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Abstract

When avian influenza viruses (AIVs) are transmitted from their reservoir hosts (wild waterfowl and shorebirds) to domestic
bird species, they undergo genetic changes that have been linked to higher virulence and broader host range. Common
genetic AIV modifications in viral proteins of poultry isolates are deletions in the stalk region of the neuraminidase (NA) and
additions of glycosylation sites on the hemagglutinin (HA). Even though these NA deletion mutations occur in several AIV
subtypes, they have not been analyzed comprehensively. In this study, 4,920 NA nucleotide sequences, 5,596 HA nucleotide
and 4,702 HA amino acid sequences were analyzed to elucidate the widespread emergence of NA stalk deletions in
gallinaceous hosts, the genetic polymorphism of the deletion patterns and association between the stalk deletions in NA
and amino acid variants in HA. Forty-seven different NA stalk deletion patterns were identified in six NA subtypes, N1–N3
and N5–N7. An analysis that controlled for phylogenetic dependence due to shared ancestry showed that NA stalk deletions
are statistically correlated with gallinaceous hosts and certain amino acid features on the HA protein. Those HA features
included five glycosylation sites, one insertion and one deletion. The correlations between NA stalk deletions and HA
features are HA-NA-subtype-specific. Our results demonstrate that stalk deletions in the NA proteins of AIV are relatively
common. Understanding the NA stalk deletion and related HA features may be important for vaccine and drug
development and could be useful in establishing effective early detection and warning systems for the poultry industry.
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Introduction

Wild aquatic birds, such as Anseriformes (ducks and swans) and

Charadriiformes (gulls and shorebirds) are reservoir hosts for avian

influenza viruses (AIV) [1,2,3]. However, AIVs can cause

outbreaks in poultry [4,5,6,7,8]. In some instances, AIV strains

from poultry hosts have increased pathogenicity for poultry species

[9,10], and have acquired an ability to infect mammalian hosts

[11,12,13], and/or have caused fatal infections in humans [14,15].

Therefore, to minimize adverse effects in humans and poultry

from AIV infections, it is important to understand what

evolutionary changes occur in AIVs when they are transmitted

from wild birds to poultry. Understanding these evolutionary

changes can lead to better detection, prevention and control

strategies.

AIVs interact with their hosts mostly through two glycoproteins,

Hemagglutinin (HA) and Neuraminidase (NA). HA recognizes

receptors on target cells and NA, a sialidase, assists virus entry and

release [16,17]. One observation that has been reported in viruses

isolated during separate poultry outbreaks is a deletion in the stalk

region of the NA [18,19,20,21]. The stalk is a structure that

separates the enzymatically and antigenically active ‘‘head’’ from

the hydrophobic domain embedded in the viral membrane

[22,23,24]. Little is known about the biological function of the

NA stalk. Previous studies have shown that deletions in the NA

stalk region influenced the virus’ replication efficiency in vivo,

increased its host range, reduced its NA enzymatic activity, and in

some cases increased the virus’ virulence [13,25,26]. Stalk deleted

NAs (referred to as SDNA hereafter) were reported sporadically in

some AIV subtypes, e.g. H5N1, H6N1, H7N1, H7N3 and H9N2

[8,9,27,28,29]. SDNA are often accompanied by observations of

variants on the HA protein, such as the addition of glycosylation

sites, presumably to maintain functional balance between HA and

NA which is necessary for viral infectivity [30,31,32]. These HA

variants could further influence viral antigenicity, virulence and

pathogenicity [32,33].

Although the SDNA has been identified in different subtypes of

poultry isolates, it is unclear whether there is a general correlation

of SDNAs with species in the order of Galliformes across different

NA subtypes as claimed in previous publications [8,9]. Galliformes

(gallinaceous hosts) is an order of birds that includes important

domestic and game birds, such as chickens, turkeys, pheasants, and

quails. The aim of this study is to provide a broad understanding

of the emergence of SDNA through a comprehensive analysis of

NA sequences. Our analysis showed SDNA prevalence by

subtypes, host and time period and demonstrated – with some
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exceptions – a general correlation between SDNA and gallina-

ceous hosts. In addition, we analyzed the statistical correlation

between SDNA and variants on HA proteins.

Results

Occurrence of NA stalk deletion mutations
Among 4,920 neuraminidase sequences analyzed, 45.5%

(2,238) carry stalk deletion mutations, i.e. 45.5% lost a stretch of

amino acid residues in the stalk region (Table 1). The earliest

SDNA on record was from an H7N1 chicken-origin virus sampled

in 1934 in Germany [34]. SDNAs were observed with varying

prevalence in six of nine NA subtypes (N1–N3 and N5–N7).

Eighteen of 109 (16.5%) reported HA-NA subtypes in the public

database (http://www.flu.lanl.gov/) contain SDNAs. Eleven of

these 18 (61%) HA-SDNA subtypes include cases from poultry

outbreaks as supported by publications [4,5,6,7,18,21,29,35,36,37,

38,39,40,41,42,43,44]. Viruses from nine of 16 (56%) HA subtypes

(H2–H7 and H9–H11) had SDNA genes (Table 1). Forty-seven

distinctive SDNA patterns were identified among six NA subtypes

with deleted portions ranging from one amino acid to 36 amino

acid residues (Figure 1, Table S1). The only length polymorphism

that we did not count as stalk deletion pattern was a Serine at

position 40 among N5 sequences that was present in all North

American isolates and with no counterpart amino acid in any

Eurasian isolate.

The site of deletion and the frequency of each missing amino

acid vary among NA subtypes. For each NA subtype, the most

commonly dispensed positions are from 55 to 70 among all SDNA

subtypes except N5 (Figure S1).

Distribution of NA stalk deletions
The phylogenetic trees of NA nucleotides show that deletion

patterns usually group into monophyletic clades that contain

sequences belonging to a single deletion pattern (Figures 2, S2, S3,

S4, S5 for N1, N2, N3 and N7 genes). Exceptions to monophyletic

deletions are instances in which the same deletion pattern arose

multiple times independently (deletion patterns 9, 12, 22, and 29,

Figures 2, S2 and S3), or patterns that are nested within a larger clade

with a different deletion pattern (patterns 6, 7 and 10 within pattern 5,

and pattern 17 within pattern 14). The patterns in the latter exception

were most likely derived from existing patterns with additional

deletions since they have the same deleted amino acid positions as

those in the clade they are nested in (Figures 1, S2 and S3).

Most (38/47, 79%) of the SDNA patterns were associated with a

single HA subtype and a few patterns combined with multiple HA

subtypes (9/47, 19%) (Table S1). Most mutants were limited to

small geographic areas and a few patterns were found in isolates

from multiple locations (10/47, 21%) (Table S1). The majority of

SDNAs (67%) persisted for less than a year (Figure 3). However,

some patterns (4, 5, 14, 19, and 22) existed for many years (Figure 3,

Table 1. Occurrence of NA stalk deletions (SDNA) among all reported avian influenza HA-NAa subtypes.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1–N9

H1 136b 5 7 - 5 4 + - 4 161

H2 19 *1/11 42 1 2 1 3 4 18 1/101

H3 25 *1/110 9 2 9 48 3 239 3 1/448

H4 4 1/19 7 5 4 1/213 4 52 3 2/311

H5 *1526c/1665b *97/212 *3/58 1 1 1 6 2 8 1626/1954

H6 *113/184 *20/122 5 2 2/17 10 + 44 3 135/387

H7 *49/71 *144/163 *30/127 6 1 2 4/54 4 4 227/432

H8 - + 1 35 1 - 1 - - 38

H9 9 *229/705 2 1 3 3 + 1 - 229/724

H10 5 2 12/19 4 3 6 3/110 6 2 15/157

H11 10 22 1/8 1 1 3 - 2 71 1/118

H12 1 + 1 3 36 - - - 3 44

H13 - 3 1 - - 10 - 2 7 23

H14 - - - - 2 - - - - 2

H15 - + - - - + - 1 4 5

H16 - - 10 - - - - - 1 11

unknown 3 1/1 1/4

Total samples
analyzed

2,132/441d 1,375 297 61 85 301 181 357 131 4,920/3,229d

Total # of SDNA 1,688/174d 494 46 0 2 1 7 0 0 2,238/724d

SDNA prevalence
(%)

79.17/39.45d 35.93 15.49 0 2.35 0.33 3.87 0 0 45.49/22.42d

a: hemagglutinin-neuraminidase.
b: Single number and the number behind slash denote the number of samples analyzed.
c: Number before slash denotes the number of sequences with SDNA.
d: excluding sequences from HPAI H5N1 viruses.
-: No isolate has been reported for the subtype in publically accessible database, GenBank.
+:No samples were included due to unqualified sequences of the reported HA-NA subtype.
*: Some cases of the subtype were reported in poultry outbreaks.
doi:10.1371/journal.pone.0014722.t001
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Table S1). Pattern 22 persisted for 25 years and appeared in both

Asian and North American isolates (Figure 3 and S3).

Gallinaceous hosts and NA stalk deletions
The percentage of SDNA virus was higher among gallinaceous

(1,355/1,955, 69%) than non-gallinaceous hosts (893/2,424,

36%), mainly in the orders Charadriiformes and Anseriformes. A high

percentage of SDNA mutants was observed among non-gallina-

ceous isolates in N1 deletions in the 2000s (804/1,086, 74%) due

to the large number (,800) of HPAIV H5N1 samples from

infected wild birds. Apart from the HPAI H5N1 viruses, there

were 97 SDNA isolates from non-gallinaceous hosts. Among them,

only two SDNAs of the non-gallinaceous isolates had no obvious

connection to domestic poultry. One was an H5N3 virus from a

migrating mallard in Japan [45] and the other an H6N5 virus

from a shearwater in Australia [46]. Most other SDNAs of non-

gallinaceous isolates were either from domestic birds or linked to

poultry for the following reasons: (i) 33 were isolated from farm

ducks [8,47,48,49], (ii) ten were isolated from birds in live bird

markets [50,51,52], (iii) 18 were isolated from hosts species that

were not indigenous to the geographic region of the isolate,

therefore, domestic, and (iv) the remaining 34 clustered within

gallinaceous isolates in the phylogenetic tree.

Our analysis of the joint transition rates between all combinations

of host types and NA states showed that estimated transition rates

generally created a positive correlation between gallinaceous hosts

and SDNA. The rates leading to character combinations supporting

a positive correlation (the combinations of gallinaceous/SDNA and

non-gallinaceous/full-length-NA) were subtracted from the rates

leading to opposing character combinations (non-gallinaceous/

SDNA and gallinaceous/full-length-NA). A posterior distribution for

this rate difference (DQ) was estimated. From this posterior

distribution, a posterior probability that the rate difference exceeds

zero was calculated (Table 2). A positive rate difference indicates that

the positive correlation between gallinaceous hosts and SDNA is due

to uneven transition rates. For subclade 1 of N1, subclade 1 of N2

and N3, the posterior probabilities for a positive rate difference were

greater than 0.95 (Table 2). However, this is not true for the

following two groups, subclade 2 in N1 and subclade 2 in N2.

Subclade 2 of N2, composed of N2 genes of H9N2 isolates of poultry

outbreaks in China, includes 89% viruses from gallinaceous hosts

but contains only 31% SDNA mutants (Figure S3). The reverse is

true for the HPAIV H5N1 subclade that contains 53% viruses from

non-gallinaceous hosts yet has 99% SDNA sequences (Figure S2).

Models with a zero transition rate from deleted to full-length NA

in Galliformes have high posterior probabilities among N1 and N2

                                               

Figure 1. Patterns and prevalence of AIV SDNA. Bars represent positions of missing amino acid residues. Colors indicate NA subtypes (red =
N1, blue = N2, orange = N3, green = N5, purple = N6 and brown = N7). The first column on the left shows the deletion IDs assigned to each
pattern. The second column shows the number of sequences having the corresponding deletion pattern and in parentheses the percentage of this
pattern among all sequences of the same NA subtype. Percentages do not sum to 100 for the entire graph since they are calculated per NA subtype.
doi:10.1371/journal.pone.0014722.g001

AIV NA Stalk Deletions

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e14722



sequences. This result implies that restoration of full-length-NA

from SDNA is unlikely for N1 and N2 in Galliformes (Table 2). These

posterior probabilities are generally low in non-Galliformes (Table 2).

Geographic area and NA stalk deletions
We tested for a correlation between SDNA and Asia for N1, N2

and N3. In subclade 1 of N1 and in both N2 subclades, there is a

significant positive correlation between SDNA and an isolate being

from Asia (Table 3). In subclade 2 of N1, the correlation is

negative and no correlation was found for N3 (Table 3).

HA modifications and NA stalk deletions
To understand the potential impact of SDNA on other viral

properties, such as antigenicity, we tested whether any amino acid

residues of HA protein features, such as glycosylation sites, are

statistically correlated with the SDNA genotype. Seven HA features

were positively associated with SDNA as indicated by the posterior

probability of a positive rate difference (i.e. a rate difference that

generates a positive correlation) exceeding 0.95. The features include

five glycosylation sites, one deletion and one insertion that are

identified in H5, H6 and H7 (Figure 4). All of these associations are

NA-subtype-specific because no HA variant is significantly associated

with SDNA in more than one NA subtype (Figure 4, Table 4). The

distribution of the seven features on the HA phylogenies is shown in

the supplemental material (Figures S6, S7, S8 for H5–H7).

Discussion

In this study, we conducted a comprehensive analysis of the

polymorphic AIV NA stalk regions using a large set of sequences

of natural isolates (as opposed to laboratory-adapted isolates).

Forty-seven different NA stalk deletion (SDNA) patterns were

identified in six NA subtypes, N1–N3 and N5–N7. An analysis

that controlled for phylogenetic dependence due to shared

ancestry showed SDNA to be positively correlated with gallina-

ceous hosts and with some amino acid features on the HA. The

analysis of the HA features estimated rates at which SDNA were

gained and lost on the HA tree depending on the presence of an

HA feature. This analysis concerned only the overall rate of

transitions and did not differentiate between transitions on the NA

due to reassortment or due to mutation. It was therefore not

necessary to estimate the reassortment rate between HA and

SDNA which is unknown for the analyzed dataset. Five

glycosylation sites, one insertion and one deletion on the HA

were identified to be statistically SDNA-associated and all of these

associations were specific to HA-NA subtype combinations. Our

results further suggested that SDNA mutations essentially cannot

be restored to full-length in gallinaceous hosts. One challenge for

our analysis was the unevenness of the sequence data due to

varying sampling schemes. By fitting transition rates based on

phylogenies, we could account for the uneven relatedness and the

tendency of shared characteristics among closely related sequenc-

es. This was especially important for HPAIVs that are the source

of a large number of very closely related sequences. However,

when no SDNAs were observed in non-gallinaceous hosts, the

fitted transition rates could not distinguish between a restoration to

a full-length NA stalk and an extinction of SDNA mutants. Despite

the limitation of our analysis, the findings shed light on the origin,

spread and persistence of SDNA as well as the functional balance

between HA and NA [53].

Figure 2. Phylogenetic tree of a subset of N1 sequences and distribution of SDNA patterns (constructed in MrBayes 3.1.2). Values at
nodes show estimated posterior probabilities for bipartitions. Branch colors indicate host order. Genes of isolates from gallinaceous hosts are shown
by tree branches with extended grey lines. The first column from the left shows a black dash for each isolate with SDNA. The second column shows
the deletion pattern ID. Sequences with the same deletion pattern are denoted by square brackets numbered with pattern ID. The third column
shows which continent each isolate was from and the fourth column indicates the HA subtype of each isolate.
doi:10.1371/journal.pone.0014722.g002
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The results of our analysis that controlled for phylogenetic

dependence due to shared NA ancestry suggest that the positive

correlation between SDNA and gallinaceous hosts is caused by host-

dependent transition rates between full-length-NA and SDNA.

Previous studies have indicated that naturally-occurring SDNA

mutants tend to appear in gallinaceous hosts but did not

Table 2. Bayesian estimation of joint transitions between gallinaceous and non-gallinaceous hosts and full-length-NA and SDNA.

Posterior probability that
deletions are irreversible

Subtype Groupa

Number of
sequences
analyzed DQ mean (95% range)b

Posterior probability
that DQ.0 Non- Galliformes Galliformes

N1 Subclade 1 (not HPc H5N1) 498 386 (316; 468) 1 0.04 0.92

Subclade 2 (HP H5N1) 1291 225 (2890; 1400) 0.65 0.26 0.61

N2 Subclade 1 (not Eurasian H9N2) 592 425 (213; 567) 1 0 0.97

Subclade 2 (Eurasian H9N2) 625 213 (2199; 114) 0.12 0 0.98

N3 Entire tree 261 87 (0–513) 0.97 0.06 0.3

a: Analysis was performed separately for major clades when the trees were too large.
b: Difference of all rates that lead to the character combinations Galliformes/SDNA and non-Galliformes/full-length-NA minus all rates that lead the character

combinations non-Galliformes/SDNA and Galliformes/full-length-NA. (refer to Methods).
c: highly pathogenic.
doi:10.1371/journal.pone.0014722.t002

Figure 3. Spatial-temporal distribution of SDNA patterns. Each line indicates an instance at which an SDNA pattern emerged (refer to
Methods for definition). Pattern IDs on the left are the same as in Figure 1. Deletion patterns that are distributed over several distinct clades are
indicated by lower case letters. Each cross indicates a year at which a particular pattern was observed. Crosses are color-coded for NA subtype. Bars
on the right indicate the continent in which the deletion pattern was most commonly observed. Dotted time lines indicate deletion patterns that are
not shown in the phylogenetic trees because their NA genes were partially sequenced.
doi:10.1371/journal.pone.0014722.g003
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demonstrate a general correlation between host and SDNA

[8,9,28]. Laboratory studies showed that SDNA mutations arose

from duck-origin viruses after these viruses were passaged through

gallinaceous hosts [13,19,54]. Our results provide further evidence

that the processes demonstrated in laboratory studies generated the

patterns observed in naturally-occurring viruses. The emergence of

SDNA in AIV infected gallinaceous hosts seems to be a general

phenomenon that is widely detected in several NA subtypes.

However, the correlation between gallinaceous hosts and SDNA

mutations is not ubiquitous. In the N2 subclade 2, only 31% of the

Table 3. Bayesian estimation of joint transitions between Asia and non-Asia and full-length-NA and SDNA.

Subtype Groupa DQ mean (95% range)b
Posterior probability
that DQ.0

N1 Subclade 1 (not HPc H5N1) 213 (145; 256) 1

Subclade 2 (HPc H5N1) 21184 (21515; 2673) 0

N2 Subclade 1 (not Eurasian H9N2) 286 (170; 401) 1

Subclade 2 (Eurasian H9N2) 771 (373; 1563) 1

N3 Entire tree 2207 (2511; 2) 0.19

a: Analysis was performed separately for major clades when the trees were too large.
b: Difference of all rates that lead to the character combinations Asia/SDNA and non-Asia/full-length-NA minus all rates that lead the character combinations non-Asia/

SDNA and Asia/full-length-NA. (refer to Methods).
c: highly pathogenic.
doi:10.1371/journal.pone.0014722.t003

Figure 4. Proportions of HA protein features among viruses with full-length-NA (filled bars) or with SDNA (open bars). The X-axis
indicates the features, where Glyc denotes a glycosylation site, Del denotes a deletion, Ins denotes an insertion and the number indicates the amino
acid position according to the H3 numbering. NA subtypes are color-coded (red = N1, blue = N2, orange = N3, brown = N7). Asterisks denote HA
features whose SDNA are statistically correlated with the HA feature since the posterior probability that DQ exceeds zero is greater than 0.95 (refer to
Methods and Table 4).
doi:10.1371/journal.pone.0014722.g004

AIV NA Stalk Deletions

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e14722



H9N2 isolates from poultry outbreaks were SDNA mutants

(Tables 2 and S1, Figure S3). As for the N1 subclade of HPAIV

H5N1, almost all non-gallinaceous isolates had SDNA (Figure S2).

Besides the HPAIV H5N1 N1 subclade, there were 97 SDNA

sequences of other subtypes from non-gallinaceous isolates. Hence,

SDNA mutants appear to be generated in Galliformes but can be

transmitted to other hosts. Whether the SDNA of other subtypes

can persist at low prevalence in non-gallinaceous birds is

unknown. The high diversity of deletion patterns found in several

NA subtypes suggests that these deletions convey a general

advantage for the viruses in gallinaceous hosts that does not

depend on the particular NA amino acid sequence. The fact that

the same deletion pattern arose more than once in several

instances indicates that the number of possible deletion patterns

that confer this advantage is limited.

Our results showed a positive correlation between Asian

locations and SDNAs in three instances (both subclades of N2

and subclade 1 of N1). This correlation could be due to different

farm practices in Asia (lower compliance with biosecurity measures

and more mixed-species farms) and/or AIV sampling schemes

biased towards poultry species in Asia. Among HP H5N1, there is

a negative correlation between Asian locations and SDNAs

because all HP H5N1 that spread from Asia to other regions

carried SDNAs whereas within Asia two forms of NA (SDNA and

full-length-NA) of HP H5N1 co-existed (Figure S2).

This study also uncovered amino acid features on HA

proteins that are statistically correlated with SDNA. Previous

studies demonstrated that shortened NA stalk length reduces

NA activity [25] and that an efficient virus replication requires a

matching reduction of HA activity [32,55]. It has been shown

for H1N1 and H7N1 that glycosylation sites on the HA globular

head structure reduce HA affinity for receptor binding and

make the virus less dependent on NA function [32,56,57,58].

Viruses with these additional HA glycosylation sites replicated

efficiently when combined with SDNA and were less sensitive to

NA inhibiting drugs [32,33,56,57,58]. In H7N1, the glycosyl-

ation site that conferred these effects was Asn149 [32,33,57] (or

133 according to the H3 numbering [59]), the same glycosyl-

ation site that is significantly correlated with SDNA on N1

according to our results (Figure 4, Table 4). Our analysis

showed other putative glycosylation sites in HA of other

subtypes, as well as insertion and deletion that are statistically

correlated with SDNA (Figure 4, Table 4). Given the

requirement of functional balance between HA and NA

[32,56,57,58], we speculate that the HA features identified by

our methods could also reduce the HA affinity for host cell

receptors and therefore, the virus’ sensitivity to NA inhibitors.

The fact that SDNAs are widely associated with isolates of

gallinaceous hosts while each HA feature occurs only with a

single NA subtype could be an evidence that SDNAs are

adaptations to gallinaceous hosts whereas the accompanying

HA features are secondary adaptations to SDNAs. In theory,

some of the correlations between HA features and SDNAs could

be the by-product of two pair-wise correlations with a third

feature on an internal gene. Investigating such effects would

require techniques to analyze multiple correlations while

controlling for phylogenetic dependencies, which will be topics

for future studies.

In summary, our results showed that SDNAs are widely

observed in AIVs. They are repeatedly associated with poultry

outbreaks but are also found in non-poultry hosts. SDNA mutants

should be of special concern for the poultry industry since they

could imply an adaptation of a virus to gallinaceous hosts. Previous

researchers suggested that these viruses bear the risk of a pandemic

[60,61,62]. AIV with SDNA and SDNA-associated HA features

might be less sensitive to NA inhibiting drugs or reduce the

efficacy of vaccines developed using a similar virus with full-length

NA. Therefore, we believe it is important to closely monitor the

emergence of SDNA mutants in poultry and other species and

prevent extended AIV circulation in poultry.

Methods

Sequence retrieval
AIV NA and HA nucleotide sequences and HA amino acid

sequences were retrieved on December 17, 2009 from public

influenza database (http://www.flu.lanl.gov/) using keywords type A

and avian host. Nucleotide sequences of all lengths were retrieved

while amino acid sequences were restricted to full length. NA

nucleotide sequences were excluded from the analysis if the stalk

region was not fully sequenced, i.e. if the first sequenced nucleotide

position was after position 90 or the last sequenced position was

before 270, counting adenine (A) in the start codon (ATG) as position

1. Furthermore, HA and NA sequences were excluded if they were

Table 4. Bayesian estimation of joint transitions between full-length NA and SDNA and selected HA features.

Subtype Number of
sequences analyzed

Feature Position DQ mean (95%
range)a

Posterior probability
that DQ.0

Associated NA deletion
patternsc

H5N1 119 Glycosylation 158 859 (30; 1776) 0.998 4, 5, 6, 11

H5N2 120 Glycosylation 131 546 (1; 1557) 0.978 25, 33

240 136 (29; 425) .0.999 20, 25, 30

H6N1 136 Insertionb 141 943 (212; 1293) .0.999 1, 2, 4

H7N1 42 Glycosylation 133 520 (13; 1603) 0.987 9, 10

Glycosylation 159d 749 (114; 1726) 0.995 9

H7N2 138 Deletionb 221 1545 (266; 3046) 0.991 21

Glycosylation 160 499 (6; 1585) 0.955 39

a: Difference of all rates that lead to the character combinations feature present/SDNA and feature absent/full-length-NA minus all rates that lead the character
combinations feature absent/SDNA and feature present/full-length-NA (refer to Methods).

b: Blanks in HA sequences that are associated with SDNA are designated as deletions and blanks in HA sequences that are associated with full-length-NA are designated
as insertions in HA sequences associated with SDNA.

c: NA deletion pattern IDs that are associated with the HA feature that has a higher proportion among AIVs with SDNA than among AIVs with full-length-NA.
d: There is no exact corresponding position on the H3 sequence. This position is on an insertion between position 159 and 160 on the H3 sequence.
doi:10.1371/journal.pone.0014722.t004
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acquired from viruses that were manipulated in laboratories (e.g.

being expanded through laboratory animal or modified for the

purpose of vaccine development), or if sequences were duplicates of

an earlier submission of the same gene of the same strain, or

erroneous as identified in a previous publication [63], or from non-

avian isolates. A total of 4,920 NA, 5,596 HA nucleotide and 4,702

HA amino acid sequences were included in this study.

Sequence alignment and identification of stalk deletions
All qualified nucleotide sequences of the same NA subtype

were aligned using Clustal W (BioEdit v7.0.5, Ibis Therapeutics,

Carlsbad, CA). All nucleotide sequences were translated into

amino acid sequences within each subtype alignment using the

same program. Deletion patterns in the stalk region (positions 30

to 90 for amino acids and 90 to 270 for nucleotides) were

adjusted manually at both nucleotide and amino acid levels by

moving nucleotides or amino acids between both positions that

flank the deleted region. Nucleotides were adjusted to avoid

stretches of missing nucleotides being flanked by incomplete

codons. After translation, amino acids flanking a deletion were

assigned to the flanking positions that best matched the

consensus sequence. If permitted by the consensus sequences,

deletion patterns were further adjusted to minimize the numbers

of distinct deletion patterns. Deletion patterns were ordered by

NA subtype and by size of the deleted region within each NA

subtype. An identification (ID) number was assigned to each

deletion pattern by numbering the ordered deletion patterns

consecutively.

Phylogenetic trees were constructed for each NA subtype from

aligned NA nucleotide sequences using weighted neighbor-joining

(function bionj in the R-package ape) [64]. Trees were rooted with

corresponding gene segments of the 1918 H1N1 human virus. The

tree branches were labeled with deletion patterns. Due to their

sizes, all trees are included in the supplemental material (Figures

S2, S3, S4, S5). The first and last observation of each separate

emerging SDNA was recorded. Each different SDNA pattern and

distinct clades of the same SDNA pattern were counted as separate

emerging SDNA. Two clades of the same SDNA pattern were

counted as distinct if they were separated by non-deleted

sequences and had an estimated distance of more than 1%

nucleotide changes between their nodes.

Identification of HA features correlated with NA stalk
deletion

HA nucleotide and amino acid sequences were aligned using

MUSCLE with two alignment iterations [65,66]. Aligned HA

amino acid sequences, excluding positions within cleavage site,

were screened for three possible features, namely putative

glycosylation sites (NXT/S, where X could be any amino acid

residues except Proline) [28], deletions or insertions. A script was

written in R [67] that identifies the positions of all three features in

all HA sequences (Script S1). HA and NA sequences were linked

by strain names. HA and NA sequences with matching location,

host species, serial number and year of sampling were assumed to

be from the same isolate. The H3 numbering system was used for

all HA subtypes as described in a previous study [59].

Estimation of correlations between two characters
We tested for correlations of SDNA with host, with HA features

and with geographic region while controlling for phylogenetic

dependence due to shared NA or HA ancestry. The associations

between NA stalk state and host or region were analyzed based on

NA trees. The association between NA stalk state and HA features

was analyzed based on HA trees. Characters of interest (i.e. state of

NA stalk, host type, presence of HA feature and geographic region)

were coded as binary characters and estimating the transition rates

among the four possible combinations of two binary characters

based on phylogenetic trees using the software package BayesTraits

[68,69] (Figure 5). Character A represents NA stalk state (with or

without stalk deletion) and character B can be either host

(gallinaceous or non-gallinaceous), HA amino acid feature (present

or absent) or region (Asia or non-Asia). Independent character

evolution would imply that the transition rates between two states of

one character do not depend on the state of the other character.

For a given association between character A and B, there are

two supporting and two opposing character state combinations

described in Figure 5. For example, an association between

gallinaceous hosts and SDNAs is supported by the character

combinations Galliformes/SDNA and non-Galliformes/full-length-

NA and opposed by non-Galliformes/SDNA and Galliformes/full-

length-NA. The difference between all rates leading to the two

supporting character state combinations minus all rates leading to

Figure 5. Illustration of all possible combinations of two binary characters (A and B) and the transition rates between these
combinations. The model fits rates for the transitions per infinitely small time interval and therefore allows the change of only one state at a time
(i.e. no rates are fitted for diagonal transitions). The shaded character combinations are expected to dominate if characters A and B are positively
correlated. This positive correlation is created by transition rates if DQ = q21+q23+q41+q432(q12+q14+q32+q34).0.
doi:10.1371/journal.pone.0014722.g005
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the opposing character state combinations, DQ, was calculated as a

measure for whether the character correlation is generated by

interdependent transition rates (Figure 5).

Using a Bayesian framework, posterior distributions of the

transition rates were estimated given a distribution of phylogenetic

trees. The distributions of phylogenetic HA and NA trees were

estimated by fitting a general time reversible (GTR) model with

gamma distributed rates to nucleotide sequences using MrBayes

3.1.2 [70]. The Markov chains for the trees were run for 3 Mio time

steps with a burn-in period of 250,000 and trees were sampled every

2,000 steps leading to 1375 sampled trees per chain. Two

independent chains were run for each tree and it was verified that

the chains converged to the same tree by comparing the topological

distances between trees within and between the chains. Each

BayesTraits analysis sampled from a total of 2750 trees per subtype.

Analysis using large trees can lead to log-likelihood values of the

transition model below the smallest number that the BayesTraits

code can represent. To avoid such low log-likelihood values,

sequences were divided into groups and a separate parameter

estimation was performed per group. NA sequences were grouped

into NA subtypes and N1 and N2 were divided into two subclades

within each subtype. N1 sequences were distinguished into the

subclade that contains all HPAIV H5N1 NAs or all other N1

sequences. N2 sequences were separated into those from isolates of

H9N2 outbreaks in China and those from other isolates. For HA

sequences, trees were constructed for each HA-NA subtype, e.g. a

separate tree was constructed for HA sequences from H5N1

viruses and from H5N2 viruses. HA sequences were grouped in

this fashion since HA trees (Figures S6,S7, S8) suggested that the

association between HA features and SDNA depended on NA

subtype. The N1 and H5 trees of the HPAIV H5N1 clade were

further reduced by randomly selecting a single sequence from all

clades whose maximum distance from its basal node was less than

0.01. Representative sequences belonging to closely related

branches were retained by this trimming method.

A reversible-jump Monte Carlo Markov Chain was used to

simultaneously estimate the posterior distributions of transition

rates and the posterior probabilities of constraints imposed on the

transition rates [69]. A posterior distribution of DQ was calculated.

A range containing 95% of DQ values and a posterior probability

that DQ exceeds zero was determined from the posterior

distribution. A high posterior probability of DQ exceeding zero

was interpreted as evidence that observed positive correlations

between characters were due to correlated transition rates and not

simply due to shared ancestry.

The correlation between SDNA and HA features were analyzed

based on HA trees. HA trees were chosen because in that case

SDNA can be acquired or lost by mutation and/or reassortment.

Hence the NA states are a more labile character on the HA tree

than on the NA tree. Larger volatility of the NA state is more likely

to reveal functional correlations if they are present. A single rate

was fitted for each transition, without distinguishing whether

transitions were due to mutations or reassortment.

Supporting Information

Figure S1 Proportions of sequences with deleted amino acids at

positions in the stalk region of AIV Neuraminidases.

Found at: doi:10.1371/journal.pone.0014722.s001 (0.29 MB EPS)

Figure S2 Neighbor-joining tree of N1 sequences. Branch colors

indicate host types, pink for Galliformes, yellow for Anseriformes, green

for Charadriiformes and grey for birds from other orders. Genes of

isolates from gallinaceous hosts are shown by tree branches with

extended grey lines. The first column from the left shows a black

dash for each isolate with SDNA. The second column shows the

deletion pattern ID. Sequences with the same deletion pattern are

denoted by square brackets numbered with pattern ID. Deletion

patterns that are nested within larger deletion pattern clades are

indicated by deletion pattern IDs on the left side of the brackets.

The third column indicates the HA subtype of each isolate. The

fourth column shows the continent each isolated is from. The two

N1 subclades are shown by brackets in the last column. The box

indicates the part of the tree that is shown in Figure 2.

Found at: doi:10.1371/journal.pone.0014722.s002 (0.63 MB EPS)

Figure S3 Neighbor-joining tree of N2 sequences. Symbol

descriptions are the same as in Figure S2.

Found at: doi:10.1371/journal.pone.0014722.s003 (0.49 MB EPS)

Figure S4 Neighbor-joining tree of N3 sequences. Symbol

descriptions are the same as in Figure S2.

Found at: doi:10.1371/journal.pone.0014722.s004 (0.27 MB EPS)

Figure S5 Neighbor-joining tree of N7 sequences. Symbol

descriptions are the same as in Figure S2.

Found at: doi:10.1371/journal.pone.0014722.s005 (0.24 MB EPS)

Figure S6 Neighbor-joining tree of H5 sequences. Branch colors

indicate host types, pink for Galliformes, yellow for Anseriformes, green

for Charadriiformes and grey for birds from other orders. Genes of

isolates from gallinaceous hosts are shown in pink branches with

extended grey lines. The columns from left to right show NA stalk

state for each sequence (a pattern ID is given for each isolate with

SDNA), NA subtype, continent of origin and various HA protein

features. NA subtypes and continents are color-coded. The presence

of described HA features (Glyc = glycosylation, Del = deletion and

Ins = insertion) are shown by black dashes.

Found at: doi:10.1371/journal.pone.0014722.s006 (0.61 MB EPS)

Figure S7 Neighbor-joining tree of H6 sequences. Symbol

descriptions are the same as in Figure S6. Strain names are shown.

Found at: doi:10.1371/journal.pone.0014722.s007 (0.29 MB EPS)

Figure S8 Neighbor-joining tree of H7 sequences. Symbol

descriptions are the same as in Figure S6. Strain names are shown.

Found at: doi:10.1371/journal.pone.0014722.s008 (0.31 MB EPS)

Table S1 Summary of HA/NA subtypes, prevalence, deleted

region, sampling location and time per deletion pattern.

Found at: doi:10.1371/journal.pone.0014722.s009 (0.03 MB

DOC)

Script S1 R code to identify glycosylation sites and deletions in

amino acid sequences.

Found at: doi:10.1371/journal.pone.0014722.s010 (0.00 MB

TXT)
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