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Abstract

Large-scale climate change is superimposed on interacting patterns of climate variability that fluctuate on numerous
temporal and spatial scales—elements of which, such as seasonal timing, may have important impacts on local and regional
ecosystem forcing. Lake Baikal in Siberia is not only the world’s largest and most biologically diverse lake, but it has
exceptionally strong seasonal structure in ecosystem dynamics that may be dramatically affected by fluctuations in seasonal
timing. We applied time-frequency analysis to a near-continuous, 58-year record of water temperature from Lake Baikal to
examine how seasonality in the lake has fluctuated over the past half century and to infer underlying mechanisms. On
decadal scales, the timing of seasonal onset strongly corresponds with deviation in the zonal wind intensity as described by
length of day (LOD); on shorter scales, these temperature patterns shift in concert with the El Nino-Southern Oscillation
(ENSO). Importantly, the connection between ENSO and Lake Baikal is gated by the cool and warm periods of the Pacific
Decadal Oscillation (PDO). Large-scale climatic phenomena affecting Siberia are apparent in Lake Baikal surface water
temperature data, dynamics resulting from jet stream and storm track variability in central Asia and across the Northern
Hemisphere.
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Introduction

Shifts in both magnitude and timing of temperature, precipi-

tation and other climate variables associated with climate change

have affected ecosystems, independently and in concert. Alter-

ations in productivity and species ranges have been correlated with

rising temperatures, and phenological changes have been evident

as the timing of seasonal events has shifted across ecosystems [1–

3]. It is increasingly appreciated that shifting abiotic and biotic

seasonality manifests across a broad range of temporal scales

related to climate variability, in addition to those associated with

long-term warming, with cascading repercussions for ecosystems

[1,4–6]. Applying the tools of signal processing to evaluate patterns

of seasonal variability in climate and local ecology may reveal

important messages about how these systems are connected across

space and what ecosystem level consequences may be expected.

Seasonal timing is defined in various ways across ecosystems

and individual studies. Many ecologists define seasonal transitions

by identifying biological threshold temperatures to be crossed [7,8]

and in the case of aquatic systems, the onset and deterioration of

thermal stratification [9,10] can be a useful seasonal indicator.

Stine et al. [11], however, emphasize that the use of such

thresholds in defining season can conflate changes in timing of

season with changes in the annual mean, and these authors

exploited an implementation of spectral analysis to describe season

in time series data. In spectral analysis, the temporal positions of

the harmonics (including harmonics with an annual frequency)

contributing to the observed dynamics of a time series – phase

(W) – are estimated over the length of the time series. If seasonal

signals are non-stationary, in that they vary across a time series

[12], the locally estimated phases will deviate from the phase

estimated for the entire time series and the deviation can be

expressed as a relative phase. For example, by examining patterns

in the relative phase discerned from Fourier transform of

sequential, short environmental time series, long term trends in

air temperature seasonality from diverse locations have been

documented in the climate literature [13], and Stine et al. [11]

demonstrated that earlier seasonality in Northern Hemispheric air

temperatures is related to changing atmospheric gas composition.

These previous studies of variability in seasonality focused on

decadal to centenary-scale drivers of the seasonal variation that is

described by phase in spectral analysis, but this analytical

approach also offers the opportunity to examine shorter-scale

variability that is frequently more relevant to ecologists and others

examining local environmental data. To detect connections

among time series, such as local temperature and climatic drivers,

the covariance of informative anomalies must be discerned with

high temporal resolution (e.g. monthly), and with sufficient
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duration (e.g. multi-decadal) such that a diversity of behavior is

observed. Few environmental monitoring programs provide data

that satisfy these criteria.

Since 1946, a limnological monitoring program on Lake Baikal

in Siberia has produced a high quality data set [14] that meets

these criteria and provides a unique record of large-scale

environmental change in one of the most rapidly changing regions

on the planet [15]. Physical (water temperature and clarity) and

biological (plankton abundance and species composition) data

have been collected on approximately biweekly intervals and

through all seasons of the year from a single location on the lake

2.7 km offshore from the southwest coast [16]. Holding 20% of

the world’s liquid fresh water, this massive water body can be

expected to exhibit strong thermal inertia such that temperature

changes in the lake clearly indicate large-scale regional phenom-

ena [16]. Importantly, Lake Baikal is also uniquely positioned to

integrate effects of jet stream and storm track dynamics traversing

Asia, as it lies at the nexus of the influential Siberian High.

Seasonal abiotic changes are particularly interesting in Lake Baikal

because seasonal contrasts in biotic communities are so strong here

[16,17] with cold-adapted endemic biota giving way to cosmo-

politan taxa during warm periods.

Using these data from Lake Baikal, Hampton et al. [16] showed

that annual surface water temperatures increased 1.2uC since

1946, and the variance of these water temperature data was non-

stationary (i.e., the variance of a time series constructed of

quarterly-averaged values was not independent of position in

time). In that study, deviations from stationarity were treated as a

nuisance, requiring a special approach to data filtering. To remove

the annual seasonality, the time series was transformed to the

frequency domain in short segments using Short-Time Fourier

Transforms (STFT; [18]), where the annual harmonic was

reduced to background noise levels, and then inverse transformed

to the time domain.

The deviation from regular seasonality, however, is an anomaly

that we explicitly examine here as a potential indicator of

important connections between local conditions and large-scale

climate teleconnections. Specifically, we focus on the information

relayed by the relative phase of the annual harmonic [11],

extracted from the magnitude and phase spectrum of the time

series of transformed monthly mean temperatures (W; Fig. 1),

which can be interpreted as the timing of the onset of seasons in

the lake. Mechanistically, autumnally decreasing lake surface

water temperature is the consequence of the combined influence of

an increasing thermal gradient between the air and water and

increased seasonal northwest winds that disrupt lake stratification

[17,19]. Stratification in Lake Baikal persists weakly for about 4–6

weeks of the summer and is readily disrupted by strong winds and

storms [19].

To understand not only how seasonality in Lake Baikal has

fluctuated over the past half century, but also to infer underlying

mechanisms, we examined the relationship of phase with a suite of

climate drivers that together describe the trajectory and force of

the jet stream delivering weather systems to Lake Baikal. Length of

Day (LOD) is a proxy for changes in the angular velocity of

atmospheric zonal winds [20], an index that should yield

information about the total energy that may be available for

storm systems as the jet stream reaches Siberia. The Arctic

Oscillation (AO) describes pressure systems across the Atlantic

Ocean that may affect jet stream dynamics as zonal winds

approach Eurasia from the West [21]. The Pacific Decadal

Oscillation (PDO) and El Niño Southern Oscillation (ENSO)

provide information about pressure systems that influence the jet

stream trajectory as it exits the continent at the Pacific Ocean.

Ultimately we are able to suggest a pathway through which global

climatic activity affects major seasonal transitions in Asia and Lake

Baikal.

Results and Discussion

Variation in seasonality of lake water temperatures, estimated

over varying windows of time (n) across the time series (t) (Fig. 1)

reveal several important temporal patterns that are illustrated in a

surface plot of relative phase W(t,n) (Fig. 2 A&B). In this case, the

range of n is displayed from 36 to 276 months, as the STFT

window slides from t = 1948 to 2002. The first observation is that

the time series is not stationary and that W(t,n) in fact varies.

Warmer colors indicate higher phase values corresponding to

delayed seasonality; cool colors express negative phases corre-

sponding to advanced seasonality. It is important to note that the

total range of values is 21 degrees of phase — from 28.8u in late

1950 to 12.2u in 1994 (Fig. 2C). Thus, the extent of variability in

annual seasonality is small (6% ,21.3 days/year) – generally less

than the 2-week average sampling interval. Superficially the

variability at small n shows little resemblance to the variability at

large n, which estimates phase over a longer interval. However, by

plotting the data as a continuous surface it is clear that the large

scale features in the time series – negative phase in 1960 and 1985

(i.e. earlier seasons), and positive phases in 1970 and 1995 (i.e.

later seasons)—are consistent across scales.

The Lake Baikal data assembled in this way can be sampled to

evaluate dynamics occurring at both short and longer time scales.

The longest time scale over which water temperature varied was

the linear, long-term warming trend over the entire 58 year time

series reported previously [16]. Previous spectral analysis of Lake

Baikal surface temperatures revealed notable periodicities at 2–6,

14–16, and 28–36 years [19]. These published observations

provided a starting point to examine shorter time scales (i.e.,

W[t,40 months], Fig. 2C; W[t,192 months], Fig. 2E ) within these

data for relationships with climatic indices known to influence

weather systems at scales likely to be relevant for phenological

change [1,5,22,23].

LOD is a reflection of planetary angular momentum and

variability in LOD expresses changes in the angular velocity of

atmospheric zonal winds [20]. As the atmosphere heats and

accelerates zonal winds, the solid planet slows down to maintain

the constant total angular momentum of the solid, fluid and gas

components of the Earth. Zonal wind intensity varies on several

temporal scales, with long term changes consistent with models of

global heating [24,25], and changes at shorter time scales that may

indicate climate regime shifts [26]. We discovered a significant

relationship of the LOD anomaly with phase at the broadest scale,

W(t,192), with a cross-correlation coefficient of 0.507 at a lag of

zero months (p,0.0001; Fig. 3), for the period where both data

sets are available (1962–1994). It is apparent on inspection of Fig. 2

that the features of W(t,192) that correlate with LOD are conserved

at a range of window sizes (n), although this correlation modestly

declines in magnitude as n deviates from 192 months. For

example, in a window of 92 months the coefficient ranged from

0.38 to 0.41 for lags plus and minus 12 months. In addition, when

we removed the long-period seasonality apparent in the LOD time

series (ca. 25-yr), and correlated the residuals with W(t,n) at small

values of n, no statistically significant relationship could be

discerned. Thus, the surface water temperature in Lake Baikal

transduces the LOD anomaly, but principally on the longer 16-yr

(n = 192) time scale of variability.

At shorter time scales (smaller n), other climate teleconnection

patterns were evident in the Lake Baikal temperature data, but

Seasonality in Lake Baikal
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with complexity involving interplay between ENSO and the PDO

indices. Figure 4A is a plot of the raw W(t,40) and Global-SST

ENSO anomaly time series. The raw monthly data have a

significant level of first-order autocorrelation, and were pre-

whitened (see Methods) to prevent autocorrelation from biasing

the cross-correlation estimates. The largest cross-correlation

coefficient (r) between pre-whitened W(t,40) and this ENSO index

over the entire period of 1946–2002 was 20.10 when the ENSO

index leads the W(t,40) by 4 months. This relationship was not

statistically significant (ts = 2.44; p = 0.015) in the context of a

Bonferroni adjustment of type-I error rate (aa = 0.002; see

methods). Further inspection revealed that the nature of this

relationship changed across the time series, with an apparent,

stronger relationship in the 13 years preceding 1976. The year

1976 is now recognized as a transition point in the PDO [27]. The

spatial footprint of PDO is similar to Global-SST ENSO, but with

a very different pattern of temporal variability, alternating

between ‘‘warm’’ and ‘‘cool’’ phases on decadal scales. Specifical-

ly, the PDO was in a warm phase during the periods from 1957–

1961, 1976–1988 and 1992–1998 with the intervening periods

defined as cool [28], and some have suggested that 2002 brought

another transition from cool to warm [29]. Using the PDO’s warm

and cool phase transitions to define segments of the ENSO and

W(t,40) time series a priori, we found very strong cross-correlations

(r) during PDO cool phases, with no cross-correlation coefficient

magnitude smaller than 0.57 (all p,0.0001), with the strongest

relationships when ENSO is an average of 3.5 months ahead of

W(t,40) (Fig. 4B). During the PDO warm phases, no consistent

correlations were observed, with no correlation coefficient

magnitude larger than 0.27 at any lag (Fig. 4C). Thus, the Lake

Baikal surface temperature time series was shown to transduce

ENSO – an index of sea surface temperature anomalies

10,000 km away–but only when the PDO was in its cool phase,

and this teleconnection was deciphered in the short-term (n = 40)

variability in annual seasonality. Other studies have shown

interactions between ENSO and PDO where climate forecasting

predictability during La Niña or El Niño episodes was affected by

PDO status, with periods of greater or lesser predictability in both

PDO conditions [30,31]. It seems likely that increasing the

resolution of observational studies may motivate a more structured

Figure 1. Workflow for estimating phase and creating a phase time series. (A) Extraction of annual seasonality anomaly (W(t,n)) from long
term Lake Baikal surface temperature time series. (B) The time series is mean-subtracted and then a sliding window of varying length, in this case 60
months (n = 60), is extracted sequentially as the window is passed down the length of the series. (C) At each point in time (t), the small window is
Fourier transformed and the magnitude and phase spectra of the harmonic components are estimated. The annual seasonality is the peak at 0.083¯

cycles month21, and W(1971.83¯,60) is, in this example, the phase of the annual harmonic for a window 60 months long, centered at October 1971. (D
and E) Time series of lake temperature (gray) compared to a single annual harmonic with a single phase estimated for the entire 58 year time series
(black) to indicate the local phase anomaly, with examples of ‘‘early’’ and ‘‘late’’ seasons indicated by phase. The 60 month period 1955–1960 (D) has
negative W values, indicating that lake temperature variations are advanced relative to the long term seasonality. This is observable as particularly
cold Fall seasons (water temperature falling). The 60 month period 1996–2001 (E) has positive W values, indicating that lake temperature variations
are delayed relative to the long term seasonality. This is observable as particularly cold Spring seasons (water temperature rising). (F) Time series of
W(t,60) assembled by repeatedly estimating the phase of the annual harmonic as the 60 month window is passed down the data set. This time series
would then be pre-whitened (noise addition) to reduce auto-correlation for cross-correlation analysis.
doi:10.1371/journal.pone.0014688.g001

Seasonality in Lake Baikal
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physical model of local climate and further improve local forecasts

for the central Siberian region.

While pre-whitening is useful as a technique to prevent

autocorrelation from biasing the estimates of cross-correlation, it

is important to remember that the autocorrelation in the original

time series is additional information, not just nuisance, and there

are circumstances where we would like to access all available

information. Forecasting is a situation in which the temporal

autocorrelation in data is useful information that should be

retained. As described above, we have observed statistically

significant relationships between W(t,40) and an ENSO index

with autocorrelation removed, and so inferred that a physical

relationship is likely to exist. Retaining the autocorrelation in the

original data now allows us to evaluate how much of the variability

in phase W(t,40) could be explained by the ENSO index data, and

therefore useful for forecasting the onset of seasons. During cool

PDO periods, coefficients of determination (r2) of cross-correla-

tions between raw W(t,40) and ENSO indices ranged from 0.45

and 0.59 with ENSO leading W(t,40) by an average lag of 3.75

months, compared to 0.19 to 0.45 for the pre-whitened

(autocorrelation removed) data. During warm periods, the r2 for

the same cross-correlation ranged from 0.01 to 0.07 with ENSO

leading W(t,40) by approximately three weeks on average. Thus,

during PDO cool periods, 45% to 59% of lake temperature

seasonality variability can be accounted for by the variability in

ENSO three to four months in advance. The ability to anticipate

early and late winters with such strong confidence is particularly

important in a region where environmental conditions are so

severe. It is exciting to contemplate the potential improvements in

season-scale forecasting that are possible when the dynamics of the

system are more fully explored.

Inspection of Figure 4 presents two additional questions. First,

what does the sign change in the ENSO-W(t,40) relationship before

and after 1957 tell us about the process underlying the observed

Figure 2. The values of W(t,n) over a range of frequency scales and across the time series from 1948 to 2004. (A and B) Assembled
values of W(t,n) from long term Lake Baikal surface temperature time series over the period 1948 to 2003 and window sizes (n) 36 to 276 months.
Cooler colors are more negative W(t,n); warmer colors are more positive W(t,n); if phase were a constant, the surface would be flat. The surface tapers
with increasing n as W(t,n) is referenced to the center of the window of length n, and as n increases there is an increasing n/2-long segment that does
not have a relevant measure of W(t,n) at the beginning and end of the time series. (C, D and E) Time series of W(t,n) sampled at n equal 40 (C), 92 (D)
and 192 (E) months. Estimating W(t,n) at longer n averages over a longer time and is equivalent to smoothing the low n W(t,n) time series. As such
W(t,n) at lower values of n captures temperature anomalies occurring at higher frequencies and vice versa.
doi:10.1371/journal.pone.0014688.g002
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relationships? Second, is Lake Baikal W(t,40) ‘‘listening’’ to some

other climate variability signal during the PDO warm phases?

A partial answer to the first question is suggested by evaluating

the relationship between monthly ENSO and AO indexes. AO is

known to influence Asian sub-polar jet stream flow and storm-

tracks [32,33] and specifically the intensity of the Siberian high

[21], and is thus a candidate for communicating information to the

Baikal region. This relationship is not simple however, and AO

variability may be more strongly associated with temperatures

than with surface winds as is the case in East Asian monsoons [34].

Though statistically significant, cross-correlations between ENSO

and AO index time series were not particularly impressive. Cross-

correlation coefficient magnitudes ranged from 0.16 to 0.59

(0.04.p.1025), with maximum values coinciding with zero lag

between the time series (Fig. 5). However, in the period 1946–

1957 the relationship between ENSO and AO was positive, and

thereafter the relationship was negative if it existed at all. It has

been noted previously that 1957 was a moment of significant

change in phase between the North Atlantic Oscillation (NAO)

and North Pacific Index (NPI) [35], indices that correlate with the

AO and ENSO respectively. Thus, it is not a complete surprise

that the sign of the AO-ENSO relationship might also change in

1957.

While we do not know the mechanistic basis of this change in

relationship between AO and ENSO in 1957, the change itself in

the context of other published findings generates a hypothesis

regarding the manner in which large scale patterns of climate

variability communicate across tens of thousands of kilometers,

ultimately to be evidenced in the Lake Baikal data (Figure 6).

Positive AO anomalies predict a strong northward polar jet stream

as it crosses Scandinavia and enters central Asia, while negative

AO anomalies predict strong southern trajectories for the sub-

tropical jet stream over the Iberian peninsula and entering central

Asia [22]. On the eastern side of the continent, ENSO predicts the

jet stream trajectory as it leaves central Asia. Low ENSO

anomalies are associated with northward locations of the North

Pacific High and blocking of the sub-tropical jet stream as it exits

central Asia, while high ENSO anomalies are associated with the

jet exiting central Asia at low latitudes [36]. Low (high) ENSO

indices have also been correlated with stronger (weaker) Siberian

high pressure center, stronger (weaker) jet stream flow, more (less)

frequent cold surges spawned southeasterly across East Asia

including Lake Baikal, and more (less) intense surface wind events

[37]. Even so, Zhang at el. [37] pointed out that the relationship

between jet stream strength and the intensity of the Siberian high

is neither monotonic nor simple. During particularly strong jet

stream periods, short wave events that might otherwise spawn cold

surges into the Baikal region early in the winter (i.e. December)

pass through the large scale system without doing so [37,38]. This

proposed scenario is supported by recent work demonstrating

significant correlations between ENSO and cold surges arriving in

the Asian far east [39]. Strong surface winds that accompany cold

surges can disrupt lake stratification [17], and a reduction in these

surface winds in December could produce a positive W(t,40), or

delayed seasonality in surface water temperature. On the other

hand, less extreme jet stream intensities do spawn cold surges in

the Baikal region early in the winter [37] resulting in a more

negative W(t,40), but seemingly only during PDO cool periods

(Fig. 4).

This interannual variability in jet stream trajectory expressing

the impacts of climate teleconnection is superimposed on a mean

jet stream flow that can be described as a converging spiral

centered on the North Pole [40]. On this average spiral pathway,

the subtropical jet leaves east Asia continuing along a meandering

path, with kinetic energy diverted to higher latitudes until the

polar jet arrives in central Asia to be diverted southward, along

with winter storm tracks, by the anticyclonic Siberian high [37,41].

This scenario is depicted in Figure 6; as the jet stream path

meanders and bifurcates under the influence of meridional

pressure gradients (expressed in ENSO and AO), the energy in

the polar jet will vary as it arrives in Siberia.

The observed suite of relationships suggests that W(t,40) in the

Lake Baikal data responds to the energy in the polar jet stream.

The variability of the jet stream’s local and regional influence is, in

turn, directed by the balance of pressure and temperature

dynamics in the North Atlantic and Pacific Oceans. Importantly,

Figure 3. Annual seasonality phase anomaly (W(t,192)) plotted with the deviation in length of day (LOD). LOD is presented as
smoothed values where the variances contributed by harmonics higher than an annual period were lowered to match the raw W(t,192) time series
(see Methods). The strong relationship suggested by visual inspection is supported by a high maximum cross-correlation coefficient between pre-
whitened time series of 0.507 with no lag. Data were continuous from January 18th, 1963 to December 31st, 2003 (40 years).
doi:10.1371/journal.pone.0014688.g003
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examination of longer and shorter windows in the STFT showed a

rapid degradation of the relationship with ENSO, and no similar

relationship was observed with AO or other teleconnection index

at other values of n. Given this proposed dynamic, with kinetic

energy transmitted over such great distances, it is reasonable that

the cross-correlation coefficients suggested a several month lag

between events in the Pacific and at Lake Baikal.

Jet stream variability has been recognized as a powerful forcing

agent on local water dynamics such as oceanic upwelling [42], and

the present findings suggest similar relationships in lake Baikal.

However, even with statistically significant correlation coefficients,

there is a lot of unexplained variance attributable to other forcing

and the influence of local conditions. Shimaraev and colleagues

[19] suggested that lake temperature dynamics were critically

dependent on local atmospheric-water coupling. In particular,

those authors argued convincingly that temperature-driven local

winds were critical in driving heat flux across the lake surface.

Indeed, while it would have been satisfying to express our findings

in terms of the local winds, the observational data are sparse and

where wind data exist, they are at wide variance with reanalysis

modeling of surface winds [43]. Lake Baikal is bounded on the

west by ridges of the Baikal and Primorskiy mountains that are

2000–3000 m high 2–4 km from the lake’s shore. This geography

results in prevailing westerly winds traveling down to the lake via

Figure 4. The temporal relationships and correlation structures of W(t,n) and the Global-SST ENSO index across the history of the
PDO index from 1946 since 1946. (A) Plot of monthly W(t,40) time series (Blue) with the monthly Global-SST ENSO index (Red) from 1946–2004.
The Global-SST ENSO index captures the low-frequency components of other, location specific ENSO indices. The data were continuous from January
1946 to December 2003. Global-SST ENSO is presented as raw, unfiltered values (points) and smoothed to produce similar high frequency
contributions to W(t,40) (line) (see Methods). The periods 1957–1964, 1976–1988 and 1992–1998 are PDO ‘‘warm’’ phases and are indicated in gray,
the intervals are PDO ‘‘cool’’ periods. (B and C) Plots of the Global-SST ENSO index plotted against W(t,40). Data were pre-whitened to reduce
autocorrelation for analysis. Cross-correlation coefficients of determination (displayed) were estimated for the entire periods indicated. Data are
plotted at the lag that produced the greatest cross-correlation coefficient magnitude to convey the strength of the relationship. The mean cross-
correlation coefficient (r) for the PDO cool periods (B) was 0.67 at an average lag of 3. 5 months with ENSO leading W(t,40).
doi:10.1371/journal.pone.0014688.g004

Seasonality in Lake Baikal
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eddies and counter flow that result in wind dynamics not well

predicted by re-analysis models. In addition, the sub-tropical jet

stream itself is not so much a coherent jet as an average flow with

many scales of turbulence [44]. Dynamic interactions of strength,

and small- versus large-scale wave propagation, have been

described for this system [38,37,45]. If the structural character-

istics of the jet stream turbulence also vary between PDO phases,

due to net forcing in these periods [46], it is possible that energy

exchange from jets near the tropopause down to the surface at

Lake Baikal will likewise vary between PDO phases. Such a

relationship between the jet stream strength or scale of turbulent

structures and the PDO would help explain the observed gating

between ENSO and Lake Baikal water temperatures. In any

event, while Lake Baikal may be at the intersection of large-scale

climate teleconnections on various scales at different times, these

large scale drivers will always be filtered through local and regional

dynamics to produce the observed lake conditions.

Examination of the long-term temperature time series has

revealed a spectrum of connections between planetary-scale

climate features and surface lake temperatures monitored over

58 yrs. This surface temperature time series has revealed on its

longest time scale a rapid warming in the surface waters of Lake

Baikal. At intermediate or decadal scales, the lake temperature

time series reveals anomalies in the rotational velocity of the

planet. And at the shortest time scales of 3 to 4 years, the time

series reveals connections to pressure and temperature variations

thousands of kilometers away—mediated by interactions with

other climate patterns and apparently transduced by variability in

the trajectory of the jet stream. All of these signals are present in

the Lake Baikal data simultaneously in different bandwidths, and

all may influence the lake’s ecology.

Materials and Methods

Overarching approach
Seasonality of annual water temperature change was captured

as phase (W) of the annual harmonic estimated via Short-Time

Fourier Transform (STFT), calculated at multiple windows of time

in the water temperature time series in order to examine how

seasonality changed across finer and broader scales of variability

related to climate. A time series of phase was generated (Fig. 1)

using the moving window of STFT. This time series, or subsets of

it, were then cross-correlated with similar portions of time series of

climate indexes. In all cases, selection of these subsets was based on

prospective relationships suggested by existing literature (e.g. PDO

eras). In most cases, temporal autocorrelation in the raw data

necessitated filtering (‘‘pre-whitening’’) before analysis, to avoid

the emergence of spurious relationships that can occur between

time series with strong autocorrelation [47]. Cross-correlations

between these pre-whitened phase time series and climate indices

allowed examination of both short- and long-term seasonality

changes.

Lake Baikal data
Data were collected on a schedule of 10–14 days at the same

location on Lake Baikal, 2.7 km from the village of Bol’shie Koty

at 51.9018uN and 105.0665uE (maximum depth 800 m) from

January 1946 to December 2003 [14]. The time series are

constructed of monthly mean values assuming that all months are

the same length (Dt = 0.083
¯

year). In the entire 58 year data set,

missing values amounted to 6.3% of the time series. For the time

series analysis, missing values were replaced with the 58-year mean

for that month.

Figure 5. Plots of the Arctic Oscillation (AO) against Global-SST ENSO index across the history of the PDO index since 1946. Data
were pre-whitened to reduce autocorrelation. Cross-correlation coefficients (displayed) were estimated for the entire periods indicated. Data are
plotted at a lag of zero months, which maximized the cross-correlation coefficient magnitude in order to convey the strength of the relationship.
doi:10.1371/journal.pone.0014688.g005
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Generating the phase time series from water
temperature data

The long-term, linear, increasing trend in surface temperature

[16] was removed before time-frequency analysis. Short segments,

or windows of the de-trended time series were transformed into the

frequency domain via Fourier transform in segments that ranged

from n = 36 to 276 months. Estimation of Short-Time Fourier

Transform spectra was performed with LabVIEW ver. 8.5 2007

(National Instruments, Austin, TX.). Magnitude and phase (W) for

the frequency (v) expressing the annual seasonality was identified

in the transform (v = 0.083
¯

month21). Time series of different

segment lengths were mean-padded to generate spectral resolution

necessary to estimate the annual seasonality. The estimation was

repeated as the window was slid along the time series by one

month, with each window overlapping the previous. The estimate

of phase for each segment of length n was referenced to the mid

point of that segment in time (t), and the estimates were assembled

into a sequential time series of W(t,n). Thus each estimate of the

phase of the annual harmonic in the time series was made

independently, but autocorrelation in the data means that adjacent

estimates carry common information. The estimation of the

Fourier spectra was performed simply to make a quantitative

estimate of the deviation of the characteristic annual fluctuation in

lake temperature from a stationary signal. Clearly there is much

additional information in the unreferenced harmonics in the

estimated spectra, but evaluating this was not the objective of the

current study.

Climate indices
In this study we compared the W(t,n) time series to various climate

indexes. We examined Length of Day (LOD), Arctic Oscillation

(AO), El Niño Southern Oscillation (ENSO), and Pacific Decadal

Oscillation (PDO) as indices that may relate large-scale climate

processes to abiotic monitoring data at Lake Baikal. Climate index

monthly time series were obtained from the following public data

servers: AO - Joint Institute for the Study of Atmosphere and Ocean

(http://jisao.washington.edu/ao/#data); Global-SST ENSO in-

dex - Joint Institute for the Study of Atmosphere and Ocean (http://

jisao.washington.edu/data/

globalsstenso/#digital_values); PDO - Joint Institute for the Study

of Atmosphere and Ocean (http://jisao.washington.edu/data/

pdo/#data); LOD - International Earth Rotation Reference

System Services Frankfurt, Germany (http://www.iers.org/). AO,

ENSO and PDO are reported as monthly indexes; LOD is reported

as 6-hour estimates. LOD raw values were averaged for each month

to produce a monthly average before further signal processing.

Data transformations
All of the monthly indexes had significant, but widely-varying

degrees of first-order autocorrelation. For example, the W(t,40)

Figure 6. Suggested interaction between ENSO and AO affecting jet stream (JS) trajectories (yellow) over central Asia in the periods
before 1957 and from 1957–2003 (C&D) during PDO ‘‘cool’’ phases. Prior to 1957 positive variations in ENSO (red arrow), correlated with
stronger, persistent lower latitude sub-tropical JS flow and less energy driven up into the polar jet across the Pacific (A&B). These conditions were
positively correlated with W(t,40) because of strong, northerly polar JS into central Asia consequent to positive AO values (green arrows). In periods of
low ENSO values, the converse would prevail, with JS flow diverted higher latitudes on exit from the Asian Far East. In the period following 1957, AO
and ENSO are out of phase and negative values of ENSO are associated with more energy pushed to higher latitudes across the Pacific and more
variable, stronger polar jets arriving at the Atlantic. These periods are correlated with lower AO indexes and minimal additional energy pushed to
higher latitudes and stronger flow arriving in central Asia, with the converse in periods of low ENSO index. In either case, (high-AO pre-1957, low-
ENSO post-1957) strong polar JS flow arriving at the Siberian high (H) is diverted in an anti-cyclonic direction across Lake Baikal producing more
negative W(t,40), colder fall water temperatures and earlier winter conditions.
doi:10.1371/journal.pone.0014688.g006
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time series power spectrum had only 1.7% of the temporal

variance contributed by harmonics higher than the annual

harmonic, whereas the raw Global-SST ENSO index had 9% of

the temporal variance contributed by the same harmonics.

Relevant comparisons between time series required multiple

approaches to filtering the data. On the one hand, to evaluate

the possible presence of a statistically significant cross-correlation

in the data, raw W(t,n) and raw climate indices were filtered with a

process that introduced noise with a uniform (white) distribution,

‘‘pre-whitening’’ [47]. The amplitude of the noise was increased

until the first order autocorrelation in the time series fell below

significance for the given length of time. Since the raw Global-SST

ENSO signal contained higher frequency components, the

amplitude of noise added to the raw W(t,40) was greater than

the Global-SST ENSO index. On the other hand, when

comparing time series that maintained their autocorrelation

structures we smoothed the raw, monthly climate index time

series with a 5-point finite impulse response filter until both series

being compared had similar spectral energy above the annual

harmonic. Significant energy above the annual harmonic is

perceived as noise or uncorrelated error in the original time series

[47]. Cross correlation comparisons between time series with

widely divergent high frequency character (i.e. different levels of

independence of errors) can lead to spurious inferences simply

because the errors may not be independent [48]. As a

consequence, each climate time series existed in three forms:

‘‘raw’’ values, ‘‘pre-whitened’’, and ‘‘smoothed’’ values in order to

compare apples-to-apples in each case.

Cross-correlations
Temporal cross-correlations between W(t,n) and various climate

indices were then performed in STATGRAPHICS Plus for

Windows 3.0. Bonferroni adjustment was used to maintain an

experiment-wise a= 0.05 with multiple comparisons, such that

aa = 0.002.
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