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Abstract

Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been
associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle
plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the
role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in
the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers
and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation
and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-kB and
inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and
differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the
expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells.
Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is
expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in
regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers
non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle
hypertrophy.
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Introduction

The paternally expressed Delta-like 1 homolog (Dlk1) gene (Entrez

Gene ID 13386) lies within the imprinted Dlk1 – Dio3 gene cluster

on distal mouse chromosome 12 and encodes a transmembrane

epidermal growth factor (EGF)-like protein[1]. The extracellular

domain of Dlk1 can also be cleaved to generate a soluble form,

called fetal antigen 1, which circulates as an abundant growth

factor during development [2]. Another splice variant lacks the

proteolytic cleavage site and remains constitutively membrane

bound (Dlk1-C2). This membrane-bound form is most common in

postnatal skeletal muscle [3,4]. Like many imprinted genes, Dlk1 is

an important regulator of mammalian development and its

expression level has dramatic effects on cellular proliferation and

differentiation. Elevated Dlk1 expression is associated with many

tumors including acute myeloid leukemia [5,6,7,8,9,10]. Accumu-

lating evidence further indicates that Dlk1 is an important

regulator of not only proliferation and differentiation of embryonic

and adult stem cells but also functions to maintain the

pluripotency of embryonic stem cells [4,11,12,13,14,15,16].

Recent reports indicate that Dlk1 may play important roles in

skeletal muscle development. Transcript and protein levels of Dlk1

are highest in developing fetal muscle and taper off quickly after

birth [2,17]. Interestingly, increased numbers of Dlk1+ mononu-

clear cells and myofibers are reported in several myopathies

including Becker and Duchenne muscular dystrophies which

involves active muscle degeneration and regeneration [17]. Studies

using transgenic mice over expressing Dlk1 [3,18] and callipyge

mutation in sheep causing increased expression of Dlk1

[3,19,20,21] have also indicated that high levels of Dlk1 increase

skeletal muscle mass in neonates. Callipyge sheep exhibit a

significant increase in the size and proportion of type IIB fibers in

muscles of the hind-quarters [22,23,24,25]. Muscle-specific over-

expression of Dlk1 in mice yields similar results with an increase in

total muscle mass and fiber diameter by six weeks of age [3].

Important roles of Dlk1 in muscle development is also evident by

the observations that Dlk1-null mice show distinct phenotypes

including increased mortality during late gestation and early

neonatal development, skeletal malformations, and decreased

growth rates accompanied by increased adiposity [26]. However,
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several key questions remain unresolved: 1) the relative role of

membrane bound versus cleaved forms in muscle development

and growth is unclear; 2) as Dlk1 can be cleaved and circulate, it is

unknown whether muscle specific Dlk1 expression is necessary for

normal muscle development and growth; 3) what role does Dlk1

play in postnatal muscle regeneration and muscle progenitor cells?

In addition, the mechanisms by which Dlk1 regulates skeletal

muscle development and hypotrophy are poorly understood. Due

to the EGF-like domain in Dlk1, it is classified into the same family

as the Notch receptors and ligands including Delta and Serrate

(Jagged) [10,27]. Unlike Delta and Serrate, however, Dlk1 lacks

the DSL (delta/serrate/lag) domain known to be essential for

activation of Notch receptors. Therefore, Dlk1 is thought to

interact with the Notch receptors through its EGF repeats as an

antagonist and down-regulate signaling through Notch in

Drosophila and Notch-1 in mammalian cell cultures [28,29,30].

Activation and suppression of Notch receptors by Delta occur in

both cis (Delta suppresses Notch on the same cell; cell autonomous)

or trans (Delta from one cell activates Notch on a neighboring cell;

non-cell autonomous) manner [31]. Such distinction in signaling

among progenitor cells would fit in the model of asymmetric

cellular commitment seen in activated satellite cells in muscle [32].

Activated Notch signaling inhibits the formation of muscle

progenitor cells in Drosophila [33,34,35] and delays the expression

and activation of MyoD and myogenin, markers of muscle

differentiation, in mammals [36,37]. This suggests a model in

which Dlk1 facilitates muscle differentiation through dampening

of Notch signaling. However, a recent study suggests that Dlk1

does not interact with Notch1 receptor nor requires Notch

activation to exert its effect on preadipocyte differentiation[38].

Satellite cells are muscle-specific stem cells that lie quiescent

beneath the basal lamina of adult myofibers until needed for

muscle repair. Following an injury, satellite cells proliferate and

incorporate their nuclei into existing fibers while still maintaining

their stem cell population. Donor satellite cells have even been

shown to engraft onto recipient fibers to repair injured myofibers

and ameliorate disease progression [32,39,40,41,42]. The status of

a satellite cell, whether self-renewing, proliferating, or differenti-

ating, can be determined by the expression of Pax7 and MyoD

[43,44,45,46,47,48,49,50,51,52]. We use these markers to deter-

mine the molecular mechanisms by which Dlk1 regulates fate of

satellite cells during muscle development/regeneration.

To investigate the requirement of muscle specific Dlk1 in

myogenic development and postnatal muscle repair, we generated

a conditional Dlk1 knock-out mouse using a Dlk1-floxed allele

together with a Myf5-Cre driver. Since Myf5 is the earliest

expressed myogenic regulatory factor in developing embryos and

is required for myogenic determination [53,54], this model is

useful to determine how Dlk1 function in both myogenic

progenitor cells and mature skeletal muscles. Our results show

that muscle-specific depletion of Dlk1 leads to defective muscle

development, elevated inflammatory responses, and delayed

muscle regeneration. We further provide evidence that Dlk1

non-cell autonomously affects satellite cell fate choice between self-

renewal and differentiation.

Results

Defective muscle formation, growth retardation, and
altered myosin heavy chain gene expression in muscle-
specific Dlk1 mutant mice

The role of membrane-bound Dlk1 in skeletal muscle was

investigated by creating a conditional mutant mouse model. We

used the Myf5-Cre mouse to inactivate Dlk1 in the myogenic

lineage [53,54] of Dlk1flox mice. As Dlk1 is an imprinted gene

expressed only from paternal allele [1], paternal heterozygous

Myf5-Cre/Dlk1+(m)/flox(p) displayed identical Dlk1 expression

profiles and phenotypes as the homozygous Myf5-Cre/Dlk1flox/

flox alleles (data not shown). Thus, Dlk1flox/+ males were crossed

with Myf5-Cre females to produce paternal heterozygotes for

muscle-specific Dlk1 knockout (henceforth Dlk1 cKO).

By performing qPCR assays we found ,35% reduction in Dlk1

expression in whole muscles of Dlk1 cKO, suggesting that Dlk1

expressed by myofibers only accounts for about one-third of the

total Dlk1 mRNA expressed by the whole muscle (Fig. 1A). These

results are in agreement with our immunohistological results that

Dlk1 is mainly expressed by interstitial non-myogenic cells within

the muscle (Supplementary Fig. S1). To confirm muscle-specific

knockout of Dlk1, we isolated single myofibers from EDL muscles

and quantified Dlk1 expression, which was reduced by ,90% in

the Dlk1 cKO myofibers (Fig. 1A). The residual (10%) Dlk1

expression detected in isolated Dlk1 cKO myofibers probably

originated from contaminating interstitial cells attached on the

fibers[44]. Furthermore, Dlk1 levels in Dlk1 cKO brown adipose

tissue (BAT) were reduced by 80%, again in agreement with our

recent report that the brown adipose tissue is derived from a Myf5-

lineage[55]. In contrast, white adipose tissue, known to be derived

from Myf5-independent lineages[55], exhibited no changes in

Dlk1 expression. These results confirm specific deletion of Dlk1 in

muscle and brown fat lineage mediated by the Myf5-Cre allele.

The Dlk1 cKO mice were born at expected Mendelian ratios

(Expected ratio: 25%; observed ratio 25.963.9%, n = 17 litters)

and appeared to be healthy and behaviorally normal. However,

notable phenotypic differences were observed in the Dlk1 cKO

mice compared to wild-type siblings. First, the mutants displayed a

significant reduction in body weight (Fig. 1B); this reduction

appeared to be more prominent at older age (11% reduction in old

vs 5% in young mice, however p = 0.34). The brown fat mass also

decreased by 20% in the Dlk1 cKO mice (Fig. 1C). To further

determine if the observed body weight loss was mainly due to

reduced muscle mass, we compared the number of muscle fibers in

representative fast (EDL, Fig. 1D) and slow (soleus, Fig. 1H)

muscles. Indeed, there is a roughly 25% reduction in total

myofiber numbers in the cKO in both muscle types (Fig. 1E & I),

which likely contributes to the 5–10% decrease in body mass, as

skeletal muscles generally account for about 40% of total body

weight. As myofiber numbers are known to be fixed at birth[56],

the reduced number of myofibers in cKO reflects defects in

embryonic myogenic development. Together, these observations

suggest that our Dlk1conditional mutation leads to defective

muscle development and postnatal growth retardation.

Over-expression of DLK1 in Callipyge sheep muscle is linked to

a switch in fiber type towards fast twitch glycolytic fibers that

express the myosin heavy chain (MyHC) IIB gene. We therefore

examined if the deletion of Dlk1 leads to fiber type switching. A

marked reduction in mRNA levels of MyHC IIB was detected in

the Dlk1 cKO mice in both EDL and SOL muscles (Fig. 1F & J),

whereas the expression of other MyHC genes were not affected (not

shown). MyHC isoform-specific monoclonal antibody labeling of

EDL and SOL muscles, however, did not indicate any differences

in the proportion of each fiber type (Fig. 1G & K). Therefore,

muscle-specific ablation of Dlk1 appears to reduce the levels of fast

type IIB MyHC, but does not lead to fiber type switching in mice.

Delayed muscle regeneration in Dlk1 cKO
To investigate how Dlk1 deficiency may affect adult myogen-

esis, The tibialis anterior (TA) muscles of Dlk1 cKO and wild-type

mice were given intramuscular injections of CTX and the

Role of Dlk1 in Myogenesis and Satellite Cells
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regenerated muscles were examined at different time points.

Regeneration of the TA muscle was considerably impaired in the

Dlk1 cKO at 5–7 days after injury, a time point at which

regeneration peaked in the wild-type mice. Skeletal muscle

regeneration involves the repair of existing degenerated fibers

and de novo formation of new fibers. Existing fibers undergoing

active repair can be readily identified by their large diameter with

centrally localized nuclei and non-specific IgG binding due to

immune cell infiltration (Fig 2A). De novo formed new fibers are

considerably smaller in diameter with central nuclei. While wild-

type muscles regenerated uniformly with little fibrosis and

scarification (Fig. 2A–C), the Dlk1 cKO muscles were poorly

regenerated with extensive fibrosis, scarification, and interstitial

space occupied by massive cellular infiltration (Fig. 2D–F).

The defective regeneration of Dlk1 cKO fibers is substantiated

by a significant decrease in myogenin mRNA expression levels

(Fig. 2G) and a roughly 25% decrease in nascent de novo fiber

formation (Fig. 2H) five days after injury. In addition, phosphor-

ylated Akt (the activated form) levels were decreased in the cKO

(Fig. 2I), suggesting an impairment of the Akt/mTOR signaling

pathway that is known to promote protein synthesis and myotube

hypertrophy [57]. This observation is consistent with our previous

finding that Akt signaling is enhanced in DLK1 over-expressing

callipyge sheep [58]. Together, these data suggest that Dlk1 is

necessary for proper skeletal muscle regeneration in adult mice.

Elevated inflammatory response to injury in Dlk1 cKO
muscles

As muscle injury causes an inflammatory immune response

within the damaged tissue [59],we examined whether aberrant

inflammatory responses contributed to the defective regeneration

of the Dlk1 cKO muscles. The increased interstitial nuclei density

in regenerating cKO muscles (Fig. 2F) indicates excessive

infiltrated macrophages, which was confirmed by the high mRNA

levels of CD68 (Fig. 3C), a cell surface marker for macrophages.

Nuclear factor kappa B (NF-kB) is a major pro-inflammatory

transcription factor controlling the expression of a plethora of

genes involved in inflammation and immune responses [60].

Several published reports have suggested that NF-kB inhibits

myogenesis at multiple levels including suppression of MyoD

[61,62]. Moreover, it has been found that muscle-specific

inhibition of NF-kB dramatically improves skeletal muscle

Figure 1. Myf5-Cre mediated mutation of paternal Dlk1(cKO) results in defects in muscle formation and growth. Asterisks in all graphs
denote p,0.05compared to wild-type (WT) controls. A: Quantitative PCR confirming muscle-specific Dlk1 knockout in cKO mice in whole muscle,
myofibers, myoblasts and BAT. B: Relative body weight (BW) of WT (n = 17, 9, 4 for all age, 2–4 month and 10–12 month mice, respectively) and cKO
(n = 18, 9, 5) littermates. C: Relative mass of BAT of WT (n = 3) and cKO (n = 3) mice. D–K: Muscle fiber composition in representative fast-twitch (EDL)
and slow-twitch soleus (SOL) muscles revealed by MyHC isoform-specific antibodies and qPCR. D: MyHC isoform staining of representative EDL. Total
myofiber number for EDL(E) and SOL (I) muscle in WT and cKO (n = 4 pairs). Myosin heavy chain (MyHC) IIB gene expression in EDL (F) and SOL (J;n = 3
pairs) muscles. Percent of each MyHC isoform by immunostaining in EDL (G) and SOL (K; n = 3 pairs).
doi:10.1371/journal.pone.0015055.g001
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regeneration in response to CTX-mediated injury [63]. We

therefore sought to investigate whether depletion of Dlk1 affects

the activation of NF-kB transcription factor in regenerating

muscles. DNA-binding activity of NF-kB in regenerating muscle

was found to be markedly higher in Dlk1 cKO mice compared to

wild-type mice (Fig. 3A). The increased activation of NF-kB

pathway was also evident by our results that the levels of

phosphorylated IkBa was up-regulated in regenerating muscle of

Dlk1cKO mice compared to those of wild-type mice (Fig. 3B).

Furthermore, the expression of NF-kB-regulated pro-inflammato-

ry cytokines IL-1b and TNF-a was also significantly higher in

myofibers of Dlk1cKO mice compared to wild-type mice in

response to injury (Fig. 3D–E). Both TNF-a and IL-1b have been

previously shown to inhibit myogenesis [62,63,64]. Collectively,

these data suggest that the loss of Dlk1 exacerbates the

inflammatory response and augments the expression of inflam-

matory cytokines which may be responsible for the reduced

myofiber regeneration after injury.

Dlk1 ablation leads to reduced MyoD expression and
facilitates self-renewal of activated satellite cells

The defective muscle regeneration suggests that our muscle-

specific Dlk1 mutation may also affect the normal function of

satellite cells, which underlies muscle regeneration. To investigate

this possibility, the potential effects of Dlk1 on satellite cell self-

renewal and differentiation were assessed ex vivo by activating

quiescent satellite cells attached to single EDL myofibers in culture.

In this model, satellite cells initially only express Pax7, then activate

MyoD, and enter the cell cycle. Proliferating cells then either down-

regulate Pax7 in order to differentiate, or down-regulate MyoD and

self-renew[43,45,51]. After 3 days in culture, distinctive clusters of

myoblasts are readily detectable on myofibers. Myoblast clusters

were stained for Pax7 and MyoD so that Pax7+/MyoD2, Pax7+/

MyoD+, and Pax72/MyoD+ cells represent self-renewing, prolifer-

ating, and differentiating cells, respectively (Fig. 4A–H).

The average number of cells per cluster was not significantly

different between wild-type and conditional mutants (Fig. 4I). In

Figure 2. Muscle-specific Dlk1 cKO results in impaired muscle regeneration after injury. A–F: Morphology of TA muscle 1 week after
cardiotoxin injury in WT (A–C) and cKO mice (D–F). A, D: Fluorescent immunostaining of mouse IgG showing injured fibers in red and Dapi nuclei
staining in green. B, E: Brightfield images showing increased fibrosis and scarification (Dark signal due to poor light penetration) in cKO mutant
muscles. C, F: H–E staining showing poor organization and increased infiltration of non-myogenic cells in mutant muscles. G: Myogenin mRNA levels
increase after injury, but cKO mice have an impaired myogenin response (n = 4). H: Total number of nascent fibers (n = 7 pairs) are decreased in cKO
injured muscles. I: Levels of phosphorylated Akt are decreased in cKO muscle compared to WT control and injured muscles.
doi:10.1371/journal.pone.0015055.g002
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addition, the percentage of cells expressing Pax7 was not affected

in the cKO compared with the wildtype cells (Fig. 4J). However, a

significant reduction of cells expressing MyoD was observed in the

cKO cells (Fig. 4J), leading to a shift in the cell fate status.

Specifically, the proportion of self-renewing cells (Pax7+/MyoD2)

was increased in the Dlk1 cKO while proliferating cells (Pax7+/

MyoD+) were decreased (Fig. 4K). These results suggest that the

lack of Dlk1-initiated signaling promotes satellite cell fate choice

towards the self-renewal state as the expense of proliferation.

Over-expression of Dlk1 promotes myoblast cell cycle
withdrawal and differentiation

To directly test how Dlk1 regulates myoblasts, we over-

expressed the membrane-bound form of Dlk1 in C2C12 and

primary myoblasts using the Neon transfection system (Invitrogen,

Inc.), which gives 50–75% transfection efficiency in our hands. We

first over-expressed Dlk1 in C2C12 myoblasts (Fig. 5A–B).

Strikingly, C2C12 cells over-expressing Dlk1 failed to expand

and the cell number at day 3 after transfection was only 30% that

of the GFP (N1-GFP, Clontech) transfected control (Fig. 5C). To

confirm that Dlk1 is indeed over-expressed, we measured the

mRNA and protein levels of Dlk1 in control and Dlk1 transfected

cells. Dlk1-transfected C2C12 cells expressed 230 times more

mRNA and much higher protein levels of Dlk1 compared to

control cells transfected with GFP (Fig. 5D–E). Similar reductions

in cell numbers were observed in satellite cell-derived primary

myoblasts over-expressing Dlk1 (Data not shown). To investigate if

the observed reduction in cell number is due to an inhibition of cell

proliferation, we co-transfected primary myoblasts with 4:1 ratio of

Dlk1 and GFP plasmids and measured cell proliferation with Ki67,

a well-established cell proliferation marker (Fig. 5F). Notably, Ki67

expression was found to be rarely co-localized to the GFP+ cells

(Fig. 5F), which should also be positively transfected with Dlk1 due

to the much higher (4x) concentrations of Dlk1 plasmids used

during transfection. Quantification showed that the percentages of

Ki67+ cells in GFP+ cells was only 17.5%, compared to 46.2% in

GFP2 cells (Fig. 5G). To further confirm this observation, we

examined Ki67 expression in primary myoblasts electroporated

with empty plasmid (Fig. 5H) or Dlk1 plasmid (Fig. 5I). We found

that the average intensity of Ki67 immunofluorescene (normalized

to DAPI fluorescence) is significantly reduced in the Dlk1 over-

expressing cells (Fig. 5J). These results demonstrate that Dlk1 over-

expression inhibits myoblast proliferation.

Strikingly, primary myoblasts over-expressing Dlk1 displayed

accelerated differentiation kinetics. At confluent cell density, it

typically takes 4 days before primary myoblasts are fully

differentiated. At 2 days after induced differentiation by serum

withdrawal, only few myotubes were detectable in the control cells

(Fig. 5K), whereas Dlk1 over-expressing cells readily differentiate

and numerous myotubes were detectable at the same time point

(Fig. 5L). Additionally, the average size of the myotubes formed

was significantly larger in the Dlk1 over-expressing cells (Fig. 5M),

Figure 3. Muscle-specific Dlk1 cKO results in increased inflammation and NF-kB signaling after injury. A–B: NF-kB pathway is up-
regulated in cKO injured muscle as indicated by increase DNA binding by nuclear NF-kB (A) and phosphorylated Ik-Ba (B). C: CD68 (macrophage
marker) mRNA levels are increased in cKO injured muscles (n = 4). D–E: Pro-inflammatory cytokines IL-1b (D) and TNF-a (E) are up-regulated in cKO
injured muscles (n = 4).
doi:10.1371/journal.pone.0015055.g003
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and the expression of sarcomere myosin heavy chain, revealed by

MF20 immunofluorescence, is roughly 2.5 times higher in the Dlk1

over-expressing cells (Data not shown). These observations provide

direct evidence that Dlk1 promotes myogenic differentiation.

As extracellular ligands such as Dlk1 commonly exerts their

effects on neighbor cells in a cell-contact dependent manner, we

hypothesized that Dlk1 over-expression non-cell autonomously

regulates myoblast proliferation and differentiation. To confirm

that the observed effect of Dlk1 on myoblast differentiation is non-

cell autonomous, we examined myoblast growth and differentia-

tion in the presence of Dlk1 coated substrate. Wild-type myoblasts

were allowed to proliferate and differentiate on a bed of Matrigel

(BD Biosciences) containing vehicle control (Fig. 5N) or 500 ng/ml

of recombinant Dlk1 protein (Fig. 5O). Cells differentiated in the

presence of recombinant Dlk1 had reduced Ki67 expression (Data

not shown) but formed significantly larger myotubes than cells

grown under control conditions (Fig. 5P). These data, combined

with the loss-of-function analysis, provide strong evidence that

high levels of exogenous Dlk1 promote cell cycle withdrawal and

differentiation of myoblasts into myotubes.

Dlk1 upregulation correlates to myoblast differentiation
and muscle regeneration in vivo

Our data establish a non-cell autonomous role of Dlk1 in

myogenic differentiation. To determine the physiological rele-

vance of this observation, we examined whether Dlk1 upregulation

correlates to myoblast differentiation. Indeed, Dlk1 protein

expression, along with myosin heavy chain protein expression, is

upregulated in newly differentiated myotubes 5 days after

induction of differentiation (Fig. 6A). In addition, both mRNA

(Fig. 6B) and protein (Fig. 6C) levels of Dlk1 were significantly

upregulated 5 days after CTX-induced muscle regeneration in

vivo. In contrast, Dlk1 protein levels were very low in both

quiescent and activated satellite cells, but elevated in newly

regenerated myofibers (Supplementary Fig. S1A&C). Similarly,

cultured myoblasts expressed much lower levels of Dlk1 mRNA in

relative to isolated myofibers or whole muscles (Supplementary

Fig. S1D). Combined with our earlier results from Dlk1 cKO,

these results indicate that Dlk1 upregulation is correlated and

necessary for normal differentiation of muscle progenitor cells.

Based on our findings and previous observations, we propose a

model in which the timing of Dlk1 critically affect muscle

regeneration after injury (Fig. 6D). Upon muscle injury, satellite

cells are activated and proliferate. Dlk1 level in the whole muscle

peaks at the height of satellite cell proliferation (Fig. 6A–C),

allowing many of the proliferating myoblasts to differentiate and

repair the muscle damage. As Dlk1 levels later drop[17], a portion

of undifferentiated cells then return to the self-renewed state, or

quiescence. The level of Dlk1 available on neighboring tissues

during satellite cell activation determines, in a non-cell autono-

Figure 4. Dlk1 regulates satellite cell self-renewal and differentiation. A–D: Pax7 and MyoD expression in a representative cluster of
myoblasts on a wild-type EDL fiber after 3 days of culture. Pax7+/MyoD2, Pax7+/MyoD+ and Pax72/MyoD+ cells represent self-renewing, proliferating
and differentiating cells, respectively. E–H: A representative cluster of myoblasts on a cKO fiber cultured under identical culture conditions. I: The
average number of cells per cluster. J: The percentage of cells expressing Pax7 and MyoD (note that most cells co-express Pax7 and MyoD; see K
below). K: The proportion of cells at three different statuses: self-renewal (S–R; Pax7+/MyoD2), differentiation (Diff; Pax72/MyoD+) and proliferation
(Prolif; Pax7+/MyoD+). In I–K, n = 34 for WT, and n = 27 for cKO; * indicates p,0.05 compared to WT.
doi:10.1371/journal.pone.0015055.g004

Role of Dlk1 in Myogenesis and Satellite Cells
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Figure 5. Dlk1 over-expression (OE) or recombinant Dlk1 protein inhibits proliferation but promotes differentiation of myoblasts.
A–B: Dlk1 over-expression in C2C12 myoblasts. Cells were transfected with either GFP (Control; A) or Dlk1 OE (B) plasmids and cultured for 3 days.
C: Cell numbers of Control and Dlk1 OE at day 3 after transfection. D–E: Relative Dlk1 mRNA levels in the Control and Dlk1 OE cells measured by
quantitative Realtime PCR (n = 4). E: Protein levels of Dlk1, GFP and a-tubulin in GFP control transfected cells (GFP), Dlk1 over-expression cells
(DLK1), and cells transfected with an unrelated negative control gene (TSG101). F: Primary myoblasts co-transfected with Dlk1 and GFP (4:1)
plasmids were cultured for 2 days and labeled with a cell proliferation marker Ki67 together with GFP staining. GFP signals (indicating Dlk1 positively

Role of Dlk1 in Myogenesis and Satellite Cells
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mous manner, the fate of the satellite cells in question. High levels

of Dlk1 promote higher rates of differentiation while low levels

trigger more self-renewing cells. However, our model does not

exclude a potential cell-autonomous role of Dlk1 in myoblast

differentiation. Finally, our Dlk1cKO mice had significantly higher

levels of NF-kB activation, pro-inflammatory cytokines, and

macrophage infiltration. Thus endogenous Dlk1 may also be

required to limit the inflammatory response in regenerating

muscles.

Discussion

Delta-like 1 (Dlk1) exists in both a cleaved circulating form and

a constitutively membrane bound form and is crucial for the

proper development of several tissues in mammals. However, the

specific functions and signaling mechanisms of the predominantly

membrane-bound form (Dlk1-C2) in skeletal muscle and muscle

progenitor cells remain unclear. Previous reports have indicated

that muscle-specific over-expression of Dlk1 causes postnatal

muscle hypertrophy in both mice and sheep [20,21,65,66].

However, the phenotype in sheep is complicated as the callipyge

mutation also alters the expression of several other imprinted

genes near the Dlk1 allele [19,20,21,66,67,68,69,70]. In addition,

constitutive Dlk1 knockouts and over-expression are mostly

embryonic or perinatal lethal[18,26,71]. This study was thus

designed to elucidate the role of local non-circulating Dlk1 in

skeletal muscle development and regeneration by creating a

muscle-specific Dlk1 knock-out mouse (Dlk1 cKO). Floxed Dlk1

mice were crossed with a Cre driver allele under the control of the

Myf5 promoter. Myf5 is an early critical muscle regulatory

factor[32], so Dlk1-flox/Myf5-Cre mice have their Dlk1 gene

excised during early embryonic development of muscle progenitor

cells.

By measuring the expression levels of Dlk1 in muscle-specific

knock-out mice, it was observed that Dlk1 levels were only

decreased by 35% in whole muscle compared to wild-type siblings.

However, when Dlk1 was measured on isolated myofibers and

myoblasts, the levels were greatly decreased in muscle-specific

mutants, similar to data from Dlk1-null mice. Further investigation

showed the Dlk1 protein is still detectable in mutant whole muscles

originating from non-myogenic cells, mostly endothelial CD31+

cells. This is consistent with a recent study that reports many

Dlk1+ cells found in adult muscle are mesenchymal or fibroblastic

in nature, rather than myogenic [17]. However, our data do not

indicate that Dlk1 is normally present in satellite cells, contrary to

findings by Andersen and others [17]. Our findings suggest that

Dlk1 from neighboring interstitial cells or myofibers [2,4] interacts

with satellite cells to influence their physiological state.

The total number of muscle fibers was significantly reduced in

our conditional mutant mice. This may account for decreased total

body mass that is observed when comparing Dlk1 cKO mice to

wild-type littermates. This phenotype was not expected since the

over-expression of Dlk1 does not change the number of myofibers

present, only their size and metabolic functions [25]. One

possibility is that by removing Dlk1 early in myogenic progenitor

cells, the formation of primary and/or secondary myotubes in the

embryo may be compromised.

Because of fiber type changes observed in Dlk1 over-expression

models, myosin heavy chain isoforms were measured by qPCR

and immuohistochemistry in our Dlk1 cKO mutants. The mRNA

levels of myosin heavy chain type IIB were significantly reduced in both

the soleus and EDL muscles of mutant mice, while no other

isoforms appeared to change. This is consistent with Dlk1over-

expression models where the expression of type IIB myosin heavy

chain was found to be increased in both sheep and mice

[22,25,65]. This suggests that Dlk1 may play a role in either

contraction speed or energy metabolism in the muscle.

The role of Dlk1 in muscle regeneration was observed by

challenging muscles with a cardiotoxin (CTX) injury. We found

that muscle regeneration was impaired at several levels in the Dlk1

cKO mice. Myogenin levels and the number of nascent de novo

Figure 6. Dlk1 up-regulation correlates to myogenic differen-
tiation and skeletal muscle regeneration after injury. A:
Representative Western-blot image showing that Dlk1 protein levels
increase 5 days after serum-withdrawal induced differentiation of
C2C12 myoblasts. B: The relative level of Dlk1 mRNA in the TA muscle
revealed by quantitative Realtime PCR 5 days after cardiotoxin-induced
regeneration (* indicates P,0.05; n = 18 for control TA; 6 for CTX treated
TA). C: Dlk1 protein expression revealed by Western-blot in resting and
regenerating TA muscles 5 days after cardiotoxin treatment. D: A model
depicting how Dlk1 level varies during muscle quiescence and
regeneration, which correlates to suppression of NK-kB activity and
the onset of myoblast differentiation.
doi:10.1371/journal.pone.0015055.g006

transfected cells) exhibit little colocalized with Ki67 immunofluorescence. G: Percentage of cells displaying Ki67 staining in Control and Dlk1 OE
cells (n = 3). H–J: Primary myoblasts transfected with an empty plasmid (H, control) or Dlk1 plasmid (I, OE) cultured for 3 days in growth medium and
labeled with Ki67 (in red) and DAPI (in blue). The average Ki67 immunofluorescenc intensity was measured with Photoshop and normalized to DAPI
intensity (J, n = 3 per treatment). K–M: Phase-contrast images of primary myoblasts differentiated for 48 hrs after transfected with either empty
plasmids (K) or Dlk1 OE plasmids (L). M: Average pixel size of myotubes in Control and Dlk1 OE treatments as shown in H&I (n = 20 random tubes
measured). N–O: Primary myoblasts grown on Matrigel plus vehicle control (N) and on Matrigel plus Dlk1 recombinant protein (O) after 3 days in
differentiation medium. Green fluorescence (MF20) marks sarcomere myosin heavy chain and Blue is DAPI counterstaining for nuclei. P: The
relative diameters of the resulting myotubes as shown in N & O were measured with Image J software. Control is the open bar (n = 66 myotubes) and
Dlk1 recombinant protein treated cells are represented by the solid black bar (n = 66 myotubes). Asterisks in all bar graphs indicate p,0.05 compared
to control groups by student t-test.
doi:10.1371/journal.pone.0015055.g005
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fibers were significantly reduced, while cellular infiltrate and levels

of pro-inflammatory cytokines were greatly increased. Increased

levels of TNF-a have been shown to decrease nascent myofiber

genesis [72,73] which along with IL-1b, activate the NF-kB

signaling pathway [62,74,75]. We observed high levels of NF-kB

in mutant regenerating muscle of Dlk1 cKO mice. Several studies

have shown that NF-kB tightly controls myogenesis and

specifically inhibits myofiber formation both in vitro and in vivo

[61,76]. Our data show that lack of Dlk1 in skeletal muscle

increases inflammatory response after injury and impairs regen-

eration potentially through increased activation of NF-kB and

expression of inflammatory cytokines. It is also possible that the

enhanced inflammatory reaction to muscle injury is due to the

poor regeneration of the Dlk1 cKO muscle. Furthermore, reduced

phosphorylation of Akt in regenerating myofibers of Dlk12cKO

mice suggests that Dlk1 may be enhancing myofiber regeneration

though the activation of this kinase. Alternatively, inhibition in Akt

phosphorylation could be a result of less myofiber regeneration in

Dlk1 cKO mice.

We provide direct evidence that Dlk1 function to regulate

myogenic progenitor cells. Mice possessing the conditional Dlk1

mutation showed higher proportions of self-renewing cells at the

expense of fewer proliferating cells (Fig. 4). In opposition, myoblast

differentiation is accompanied by higher levels of Dlk1 protein

(Fig. 6). More importantly, overexpression of Dlk1 inhibited

myoblast proliferation and promoted their differentiation (Fig. 5).

These results support a role of Dlk1 in the regulation of the

proliferation and differentiation of satellite cells and provide a

mechanism by which Dlk1 overexpression leads to muscle

hypertrophy as seen in callipyge sheep and transgenic mice

[3,18,19].

It remains unknown what signals regulates Dlk1 expression in

regenerating and nascent myofibers, and the Dlk1 downstream

effectors that affect myoblast proliferation and differentiation. Our

results are consistent with the notion that Dlk1 acts as an inhibitor

for Notch signaling [28,29,30]. Notch signaling is known to inhibit

MyoD expression and myogenic differentiation, but enhance

satellite cell proliferation and self-renewal[77,78]. Based on this

notion, our Dlk1 conditional mutants should have elevated Notch

signaling, which would suppress MyoD expression[79]. Our results

confirmed this prediction. Conversely, over-expression of Dlk1

should suppress Notch signaling and promote myogenic differen-

tiation, but inhibit myoblast proliferation[80,81]. Our overexpres-

sion studies again support this notion. Interestingly, recent studies

have also shown that Notch signaling interacts with the canonical

NF-kB pathway. Notch-1 is able to promote the transcription of

TNF-a [82,83], which in turn stimulates the phosphorylation of

IkBa, leading to the activation of NF-kB signaling [83]. Notch-1 is

also known to affect macrophage and cultured B cell signaling.

Wild-type macrophages increase Notch-1 expression after an

immune challenge, which then promotes the transcription of pro-

inflammatory cytokines such as TNF-a [82]. In Notch-1-null mice,

the immune response and NF-kB activity were three times lower

in B-cells compared to wild-type cells [84].Thus, the increased

immune response seen in our Dlk1 cKO injured mice is likely the

result of increased Notch-1 signaling, which again support the

notion that Dlk1 acts to suppress Notch signaling.

In summary, our data provide novel insight into the

mechanisms of action of Dlk1 in skeletal muscle. First we show

that ablation of Dlk1 in the Myf5-derived myogenic cells leads to

both developmental and postnatal growth/regeneration defects in

myogenesis. As the conditional mutants should have normal levels

of circulating Dlk1 which is mainly produced by the fetal liver, our

results suggest that muscle specific membrane-bound Dlk1 is

important for normal myogenesis. We next show that lack of Dlk1

in injured muscle increases the inflammatory response, increasing

NF-kB signaling, and decreasing Akt activity. These shifts greatly

decrease the ability of the injured muscle to regenerate

appropriately. We further show that at progenitor cell level,

Dlk1 expression inhibits myoblast proliferation but promotes

myogenic differentiation. Therefore, the observed up-regulation of

Dlk1 in wild-type muscles after injury may act to allow

proliferating myoblasts to differentiate and fuse with existing

fibers for muscle repair. When Dlk1 is not present in neighboring

tissues, myoblasts are shifted towards the self-renewal state while

increasing the inflammatory response, thus hindering muscle

repair. These results add to our current understanding of the

cellular and molecular mechanisms by which Dlk1 regulates

skeletal muscle hypertrophy.

Materials and Methods

Mice and Animal Care
Generation of Dlk1-floxed mice will be described elsewhere

(Appelbe et al., in preparation). Briefly, loxP cassettes were

inserted into the endogenous Dlk1 locus flanking exons four and

five, and the mice were maintained in a C57BL/6 background.

Myf5-Cre mice [85] were provided by Dr. Philip Soriano (Mount

Sinai School of Medicine, New York, NY). Mice maintenance and

experimental use were performed according to protocols approved

by the Purdue Animal Care and Use Committee (PACUC

protocol # 08-006).

Muscle Injury and Regeneration
Muscle regeneration studies were performed using cardiotoxin

(CTX; Sigma-Aldrich, St. Louis, MO, USA) injections into the TA

muscle. Mice were anesthetized using a ketamine-xylazine

cocktail, then 25 mL of 10 mM CTX was injected into the right

TA muscle. Muscles were then harvested either at 5 days post-

injection for peak regeneration activity or 2–3 weeks post-injection

to assess the completion of regeneration and repair.

Whole Muscle Sections and Staining
Whole muscles (TA, EDL, and soleus) were dissected and either

frozen immediately in OCT compound or fixed. For fixation,

muscles were placed in 4% PFA for 1 h, 100 mM glycine for h,

then 30% sucrose overnight at 4uC. Fixed samples were then

frozen in OCT compound. Frozen muscles were cut into 10 mm

thick cross sections by a Leica CM1850 cryostat. Immunohisto-

chemistry staining of muscle sections were performed as previously

described[44]. Specific primary antibodies can be found in

Supplemental Table S1. Fluorescent images were captured with

a Coolsnap HQ CCD camera (Photometrics, USA) driven by IP

Lab software (Scanalytics Inc, USA) using a Leica DM6000

microscope with a 20X objective (NA = 0.70). H–E staining

images were captured by a Nikon D90 digital camera installed on

a Nikon (Diaphot) inverted microscope. Monochrome images

were processed and composited into color images using Photoshop

(CS3) software.

Single Fiber Culture and Staining
Single myofibers were isolated from the EDL muscles by

collagenase I (Roche Applied Science) digestion and tituration as

previously described [86,87]. Suspended fibers were cultured on

60 mm horse serum-coated plates in DMEM media supplemented

with 10% fetal bovine serum, 0.5% chick embryo extract, and 1%

penicillin-streptomycin for three days. Fibers were then fixed in
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4% paraformaldehyde (PFA) and stained for MyoD, Pax7, and

GFP, as previously described[44].

Primary Myoblast Isolation and Culture
Primary myoblasts were isolated from hind limb skeletal muscle.

Muscles were minced and digested in type I collagenase and

dispase B mixture (Roche Applied Science). Cells were then

filtered from debri, centrifuged, and cultured in growth media (F-

10 Ham’s medium supplemented with 20% fetal bovine serum,

4 ng/mL basic fibroblast growth factor, and 1% penicillin-

streptomycin) on collagen-coated dishes at 37uC, 5% CO2.

Differentiation media consisted of DMEM supplemented with

5% horse serum, 1% penicillin-streptomycin

Myoblast cultures testing the presence of recombinant Dlk1

protein were maintained on a bed of 1 mg/mL BD Matrigel

(Basement Membrane Matrix; BD Biosciences, San Jose, CA,

USA). Experimental cultures also contained 500 ng/mL of

recombinant Dlk1 protein (Dlk1(mouse): Fc(human), cat#ALX-

201-416-C010; Alexis Biochemicals-Enzo Life Sciences Interna-

tional, Inc. Plymouth Meeting, PA, USA) in the Matrigel bed.

Cells were maintained in the same culture media conditions as

listed above for proliferation and differentiation.

Transfection of C2C12 Cells and primary myoblasts
C2C12 cells and primary myoblasts were transfected using the

NeonTM Transfection System (Invitrogen, Inc) according to the

manufacturer’s recommended protocol. Dlk1 or GFP-containing

plasmids were transfected at a rate of 2 mg of plasmid DNA in

26105 cells. C2C12 cells were then plated in 6-well plates and

grown in DMEM with 10% FBS, 1% penicillin/streptomycin.

Primary myoblasts were grown under identical conditions as

described above in the Primary myoblast isolation and culture section.

RNA Isolation and Quantitative PCR Analysis
Tissue samples for RNA were excised after euthanization and

either stored in RNAlater (Ambion, Woodlands, TX) for later

processing or homogenized immediately for RNA purification

using the Qiagen RNeasy Fibrous Tissue Mini Kit (Qiagen, Inc.,

Valencia, CA). The on-column DNase treatment included in the

kit was used to remove any trace amounts of genomic DNA.

Purified RNA samples were then quantified by fluorometry

(Quant-iT Ribogreen RNA Quantitation Kit, Invitrogen-Molec-

ular Probes, Eugene, OR). Equal amounts of RNA were reverse

transcribed using random hexamer primers and M-MLV reverse

transcriptase (Invitrogen, Inc., Carlsbad, CA).

Quantitative PCR was performed using the Roche Lightcycler

480 system with Roche SYBR Green Master Mix reagents (Roche

Applied Science, Indianapolis, IN). Samples were assayed in

duplicate with 80 ng of cDNA per 10 uL reaction. Ribosomal protein

large protein 38 (Rplp38) was used as the housekeeping gene for all

gene expression studies. Primer sequences and PCR conditions are

listed in Supplemental Table S2. Fold expression values relative to

the wild-type samples within each tissue were calculated using the

22DDCT method. Statistical significance was determined by

ANOVA using the MIXED procedure of SAS (SAS Institute

Inc., Cary, NC, USA).

Western Blots and Electrophoretic Mobility Shift Assay
(EMSA)

Levels of different proteins in skeletal muscle were determined

by performing Western immunoblotting as described [88,89].

Briefly, tissues were washed with phosphate-buffered saline (PBS)

and homogenized in western blot lysis buffer (50 mM Tris-Cl

[pH 8.0], 200 mM NaCl, 50 mM NaF, 1 mM dithiotheritol

(DTT), 1 mM sodium orthovanadate, 0.3% IGEPAL, and

protease inhibitors). Approximately 100 mg of protein were

resolved on each lane on 10–12% SDS-PAGE, electrotransferred

onto nitrocellulose membrane, and probed with specific antibodies

(Supplemental Table S1) and detected by chemiluminescence.

The bands were quantified using ImageQuant TL software (GE

Healthcare).

NF-kB activation in skeletal muscle was analyzed by EMSA as

previously described [88] with some modifications. In brief, TA

muscles isolated from mice were immediately frozen in liquid

nitrogen and suspended at 1 mg muscle weight per 18 ml of low

salt lysis buffer (10 mM HEPES [pH 7.9], 10 mM KCl, 1.5 mM

MgCl2, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithiothreitol,

0.5 mM phenylmethylsulfonyl fluoride, 2.0 mg/ml leupeptin,

2.0 mg/ml aprotinin, 0.5 mg/ml benzamidine) followed by

mechanical grinding using mortar and pastle. Cells in the lysis

buffer were allowed to swell on ice for 10 min followed

immediately by three cycles of freeze-thaw lysis. The tubes

containing the lysed muscle cells were then vortexed vigorously for

10 s, and the lysate was centrifuged for 30 s at 14,000 rpm. The

supernatant (cytoplasmic extracts) was removed and saved at

270uC for further biochemical analysis. The nuclear pellet was

resuspended in 4 ml of ice-cold high-salt nuclear extraction buffer

(20 mM HEPES [pH 7.9], 420 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 150 mM MgCl2, 25% glycerol, 1 mM dithiothreitol,

0.5 mM phenylmethylsulfonyl fluoride, 2.0 mg/ml leupeptin,

2.0 mg/ml aprotinin, 0.5 mg/ml benzamidine) per mg of original

muscle weight and was incubated on ice for 30 min with

intermittent vortexing. Samples were centrifuged for 5 min at

4uC, and the supernatant (nuclear extract) was either used

immediately or stored at 270uC. The protein content was

measured by the method of BioRad (Hercules, CA) protein assay

reagent. EMSAs were performed by incubating 20 mg of nuclear

extract with 16 fmol of the 32P-end-labeled NF-kB consensus

oligonucleotide 59-AGT TGA GGG GAC TTT CCC AGG C-39

(Promega, Madison, WI) for 15 min at 37uC. The incubation

mixture included 2–3 mg of poly dI.dC in a binding buffer (25 mM

HEPES [pH 7.9], 0.5 mM EDTA, 0.5 mM dithiothreitol, 1%

Nonidet P-40, 5% glycerol, 50 mM NaCl). The DNA-protein

complex thus formed was separated from free oligonucleotide on

7.5% native polyacrylamide gel, using buffer containing 50 mM

Tris, 200 mM glycine (pH 8.5), and 1 mM EDTA. The gel was

dried, and the radioactive bands were visualized and quantitated

by a PhosphorImager (GE Healthcare), using ImageQuant

software.

Supporting Information

Figure S1 Localization and expression of Dlk1 in
skeletal muscles. A: Lack of Dlk1 expression in quiescent

Pax7+ satellite cells in a cross section of a resting muscle. B: Co-

localization of Dlk1 with interstitial CD31+ endothelial lineage

cells. C: Up-regulation of Dlk1 expression in newly regenerated

myofibers (small caliber fibers with central nuclei) but not in Pax7+
satellite cells in a regenerating muscle 5 days after cardiotoxin

treatment. D: Relative Dlk1 mRNA expression in whole muscles,

single myofibers isolated from EDL muscle and cultured myoblasts

(n = 18, 4, 2 respectively; * indicates significant difference

compared to whole muscle).

(TIF)

Table S1 List of antibodies used in this study.

(DOC)
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Table S2 Quantitative PCR primers.

(DOC)
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