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Abstract

From the moment of conception, we begin to age. A decay of cellular structures, gene regulation, and DNA sequence ages cells and
organisms. DNA methylation patterns change with increasing age and contribute to age related disease. Here we identify 88 sites in
or near 80 genes for which the degree of cytosine methylation is significantly correlated with age in saliva of 34 male identical twin
pairs between 21 and 55 years of age. Furthermore, we validated sites in the promoters of three genes and replicated our results in a
general population sample of 31 males and 29 females between 18 and 70 years of age. The methylation of three sites—in the
promoters of the EDARADD, TOM1L1, and NPTX2 genes—is linear with age over a range of five decades. Using just two cytosines
from these loci, we built a regression model that explained 73% of the variance in age, and is able to predict the age of an individual
with an average accuracy of 5.2 years. In forensic science, such a model could estimate the age of a person, based on a biological
sample alone. Furthermore, a measurement of relevant sites in the genome could be a tool in routine medical screening to predict
the risk of age-related diseases and to tailor interventions based on the epigenetic bio-age instead of the chronological age.
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Introduction

Throughout development, cells and tissues differentiate and

change as the organism ages. This includes alterations to telomeres,

accumulation of DNA mutations, decay of cellular and organ

structures, and changes in gene expression [1]. Both differentiation

of tissues, and ageing effects are at least partially caused by chemical

modifications of the genome, such as DNA methylation.

Monozygotic (MZ) twins form an attractive model to study

methylation changes with age. At the time of separation both

embryos have nearly identical methylation patterns. While certain

methylation changes are genetically controlled, environmental

exposure and stochastic processes can lead to a change in methylation

patterns. In this context, identical twins can be considered replicates

of the same developmental and ageing experiment.

Several studies have investigated the epigenetic state of a small

number of selected genes or CpG islands in subjects of varying age

[2] or have measured the global changes in DNA methylation with

increasing age [3]. Recently, unbiased genomewide studies have

documented age effects on DNA methylation in cultured cells [4],

mice [5], and humans [6,7,8]. Most of these reports’ subjects were of

a limited age range, and the continuity of the age related changes

has been unclear. Therefore, estimating the age of a biological

sample based on methylation balues has not been possible.

Results

Microarray analysis
In this study we quantified the methylation status of 27,578

CpG loci covering more than 14,000 genes at single-nucleotide

resolution in saliva samples of 34 pairs of identical twins, between

21 and 55 years of age, using Illumina HumanMethylation27

microarrays. The twin pairs were recruited for a study on sexual

orientation. No significant results for sexual orientation were

found, which will be reported in detail elsewhere. Monozygosity

was verified for all pairs by analysis of nine short tandem repeat

probes. For each CpG site on the microarray, we calculated the

beta value, which expresses the fraction of methylated cytosines

in that location. A site that is completely methylated on both

alleles in all cells has a beta value equal to 1; a completely

unmethylated site equals 0. All subsequent analyses were

performed on this beta value. For computational reasons, the

data were filtered by requiring a mean methylation value between

0.05 and 0.95, and variance greater than 0. The resulting

restricted dataset contained 16,155 probes, and all further

analyses were performed on this filtered dataset. Batch effect

were removed using the Combat algorithm [9], and one outlier

sample was removed.

We first determined whether methylation differences measured

using these arrays reflected actual differences between individuals

by calculating the correlation coefficient between replicate arrays

for 10 samples. The median correlation between replicate arrays

was 0.995 (range 0.990–0.996), compared to 0.987 (range 0.957–

0.994) between unrelated samples. This difference was highly

significant (Wilcoxon test, p = 1.461027). In unsupervised hierar-

chical clustering, the majority of twin pairs clustered together

(Figure S1) and twin samples correlated with r = 0.992 (range

0.983–0.997), which is significantly different from the correlation

between unrelated samples (Wilcoxon test, p = 1.93610211).
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A previous study showed increasing global epigenetic differences

with age in a sample of identical twins, suggesting increased

epigenetic drift with age [3]. We were unable to replicate these

genome-wide methylation changes when the intra-pair correlation

coefficients, the intra-pair Euclidian distance, or the intra-pair

Manhattan distance was correlated with age (p.0.1). We did,

however, identify a subset of loci to be highly correlated with age.

A recurrent problem with data analysis on a whole genome

scale is correcting for multiple comparisons. The stringency level

of the chosen correction method strongly affects the odds of

identifying significant findings. We previously described weighted

correlation network analysis (WGCNA) as a data reduction

scheme [10,11]. Here we used WGCNA to identify modules of

loci with highly similar methylation values. First, we averaged all

methylation values for each twin pair, and treated each pair’s data

as an individual sample. Since both twins are genetically identical

and of the same age, averaging the data reduces possible

environmental effects on DNA methylation. After hierarchical

clustering of the data set, branches of the cluster dendrogram

defined five modules ranging in size from 199 to 842 loci, of which

the methylation values were highly correlated across the samples

(Figure 1A). We color coded the modules, calculated a weighted

average, representative locus (eigenlocus) for each module (see

Methods S1) and correlated this with age. The correlation between

age and the representative of the green module was highly

significant (r = 0.62, p = 7.261025, Figure 1B), even after using the

most stringent multiple comparison correction (Bonferroni), since

only 5 comparisons—corresponding to 5 modules—were carried

out. Module membership of all probes can be found in Dataset S1.

Identification of 88 novel loci correlated with age
To identify novel loci for which the methylation values correlate

positively or negatively with age, we calculated q-values to correct

for multiple comparisons [12]. We selected probes with q-values

smaller than 0.05, corresponding to absolute correlation values

greater than 0.57. A total of 88 probes correlated with age (Table

S1), corresponding to 80 genes spread over several of the modules.

Of these, 19 probes were negatively correlated, and 69 were

positively correlated with age, of which 57 belonged to the green

module. A recently published study used a very similar study

design and identical microarrays to identify 131 CpG sites

correlated with age in blood samples of identical twins ranging

from 49 to 75 years of age [8]. Of these 131 sites, 10 were found to

be positively correlated with age in our study as well (Table S2).

Of the 88 probes that were significantly correlated with age in our

study, only one was near a gene encoding a microRNA (HSA-MIR-

10A, in the HOXB4 gene), which was not different from the density

on the array. 73 of 88 (83%) significant probes were within CpG-

islands, thus this probe set was enriched in CpG islands relative to the

typical array probe (73% in CpG islands, p = 0.031, Fisher’s exact test

for count data). CpG sites that were significantly correlated with age

were a median 238 base-pairs upstream of the transcription start site.

Ingenuity analysis showed the 80 age-related genes were highly

enriched for genes involved in cardiovascular disease

(p = 1.5961026), neurological disease (p = 1.4761024), and genetic

disease (p = 1.5961026)—a category consisting almost entirely of

the cardiac and neurological genes as well. The most enriched

cellular function was molecular transport (p = 2.461023). The full

gene ontology analysis can be found in Table S3.

Validation of correlated probes in additional samples
Three probes for which the methylation status was highly

correlated with age, and which had the widest distribution of values,

were chosen for further validation. Saliva samples from 22 twins

from the array study, 31 unrelated male, and 29 unrelated female

samples (age range = 18–70 years-old) were bisulfite converted and

PCR amplified. The fraction of methylated cytosines at the exact

CpG sites assayed on the Illumina arrays were quantified by

Figure 1. Detection of gene co-methylation modules in human saliva in twins. (a) Branches of the hierarchical cluster tree define five co-
methylation modules which are assigned a color as can be seen from the first color band underneath the tree. Probes that could not be clustered into
one of these modules were coded grey. Every probe represents a line in the hierarchical cluster tree. Distance between two probes is shown as height
on the y-axis. The second color band encodes the age relationships of each gene. Genes with positive age correlations are colored in blue. (b)
Barplots showing age relationships of modules. Specifically, the y-axis shows the mean Student T-statistic testing whether the methylation status of a
probe is correlated with age. Note that the green module is enriched for probes that have a significant positive correlation with age. A t-statistic value
of 2 or higher indicates a significant correlation (p,0.05).
doi:10.1371/journal.pone.0014821.g001
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MassArray (Sequenom) for the Edaradd gene and by pyrosequenc-

ing for NPTX2 and Tom1L1. For NPTX2, the pyrosequencing

method provided methylation data for five additional CpG sites in

the promoter. The results of the validation experiments correlated

very strongly with the array data for all three genes (Edaradd

r = 0.96, NPTX2 r = 0.92, Tom1L1 r = 0.90, n = 23), providing a

technical replication of the array data in the twin sample. The

correlation between the degree of methylation and age of all three

genes was preserved in the subset of twins and was also found in the

independent male sample, providing a biological replication. In

females, Edaradd and Tom1L1 were significantly correlated with

age, but NPTX2 was not. The correlation results are shown in

Figure 2. A multivariate linear regression model using Edaradd,

Edaradd squared and NPTX2 showed that these two markers

explain 76% (or R2 = 0.76) of the variance in age of males and 70%

in females. When considering males and females together the model

explained 73% of the variance in age.

A leave-one-out analysis forms an accurate epigenetic
predictor of age

To provide an unbiased estimate of predictive accuracy for age,

we used a leave-one-out analysis where the multivariate regression

model was fit on all but one subject and its prediction was related

to the truly observed age of the left-out subject. The predicted

values are highly correlated with the observed age in males

(r = 0.83, p = 3.3610213, n = 47, Figure S2), females (r = 0.75,

p = 2.461024, n = 19, Figure S3), and in the combined sample

(r = 0.83, p = 2.2610216, n = 66, Figure 3). For the male only or

female only models, the average absolute differences between the

predicted and the observed age (the error) are 5.3 years and 6.2

years, and for the combined sample this is 5.2 years. Even when

only the male and female replication samples were used,

discarding all twin data, the accuracy of the model remained at

5.3 years, and the predicted values correlated highly with the

observed age (r = 0.85, p = 1.701610213, n = 45, Figure S4).

To test whether additional data points on the microarray could

improve the accuracy of the model, we performed lasso penalized

regression to screen for the top predictors of age [13,14]. The top

five predictors were tested, and only three were found to

contribute significantly to the regression model: Edaradd, NPTX2,

and ELN. The first two predictors were already part of the model.

Using the microarray methylation data for these two genes, the

average error is 4.7 years (r = 0.77, p = 1.029610207, n = 34).

Adding the ELN methylation data improved the accuracy of our

model, reducing the average error to 3.5 years (r = 0.87,

p = 2.2610211, n = 34, Figure S5). Results were nearly identical

when all twin samples were treated as unrelated individuals, and

when averaged values for each pair were used. The distribution of

methylation values for ELN was considered too narrow for further

validation using pyrosequencing or MassArray analysis.

Discussion

In this high density, genomewide screen of CpG methylation of

twins, we identified 88 CpG sites near 80 genes for which the

percent methylation in saliva is significantly correlated with age.

These are highly enriched for genes known to influence age-

related diseases—mainly cardiovascular and neurological disease.

Ten of these 88 CpG sites were shown earlier to be correlated with

age in whole blood and in isolated CD4+ and CD14+ cells as well

[8]. We validated three genes in a sample of unrelated males and

females, which confirmed our findings in these replicate samples.

Remarkably, the methylation values for the validated genes are

linear with age over a span of five decades and in three separate

sample sets. Based on this observation, we were able to build a

model that can predict the age of a subject based on the

methylation status of just two cytosines in the genome, explaining

73% of the variance in age.

Of the validated genes, Neuronal Pentraxin II (NPTX2)

methylation has been shown to be upregulated in pancreatic

cancer [15], and its expression is increased in Parkinson’s disease

[16]. Its methylation status was recently shown to be correlated

with age in blood as well [8]. Mutations in the Edar associated

death domain (Edaradd) can cause loss of hair, sweat glands, and

teeth [17], and it can reduce the speed of wound healing [18].

Further research should focus on their role in ageing, and age-

related diseases.

The lack of epigenetic drift within each monozygotic pair

contrasts with a previous study [3]. The main difference between

the two studies is that we focused on CpG sites close to functional

gene transcription start sites whereas Fraga and colleagues

investigated random sites, most of which were located in non-

functional repeated sequences (e.g., Alu repeats). This suggests that

while drift may occur randomly with age in non-coding, repeat-

rich DNA regions, the critical regulatory portions of the genome

remain under strict epigenetic control throughout life.

Figure 2. Percentage methylation versus age for three markers
validated in three sample sets. Original twin samples are blue, male
control samples are red, female control samples green. Linear trendlines
are shown in the colors of the individual sample sets a) Edaradd
r = 20.81 (twins), r = 20.73 (male controls), r = 20.75 (female controls)
b) NPTX2 r = 0.52 (twins), r = 0.79 (male controls), r = 0.03 (female
controls) c) Tom1L1 r = 20.70 (twins), r = 20.49 (male controls),
r = 20.24 (female controls).
doi:10.1371/journal.pone.0014821.g002
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Our regression model (Figure 3) could be applied in a variety of

contexts. For instance, our ability to predict an individual’s age to

an average accuracy of 5.2 years could be used by forensic

scientists to estimate a person’s age based on a biological sample

alone, once the model has been tested in various biological tissues.

The model is also relevant to healthcare applications. Previously,

significant DNA methylation differences were shown to be

associated with specific age-related disorders, for example in

comparisons between the brains of people diagnosed with late-

onset Alzheimer’s disease and brains from controls [19]. The

identification of specific epigenetic patterns highly correlated with

age has the potential to influence our understanding of ageing in

health and disease. Specifically, it could lead to clinical

interventions that are tailored to patients based on their ‘‘bio-

age’’—a result of the interaction of genes, environment, and

time—rather than their chronological age. Future investigations

should focus on phenotype and disease history of those subjects

whose predicted age vary widely from their actual age.

Furthermore, these findings could pave the way for interventions

based on specific epigenetic marks associated with disease, as is

already the case in cancer treatment [20].

Materials and Methods

Ethics statement
The study was approved by the UCLA Institutional Review

Board, and all subjects signed informed consent.

Monozygotic twin pairs, differing for sexual orientation, were

recruited through the study website, online advertisement and

press coverage. Male and female control subjects were recruited

using fliers. There were no significant differences in racial

composition between the sample sets or age groups. Saliva was

collected using Oragene DNA collection kits (Genotek). The

majority (up to 74%) of the DNA in saliva collected with this

method typically comes from white blood cells, with the remainder

being buccal epithelial cells [21]. Genomic DNA was prepared

according to the manufacturer’s protocol. Zygosity was deter-

mined using 9 microsatellite markers. Microarray hybridization

was performed by the Southern California Genotyping Consor-

tium at UCLA. 500 ng of genomic DNA was bisulfite converted

using the EZ-methylation kit (Zymo Research), and processed

according to the Illumina Infinium whole genome genotyping

protocol. Labeled samples were hybridized to Illumina Human-

Methylation27 arrays, scanned (iScan reader, Illumina), and beta

(methylation) values extracted using GenomeStudio software. All

array data is MIAME compliant, and the raw data has been

deposited in NCBI’s GEO, a MIAME compliant database as

detailed on the MGED Society website (http://www.mged.org/

Workgroups/MIAME/miame.html) under accession number

GSE28746.

Analysis: A signed weighted correlation network was construct-

ed as described [11,22]. Module definition was based on the gene

methylation status in saliva and ignored age. As module

representative, we used the module eigenlocus (ME) which is

defined as the first principal component of the module methylation

profiles and can be considered a weighted average. To incorporate

age into the network analysis, the Student t-test statistic for

correlating age with methylation status was used. Lasso penalized

Figure 3. Predicted versus observed age of all subjects using a leave-one-out model. A multivariate regression model was fit on all but
one sample and its predicted age (y-axis) was related to the truly observed age of the left out sample (x-axis). The predicted values are highly
correlated with the observed ages (r = 0.83, p = 2.2610216, n = 66), and the average absolute difference between the predicted and the observed age
is 5.2 years.
doi:10.1371/journal.pone.0014821.g003
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regression was performed using the ‘penalized’ package of R[14].

All statistical analyses and data processing were performed using

the statistical package R version 2.11.1 [23]. PCR reactions for

amplification, massarray and pyrosequencing analysis were

performed using Sahara and Bio-X-ACT Long enzymes (Bioline).

PCR primers and conditions are listed in Methods S1.

Supporting Information

Data Set S1 Full statistics and module membership of all array

probes.

Found at: doi:10.1371/journal.pone.0014821.s001 (3.01 MB

XLS)

Table S1 88 loci significantly correlated with age TargetID

represents the exact Illumina probe on the array, Chr:

chromosome number, Gene_ID: NCBI Gene database locator,

Symbol: gene name, r: correlation coefficient, p-value: significance

of correlation, q-value: significance corrected for multiple

comparisons.

Found at: doi:10.1371/journal.pone.0014821.s002 (0.04 MB

XLS)

Table S2 Array probes found to be positively correlated with

age in blood (published data) and in saliva (present study).

Found at: doi:10.1371/journal.pone.0014821.s003 (0.04 MB

XLS)

Table S3 Disease and molecular function categories significantly

enriched in ingenuity analysis.

Found at: doi:10.1371/journal.pone.0014821.s004 (0.03 MB

XLS)

Figure S1 Unsupervised hierarchical clustering of all samples.

The y-axis shows distance between samples. Each twin pair is

color coded. Row "Pair" shows that the majority of twin pairs

cluster together. Samples were divided in the oldest and youngest

half and coded dark and light blue. Row "Age" shows that samples

of similar age group did not cluster together. The different arrays

were each color coded as well, and row "Array" shows that

samples hybridized together do not cluster together, suggesting

that variations in hybridization do contribute to the data analysis.

Found at: doi:10.1371/journal.pone.0014821.s005 (6.75 MB TIF)

Figure S2 Predicted versus observed age of all male subjects

using a leave-one-out model. A multivariate regression model was

fit on all but one sample and its predicted age (y-axis) was related

to the truly observed age of the left out sample (x-axis). The

predicted values are highly correlated with the observed outcomes

(r = 0.83, p = 3.3610213, n = 47), and the average absolute

difference between the predicted and the observed age is 5.3 years.

Found at: doi:10.1371/journal.pone.0014821.s006 (4.31 MB TIF)

Figure S3 Predicted versus observed age of all female subjects

using a leave-one-out model. A multivariate regression model was

fit on all but one sample and its predicted age (y-axis) was related

to the truly observed age of the left out sample (x-axis). The

predicted values are highly correlated with the observed outcomes

(r = 0.75, p = 2.461024, n = 19), and the average absolute

difference between the predicted and the observed age is 6.2 years.

Found at: doi:10.1371/journal.pone.0014821.s007 (4.30 MB TIF)

Figure S4 Predicted versus observed age of all non-twin subjects

using a leave-one-out model. A multivariate regression model was

fit on all but one sample and its predicted age (y-axis) was related

to the truly observed age of the left out sample (x-axis). The

predicted values are highly correlated with the observed outcomes

(r = 0.85, p = 1.701610213, n = 45) and the average absolute

difference between the predicted and the observed age is 5.3 years.

Found at: doi:10.1371/journal.pone.0014821.s008 (4.30 MB TIF)

Figure S5 Predicted versus observed age of all twin subjects

using a leave-one-out model. A multivariate regression model was

fit on data of previously used markers plus the methylation value at

the ELN gene, on microarray data, for all but one sample and its

predicted age (y-axis) was related to the truly observed age of the

left out sample (x-axis). The predicted values are highly correlated

with the observed outcomes (r = 0.87, p = 2.2610211, n = 34), and

the average absolute difference between the predicted and the

observed age is 3.5 years.

Found at: doi:10.1371/journal.pone.0014821.s009 (4.30 MB TIF)

Methods S1 PCR protocol and primers.

Found at: doi:10.1371/journal.pone.0014821.s010 (0.03 MB

DOC)
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