hamsters

learned the new location of the wheel, a probe trial was conducted

in which the wheel was removed. As in Probe 1, hamsters were

released into the apparatus and allowed to freely explore for

10 min. Video recordings were analyzed and the total amount of

time spent in each compartment was recorded as in CPP Test 1,

Probe 1.

Jet Lag Treatment, Behavioral Monitoring, and
Hypothalamo-Pituitary Adrenal (HPA) Axis Activation

Hamsters were either exposed to the jet lag condition (n = 7) or

to a fixed LD cycle (n = 7). Locomotor behavior was monitored for

all animals using an infrared monitoring system (Data Sciences; St.

Paul, MN) mounted to the wire lids on each cage. All movement in

the cage was detected by interruptions in the infrared beam and

relayed to a computer. Cumulative counts were recorded every

10 min and analyzed using Dataquest 3 software (Data Sciences;

St. Paul, MN). The power of all rhythms was assessed using

Fourier analysis (Clocklab) in which an animal was considered

rhythmic when its highest peak occurred approximately 1 cycle/

day. Clocklab software was also used to determine the nocturnality

index and alpha for the jet-lagged animals prior to the onset of the

phase advancements (fixed LD), as well as during the jet lag

paradigm on days 2–4, 15–17, and 21–23. The nocturnality index

is the ratio of the time active during the dark phase compared to

the total time active over 24 hrs. Animals that are more active

during the dark phase will have a higher nocturnality index. Alpha

is defined as the difference between activity onset and activity

offset. Activity onset was defined as the first bout of sustained

activity after a period of 2 hrs with less than 20 min of activity.

Activity offset was defined as the final bout of activity before a

period of 2 hrs with less than 20 min of activity. In addition to

monitoring the activity rhythms of the hamsters, cortisol

concentrations were assessed throughout the 25-day jet lag

schedule from blood samples collected through the retroorbital

sinus. Animals were anesthetized using isoflurane, and blood

samples were collected 7 hrs into the rest phase based on their

activity profile for all hamsters on days 2, 8, 15, and 25 of the jet

lag paradigm (Figure S2). Cortisol was measured in 25 ml aliquots

of serum using RIA kits from ICN Biomedicals, Inc., Diagnostic

Division (Costa Mesa, CA). The cortisol assay has been validated

previously for use in Siberian hamsters [58]. The intraassay

coefficient of variation for cortisol was 1.39%, and the interassay

coefficient of variance was 12.5%. The minimum detectable

cortisol concentration was 0.25 mg/dl [59].

Statistical Analyses
Group mean differences in cell counts were analyzed using

analyses of variance (ANOVA) with Tukey or Tukey-Kramer post

hoc tests to examine pairwise differences. Cortisol data were

analyzed using a two-way repeated measures ANOVA while

activity data were analyzed using a one-way repeated measures

ANOVA. Student’s t-tests were performed to assess chamber

preference, total duration of time active, and learning and memory

for the paired context in the Conditioned Place Paradigm. A

Levene test for homogeneity of variance was performed to assess

differences in variability between groups during Probe 1. A

Pearson Product Moment Correlation was used to assess the

correlation between amount of light exposure prior to blood

sampling and cortisol concentrations. Findings were considered

significant when P,0.05.

Results

Jet Lag Decreases Hippocampal Cell Proliferation and
Neurogenesis

In intact hamsters, jet lag markedly suppressed cell proliferation,

reducing the number of cells by approximately 50% (P = 0.007;

Figure 1A). Because jet lag and shift work are associated with

elevated cortisol [16], and disruptions of the reproductive axis in

human populations [10], and these alterations may influence cell

proliferation and neurogenesis [37,60,61], we compared the effects

of jet lag in intact and adrenalectomized hamsters given low, basal

corticosterone replacement [49,62] and ovariectomized females

administered proestrous levels of estradiol (OVX+E2). The effect

of jet lag on cell proliferation was abolished in adrenalectomized

hamsters treated with corticosterone (P = 0.80), suggesting that jet

lag suppressed cell proliferation through activation of the HPA

axis. As expected, ovariectomy and estrogen replacement

increased the number of PCNA-labeled cells (P,0.05) [61].

However, jet lag decreased cell proliferation by the same

magnitude as observed in intact animals (P,0.05). Together,

these findings reveal a pronounced effect of jet lag on hippocampal

cell proliferation, likely mediated by the HPA axis.

The consequences of jet lag on hippocampal cell survival and

maturation were examined by quantifying BrdU expression in

combination with NeuN to assess neurogenesis (Figure 1B–F)

and GFAP to assess gliogenesis (Figure 2 and Table 1). In all

three conditions, jet lag reduced neurogenesis by .50%

(Figure 1B–F). The magnitude of the suppression was not

affected by adrenalectomy/ovariectomy and hormone replace-

ment (P.0.05 in both cases). The same pattern of results was

detected in the total number of BrdU-labeled cells (NeuN-positive

and NeuN-negative) (F1, 21 = 18.094, P,0.001; data not shown). Jet

lag-induced suppression in neurogenesis did not impact the total

volume of the granule cell layer (Table 1; F1, 21 = 0.0126,

P = 0.91). Thus, as with cell proliferation, jet lag negatively

impacted neurogenesis, although this effect was not mediated by

glucocorticoids, indicating that the jet lag-induced decrease in

neurogenesis is independent of the ‘stress’ associated with

experimental jet lag. This finding is not surprising as stress can

differentially affect cell proliferation and survival [63]. There was

no effect of jet lag (F1, 21 = 0.136, P = 0.72) or hormone condition

(F2, 21 = 0.318, P = 0.73) on gliogenesis and less than 3% of BrdU-

labeled cells were glia (2.260.89%) (Figure 2 and Table 1).

Jet Lag Results in Long-Term Deficits in Hippocampal-
Dependent Learning and Memory

Because reductions in neurogenesis are associated with deficits in

learning and memory [29,32,64], we assessed the potential impact

of jet lag-induced changes in neurogenesis on hippocampal-

dependent memory. Using a conditioned place preference (CPP)

paradigm [15,55] in intact animals, the first learning and memory

test commenced during the final 10 days of jet lag. The total

duration of time the animals were actively exploring the apparatus

during Pretest 1 did not differ between control (527.3621.48 sec)

and jet-lagged hamsters (541.8618.71 sec)(t18 = 0.509; P = 0.617),

suggesting that any differences observed are not due to differences in

alertness or motivation to explore. As expected, when initially

exposed to the apparatus, control animals preferred the black

compartment (Pretest 1; t18 = 4.193, P,0.001), whereas jet-lagged

animals exhibited no preference (t18 = 0.805, P = 0.43)(Figure 3A).

If any animal exhibited a significant preference for one compart-
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ment during the Pretest, the running wheel was placed into the non-

preferred compartment during the training sessions. To assess

learning and memory, a probe trial was conducted in which the

wheel was removed from the apparatus and the total time hamsters

explored each compartment was recorded. The control animals

developed a clear preference for the chamber previously containing

the wheel, dwelling approximately 3 times longer in this chamber

(Probe 1; t16 = 4.620, P,0.001; Figure 3B). Despite identical

training, jet-lagged animals were unable to perform the task,

spending equal amounts of time in both chambers during the Probe

trial (t16 = 0.673, P = 0.51). To examine the possibility that variable

incongruence between CT and ZT in jet-lagged animals contrib-

uted to the deficits observed, we conducted a Levene test to

determine if the variance differed between jet-lagged and control

animals. Had the disparity between ZT (time of testing) and CT

(time of activity) contributed to the deficits observed, then the

variance should be greater in the jet-lagged group. The Levene test

confirms that the variance did not differ between control and jet lag

Figure 1. Jet lag adversely impacts PCNA immunostaining and neurogenesis in the dentate gyrus. (A) The number of PCNA-labeled cells
in the granule cell layer was affected by the hormonal condition of the animal (F2,20 = 4.014, P = 0.03), with ovariectomy and estradiol replacement
significantly increasing the number of labeled cells as compared to intact hamsters (P = 0.04). Jet lag resulted in a significant decrease in the number
of PCNA-labeled cells in both intact and OVX + E2 hamsters (P = 0.007 and P = 0.05, respectively by planned comparisons) while the number of PCNA-
labeled cells in adrenalectomized animals was not affected by chronic temporal disruption (P = 0.80). (B) Neurogenesis was decreased by jet lag
(F1,21 = 20.147, P,0.001), but there was no significant effect of hormone condition (F1,21 = 0.228, P = 0.80) and no interaction (F2,21 = 0.231, P = 0.80).
Chronic jet lag resulted in a decrease in neurogenesis by .50% in intact, ADX, and OVX + E2 hamsters (P = 0.01, P = 0.007, and P = 0.05, respectively;
* P,0.05, n = 4/5 animals/group). (C–F) Sections were processed for double-label BrdU (green) and NeuN (red), a marker for mature neurons, and
quantified at 4006. (C) Photomicrograph of the dorsal and ventral blades of the dentate gyrus. Cells were considered double-labeled when BrdU (D)
and NeuN (E) co-localized in the same focal plane (F; yellow).
doi:10.1371/journal.pone.0015267.g001
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animals during Probe 1 (P = 0.903), suggesting that the disparity

between ZT and CT did not contribute to the deficits uncovered.

It was anticipated that performance would be impaired in the

midst of chronic temporal disruption, when rhythms in internal

physiology and brain function are incongruous with external time.

Given the suppressive actions of jet lag on hippocampal

neurogenesis, we assessed whether the negative consequences of

repeated circadian disruptions persist long after hamsters have

re-synchronized their circadian rhythms to environmental time.

Because hamsters recover from a 6-hr phase advance in

approximately one week [1,65], we retested the same hamsters

used in the first CPP test 4 weeks after the cessation of the jet lag

treatment to ensure that the animals were re-synchronized to the

fixed LD cycle as activity monitoring was not logistically possible

during this phase of testing. In Pretest 2, animals were placed into

the empty apparatus to determine if they exhibited a preference

for either chamber. The retention of the previous training would

be reflected if hamsters exhibited a preference for the compart-

ment that previously contained the activity wheel. Control

hamsters showed a significant preference for the previously paired

chamber (t18 = 2.2664, P = 0.02), whereas those that had been jet-

lagged continued to show no preference (t18 = 1.113, P = 0.28;

Figure 3C). This was expected, as the jet-lagged animals did not

acquire the task during the first CPP session (Figure 3B). For the

Reversal Experiment, the wheel was placed into the chamber

opposite to that initially trained for each hamster during the first

CPP test. By placing the wheel in the chamber opposite to the

initial training, animals were required to acquire a new preference.

Because control hamsters had acquired a preference in the initial

CPP test, learning the association between the new chamber and

wheel required that the animals override the previous memory. In

contrast, because the jet-lagged hamsters did not acquire the initial

preference, they might more readily acquire the new preference

[66]. After training, control animals spent the majority of their

time in the newly-trained chamber (t12 = 2.692, P = 0.02), but the

previously jet-lagged hamsters did not develop a preference for

either chamber (t14 = 1.532, P = 0.15; Figure 3D). This finding

suggests that repeated phase advances negatively impact learning

and memory well past the point of readjustment to the current

time photoperiod.

Repeated Jet Lag Transiently Activates the Stress Axis
The impact of jet lag on cell proliferation was abolished by

adrenalectomy and basal corticosterone replacement, suggesting

that activation of the HPA axis may contribute to the impact of jet

lag on this measure. To examine this possibility, a separate group

of hamsters were exposed to the jet lag paradigm (n = 7) or to a

fixed LD cycle (n = 7) and blood samples were collected

throughout the treatment. There were no significant differences

in glucocorticoid concentrations between control and jet-lagged

animals on the day after the first 6-hr phase advance (Day 2;

P = 0.13), with both groups exhibiting cortisol concentrations

equivalent to non-stressed Syrian hamsters [67]. However, at

subsequent time points, glucocorticoid concentrations of jet-lagged

hamsters were higher than those of control animals (F1,36 = 19.786,

P,0.001; Figure 4A), with highest concentrations on Day 8 [67].

The increase in cortisol concentrations was attenuated during the

second half of the phase advance treatment, with cortisol

concentrations at the final time point significantly reduced from

initial measurements (P = 0.03; Figure 4A), indicating that

Figure 2. Gliogenesis is minimal in adult hippocampus.
Hippocampal sections were immunostained for BrdU (green), GFAP
(blue), and DAPI (red; color changed to red for purposes of visibility) to
assess specificity of BrdU labeling and gliogenesis. (A) Representative
photomicrograph (4006) of the dentate gyrus of the hippocampus
expressing all three labels. Tissue was double-labeled immunofluores-
cently with antibodies against BrdU (B) and GFAP (C) to determine
whether BrdU-labeled cells were glia (D). Approximately 2% of all BrdU-
positive cells co-labeled with GFAP. In the triple-labeled image (D),
three cells are labeled for BrdU, but do not co-express GFAP. Tissue was
also labeled with fluorescent antibodies against BrdU (E) and DAPI (F) to
ensure the specificity of BrdU labeling in mature neurons (G).
doi:10.1371/journal.pone.0015267.g002

Table 1. Jet lag does not affect gliogenesis and hippocampal volume.

Intact ADX OVX + E2

Control Jet Lag Control Jet Lag Control Jet Lag

%BrdU/GFAP+ Cells 3.063.0 3.263.2 0.060.0 2.462.4 2.061.2 1.661.6

Granule Cell Layer
Volume (mm3)

13.2660.96 14.4860.75 14.7361.10 14.1960.71 15.2560.67 14.1160.56

doi:10.1371/journal.pone.0015267.t001
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hamsters habituate to the repeated temporal adjustments. The

duration of light exposure prior to sampling was not correlated

with cortisol concentrations (R2 = 0.00000185, P = 0.995), suggest-

ing that light exposure did not impact the cortisol measures

differentially in jet-lagged and control animals.

Jet Lag Leads to a Desynchrony between Internal and
External Time

Because a functional circadian system is critical for normal

hippocampal memory [68], we monitored the state of the

circadian system throughout the jet lag treatment using an

infrared monitoring system. In contrast to studies using acute

phase adjustments, where animals re-synchronize their rhythms to

the adjusted LD cycle, jet-lagged animals ‘ignored’ phase

alterations in environmental time and exhibited non-entrained,

circadian (,24-hr) rhythms (Figure 4B–E). This finding suggests

that deficits observed following repeated temporal disruptions

result from desynchrony between internal and external time,

rather than the absence of circadian organization. Had the jet lag

treatment disrupted circadian functioning, locomotor behavior

would have either become arrhythmic, exhibited a change in

rhythm amplitude, or shown a rhythm period outside the normal

circadian range.

Jet-lagged animals exhibited equivalent durations of activity

(alpha) throughout the phase-advance treatment compared to

activity while housed in a fixed LD cycle (Table 2; F3,18 = 1.559,

P = 0.234). During fixed LD cycle and days 21–23 of the jet lag

Figure 3. Jet lag disrupts hippocampal-dependent learning and memory. Control (n = 10) and Jet Lag (n = 10) hamsters were introduced to
the conditioned place preference (CPP) paradigm at the same time of day throughout the experiment to control for time of day effects on learning
and memory [15]. (A) Control hamsters exhibited a significant bias for the black chamber during initial exposure to the apparatus (Pretest 1)
(t18 = 4.193, P,0.001) whereas jet-lagged hamsters displayed no preference (t18 = 0.805, P = 0.43). (B) After training, control animals exhibited a
significant preference for the chamber previously paired with the rewarding stimulus (Probe 1; t16 = 4.620, P,0.001), whereas animals undergoing jet
lag during training did not learn the task and showed an equal preference for both chambers (t16 = 0.673, P = 0.51). Jet-lagged hamsters were then
returned to a static LD cycle for 28 days in order to re-establish entrainment of biological rhythms with the LD cycle. (C) Several weeks after re-
entrainment, control animals maintained a preference for the previously paired chamber (t18 = 2.2664, P = 0.02) whereas jet-lagged hamsters
continued to show no preference (t18 = 1.113, P = 0.28). All animals were then trained with the wheel being placed in the chamber opposite to that
used in the first behavioral test. (D) Even after recovering from chronic temporal disruption, jet-lagged animals did not learn the task (t14 = 1.532,
P = 0.15), whereas control animals learned to prefer the new chamber (t12 = 2.692, P = 0.02). * P,0.05.
doi:10.1371/journal.pone.0015267.g003
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paradigm, the majority of activity was confined to the dark phase.

In contrast, jet-lagged animals were significantly less active during

the dark phase following the first phase-advancement (days 2–4;

P,0.001) and mid-way through the jet lag treatment (days 15–17;

P,0.001) compared to the fixed LD schedule (Table 2). This

latter finding further indicates that jet-lagged animals did not

entrain their activity to the LD cycle.

Discussion

The present findings show, for the first time, that circadian

disruptions lead to marked suppression of hippocampal cell

proliferation and neurogenesis, associated with notable deficits in

learning and memory. Adrenalectomy abolished the effects of jet

lag on cell proliferation, suggesting that circadian disruptions

impact this measure, in part, via HPA axis activation. In contrast,

the pronounced suppression of neurogenesis is independent of jet

lag-induced alterations in circulating glucocorticoid and sex

steroid concentrations. Jet-lagged animals exhibited ,24-hr

rhythms, not synchronized with external time, suggesting that

the observed deficits result from a desynchrony between internal

physiology and external time, not from gross disruptions in

internal rhythmicity. Additionally, the duration and amplitude of

the activity/rest cycle was not impacted by the treatment,

suggesting that the results are not a consequence of sleep

deprivation as has been shown previously [69,70]. Together,

these results underscore the importance of circadian entrainment

in maintaining optimal neural and cognitive functioning.

As indicated previously, the circadian system is an organized

hierarchy with a master circadian pacemaker, the SCN,

coordinating the timing of thousands of subordinate oscillators in

the central nervous system (CNS) and periphery [2,20]. Neural

precursor cells (NPCs) from the dentate gyrus express circadian

clock genes and disruption of the cellular clock results in abnormal

NPC division and maturation [40]. Whereas most studies

supporting a link between the circadian system and regulation of

the cell cycle involve genetically disrupting the circadian clock,

acute global temporal disruptions (e.g., jet lag) dysregulate the core

clock mechanism without permanently altering molecular path-

ways [1]. As a result, we elected to use this model to explore the

impact of circadian disruption without genetically altering the core

molecular circadian clockwork. Whereas the present studies used

phase advances to determine whether or not disrupting circadian

organization impacted hippocampal physiology and function

because this behavioral manipulation results in maximal circadian

desynchrony, future studies should take into account alternating

phase advances and phase delays in circadian rhythms to more

accurately mimic the shift work and jet lag schedules experienced

by human populations. Importantly, the results indicate that cell

proliferation and neurogenesis can be suppressed by these

temporal changes without genetic modifications of the circadian

system, indicating that this phenomenon is worthy of further

exploration.

In the present experiments, cortisol concentrations were

elevated in jet-lagged hamsters throughout the course of the

treatment, with recovery seen near the conclusion of the phase

shifting (Figure 4A). On Day 8 of the jet lag paradigm, jet lag

hamsters exhibited cortisol concentrations comparable to stress-

induced values in this species [67]. On subsequent days, cortisol

concentrations in the jet-lagged hamsters were lower than those

seen in stressed animals but greater than daily maximum values

[48]. This finding is consistent with the association between jet lag

and glucocorticoid concentrations seen in women [16,17]. Because

cortisol should be lowest during the rest phase and may be

impacted by light exposure, we assessed whether the duration of

light exposure prior to sampling correlated with cortisol measures.

Control hamsters were consistently sampled 7 hrs after lights on

while sampling of jet-lagged hamsters occurred at CT7 and was

variable relative to the LD cycle. There was no relationship

between the two variables, suggesting that the duration of light

preceding blood sampling, and the variable light exposure relative

to the active phase in jet-lagged hamsters, was unlikely to impact

cortisol concentrations. Additionally, the fact that the phase

relationship between sampling and light differed throughout the

one-month examination in jet-lagged animals, yet the increase in

cortisol was maintained relative to controls until Day 25, further

suggests that light was unlikely to impact interpretation of these

findings.

Whereas jet lag reduced cell proliferation in the dentate gyrus of

intact animals, this effect was abolished when circulating

glucocorticoids were controlled through adrenalectomy and

glucocorticoid replacement, suggesting that the jet lag-induced

reduction in cell proliferation is mediated via activation of the

HPA axis (Figure 1A). Because estradiol increases cell prolifer-

ation [71], it was not surprising that estradiol treatment increased

Table 2. Circadian analysis of hamsters maintained in a static light:dark (LD) cycle and during days 2–4, 15–17, and 21–23 of the jet
lag paradigm.

Fixed LD Days 2–4 Days 15–17 Days 21–23

Alpha (hrs) 6.88160.678 5.15061.369 6.38460.876 7.10360.657

Nocturnality index 0.64760.038 0.13860.027* 0.16960.058* 0.54260.075

* = significantly different from Fixed LD and Days 21–23 groups, P,0.05.
doi:10.1371/journal.pone.0015267.t002

Figure 4. Jet lag transiently activates the HPA axis. (A) Jet-lagged animals (n = 7) exhibited increased concentrations of cortisol on days 8 and
15 (P,0.001 and P = 0.03) of the 25-day phase advance paradigm but not on the day following the first phase advance (P = 0.13) or the final day of
the treatment (P = 0.11). The stress response in jet lag animals was attenuated throughout the course of the treatment with significantly lower
concentration on day 25 compared to day 8 (P = 0.03). * Significantly greater than control animals (n = 7) at each time point, P,0.05. ** Significantly
less than jet-lagged animals on Day 8 of sampling, P,0.05. (B–E) Jet-lagged animals ignore environmental light cues while maintaining rhythmic
behavior. (B, D) Double-plotted actograms and (C, E) Fourier analysis of period length/rhythm amplitude of jet-lagged animals exposed to a chronic
phase-advanced LD schedule. Records indicate that jet-lagged animals remain rhythmic (B, D), running with a period ,24 hrs (C, E; P,0.01). Grey
bars depict the dark phase of the LD cycle on these double-plotted activity records. Had animals been entrained to the LD cycle, activity would have
been confined to these dark periods.
doi:10.1371/journal.pone.0015267.g004
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PCNA cell labeling (Figure 1A), but it is noteworthy that the

magnitude of PCNA suppression by jet lag was maintained in

these animals and identical to that observed in intact animals.

Although these findings suggest that jet lag-induced suppression

of hippocampal cell proliferation is mediated, at least in part, by

increased glucocorticoid concentrations, other variables may

contribute to this phenomenon. Neurotrophic factors, including

BDNF and NGF, have been implicated in cell proliferation and/

or survival [52,72,73]. In one study of acute jet lag, a single, 8-hr

phase shift increased BDNF levels in the hippocampus [74].

Likewise, intracerebroventricular injections of NGF phase shift

activity rhythms of Syrian hamsters [75] and increase survival of

new cells [73]. Whereas both acute treatments increased these

neurotrophic factors, it is possible that more chronic circadian

disruptions suppress their expression. The extent to which

different jet lag treatments impact neurotrophic factors has yet

to be explored.

Unlike the impact of glucocorticoids on cell proliferation,

circadian disruptions reduced neurogenesis by .50% in all

groups, regardless of adrenal/glucocorticoid and ovary/estradiol

status, indicating that the effect of jet lag on cell maturation is

independent of increased HPA axis activity or alterations in

gonadal steroids (Figure 1B). Reductions in the maturation of

new neurons may reflect a decrease in production of new

progenitor cells that differentiate into neurons, or a decrease in

cell survival. Our data suggests that decreased hippocampal

neurogenesis resulting from jet lag is a consequence of decreased

cell survival, as adrenalectomy abolishes the effects of jet lag on cell

proliferation, whereas reductions in neurogenesis persist. These

findings are consistent with the notion that circadian cellular

timing can directly impact cell survival [76]. Indeed, cell cycle

genes, including Wee-1, c-myc, and Cyclin-D1, are regulated in a

circadian manner [77], further suggesting that the regular timing

of these genes contributes to normal cell functioning. As a result,

disruption of proper circadian function may lead to alterations of

the cell cycle, including modifications to cell survival and fate.

Reductions in newly-generated hippocampal neurons are

associated with impairments in hippocampal-dependent learning

and memory tasks [32]. While it is difficult to provide a direct

cause-effect relationship between neurogenesis and learning and

memory, as mentioned previously, many studies point to an

association between the production of new hippocampal neurons

and hippocampal-dependent cognitive processes [29,30,78,79,80].

Despite the fact that the inhibition of neurogenesis following a

learning task consistently results in learning deficits, these findings

must be interpreted cautiously as it is possible that the procedures

used may not be restricted only to those cells born following a

learning task or to hippocampal cell populations. However, these

findings, combined with the fact that newly born hippocampal

cells markedly increase following a hippocampal-dependent

learning task [25,26,27], while learning tasks that are hippocam-

pus independent do not [25,28], provides strong evidence for a

functional link between these two measures.

In the current study, when tested during the jet lag treatment,

jet-lagged hamsters did not learn the conditioned preference task

that control hamsters readily acquired (Figure 3B). Importantly,

when trained one month following placement into a fixed LD

cycle, jet-lagged animals were still unable to perform the CPP task

(Figure 3C and D), suggesting that the impact of jet lag on

learning and memory persists well after endogenous processes are

re-synchronized to external time. Previous research indicates that

both ZT and CT do not affect acquisition of the CPP as long as

training and probe trials occur at the same ZT or CT [15].

Whereas all animals were trained and tested at the same ZT, the

fact that jet-lagged animals did not entrain to the LD cycle resulted

in an incongruence between CT and ZT in jet-lagged hamsters.

Because we could not control for both ZT and CT, all training and

probe trials were conducted at the same time of the light:dark cycle

(ZT). This procedure resulted in jet-lagged animals being trained

during periods of their activity/rest cycle that varied relative to

controls as well as training/testing trials occurring at non-24 hour

intervals, potentially contributing to the deficits observed in the

former group during the jet lag treatment [46]. Several points

argue against this possibility. First, control and jet-lagged animals

spent equal amounts of time actively exploring the apparatus

during Pretest 1, indicating that all animals were equally

motivated. Furthermore, had circadian phase impacted learning

in the jet lag group, the variance in dwell time across animals

during Probe 1 should be greater in jet lag compared with control

animals, and this was not the case. Finally, jet-lagged animals

remained unable to acquire the learning task one month after

cessation of the jet lag when ZT and CT should be consistent

between jet lag and control conditions.

It is possible that the cognitive impairment seen during phase

advancements may result from increased cortisol production in jet-

lagged animals (Figure 4A) [36]. The fact that the same deficits in

learning and memory persist one month following maintenance in

a static LD cycle, argues against this possibility. Whether or not

reductions in neurogenesis persist one month after recovery from

repeated phase shifts, suggesting a contribution to these continued

deficits, represents an important question for future investigation.

Notably, previous work has shown that repeated phase shifting

following the acquisition of a passive avoidance task impairs

retention, suggesting that circadian disruption can also retrogres-

sively impair memory consolidation [14]. We now show that phase

shifts at least one month prior to learning can also impair learning

and memory. In agreement with these findings, one recent study

found that more mild circadian manipulations, acute phase shifts

either before or after contextual fear conditioning, attenuate recall

of fear conditioned behavior without inducing sleep deprivation

[46]. Together, these findings reveal that repeated temporal insults

grossly impact learning and memory and suggest that resulting

changes in hippocampal structure may have long-lasting conse-

quences on cognitive function.

While the mammalian circadian clock can adjust to acute phase

shifts in the light:dark cycle, this adjustment requires several cycles

to re-establish the relationship between the environment and the

internal clock [44]. Thus, repeated phase advances, such as those

seen in experimental jet lag, may result in more pronounced

deficits in the ability to re-establish the appropriate phase

relationship between the environment and internal physiology.

The phase adjustments used in the present experiments result in

circadian (,24-hr) rhythms of activity that are not coordinated

with external time (Figure 4B–E; Table 2). Throughout the jet

lag treatment, animals exhibited equivalent bouts of activity but

did not confine the majority of their activity to the dark phase of

the LD cycle (Table 2). In control animals, nocturnality index

and alpha are highly correlated, with the majority of the activity

bout being confined to the dark phase of the LD cycle. Because the

phase-shifted animals were not synchronized to the light cycle, the

duration of the activity/rest cycle was equal to control animals, but

the percentage of activity confined to the dark phase was

decreased. The former observation suggests that the learning

and memory impairments observed in jet-lagged animals did not

result from perturbations in circadian rhythmicity, but from

desynchrony between internal physiology and external time.

Although rhythmic locomotor behavior is a reliable indicator of

SCN functioning, it is possible that extra-SCN oscillators (e.g.,
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those in hippocampal cells) behave differently in response to jet lag

than those in the master clock [20]. Although this possibility is

unlikely, given the important role of clock genes in cell cycle

regulation [77], this alternative hypothesis is worthy of explora-

tion. It is noteworthy that sleep deprivation has also been shown to

disrupt neurogenesis in both a glucocorticoid-dependent and

independent manner [69,70,81]. In the present studies, it is

unlikely that the effects of jet lag on hippocampal structure and

function are mediated by disruptions in the activity/rest cycle, as

the total duration of the active and inactive phases of the circadian

cycle were not different between the fixed LD cycle and jet lag

treatment (Table 2). However, future studies in which sleep

architecture is monitored throughout the jet lag period are

necessary to determine whether alterations in sleep contribute to

the learning and memory deficits observed.

Together, our findings indicate that experimental jet lag has a

pronounced, negative impact on cell proliferation and survival

associated with significant deficits in hippocampal–dependent

learning and memory. Importantly, the alterations in the circadian

cycle were relatively minor in the present work compared to

studies eliminating circadian function through lesions or genetic

manipulations. These findings underscore the importance of

considering the health consequences for individuals throughout

the world engaging in rotating shift work or flexible schedules (e.g.,

medical residents, airline pilots, security personnel), maintaining

poor sleep hygiene, or flying repeatedly across time zones, as the

impact of these temporal insults may last well beyond the

chronobiological challenges.

Supporting Information

Figure S1 BrdU Experimental Design. Two weeks after

recovery from adrenalectomy or ovariectomy, female hamsters

were maintained in a fixed 14:10 LD cycle (Control) or an LD

cycle that was phase advanced by 6 hrs (Jet Lag), every three days,

for 25 days. All animals were injected with BrdU the day following

every other jet lag (JL) and were perfused 24 hrs after the last

injection. The first three injections were implemented early in the

experiment to assess neurogenesis (i.e., enough time for cells to

mature into neurons) whereas injections were continued past this

point to assess total cell proliferation during the experiment.

(TIF)

Figure S2 Hypothetical Procedural Time Course. Hypo-

thetical activity records and procedural timelines for a control

animal exhibiting ,24-hr rhythms in activity (black bars) that

were confined to the dark phase (grey bars) of the light:dark cycle

and a jet-lagged hamster exhibiting ,24-hr rhythm in behavior.

For both control and jet lag animals, all CPP pretest, training and

probe trials occurred 4 hrs prior to lights off (yellow bars; ZT10-

14;T1 = training day 1). BrdU injections (red X) occurred the day

after every other phase advance at ZT7 for all animals, with

perfusions (green X) occurring 24 hrs after the final injection.

Cortisol samples were acquired on Days 2, 8, 15, and 25 of the jet

lag paradigm (blue arrow). For all animals, blood samples were

collected at CT7 based on the individual animal’s activity profile.

(TIF)
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