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Abstract

Background: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes,
including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase
receptor in cardiac development.

Methodology/Principal Findings: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-
suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore:
i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of
sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and
is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced
sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile
dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal
life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy.

Conclusions/Significance: Taken together, our data show that excessive activation of the HGF/Met system in development
may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease.
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Introduction

The cellular events occurring during the early stages of life,

including pre- and perinatal phases, may have strong impact on

long-term health. Epidemiological and experimental evidences

suggest that development of cardiovascular diseases in the adult is

influenced by stressful events during late prenatal or early

postnatal life [1]. A correlation between infant mortality and the

incidence of cardiovascular disease was first reported in 1977 and

lead to the Barker’s hypothesis of the fetal origins of increased risk

of cardiovascular disease [2]. The fetal origins hypothesis of Barker

states that programming during fetal life occurs in response to an

adverse environment and results in permanent adaptive responses

that lead to structural and physiological alterations and the

subsequent development of cardiovascular disease. Although this

hypothesis was originally proposed in the context of intrauterine

growth, it has been extended to the important environmental

transition which occurs between plastic phase of development and

mature post-plastic phase. In rodents, transition of cardiomyocytes

from hyperplasia to hypertrophy growth occurs during the first

week of postnatal period [3]. In parallel with this transition,

murine cardiomyocytes accumulate contractile proteins and

undergo changes in troponin I (TnI) and myosin heavy chain

(MHC) isoform expression. The cardiac TnI (cTnI) and the slow

skeletal TnI (ssTnI) transcripts coexist in the developing heart

throughout fetal and perinatal stages and then cTnI completely

replaces ssTnI in the adolescent mouse [4,5]. Concurrently, a-

MHC completely replaces b-MHC in the ventricles, becoming the

dominant isoform (.90%) in the adolescent mouse [6]. Besides

myofibrillar content, important cell-shape changes occur in

cardiomyocytes during early postnatal development, with progres-

sive polarization of the cardiomyocyte and restriction of the

intercalated disc-associated proteins to the bipolar ends of

cardiomyocytes [7].

The Hepatocyte Growth Factor (HGF) is a mesenchyme-

derived multifunctional molecule that elicits mitogenic and

morphogenic activities in development, as well as in many

patho-physiological processes [8]. The HGF receptor has been

identified as the Met tyrosine kinase, the product of the met proto-

oncogene, which is expressed in a variety of cell types, such as
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epithelial, endothelial and mesenchymal cells. Upon HGF

binding, Met undergoes autophosphorylation on several tyrosine

residues and constitutes a multifunctional-docking site for adaptor

proteins containing the SH2 motif. Recruitment of these molecules

results in the activation of several downstream signalling cascades,

such as Ras-Raf-MEK-ERK and PI3K pathways, which are

essential for HGF-induced cellular changes, that collectively give

rise to a complex morphogenetic program known as ‘‘invasive

growth’’. This program involves cell spreading, cell-cell dissociation,

migration, invasion, proliferation and differentiation. Notably,

during the various phases of this process, cells result protected

from apoptosis [9].

In the heart, HGF has been shown to exert anti-apoptotic/

cardioprotective effects in rats subjected to myocardial infarction

[10,11]. It has also been suggested to have a role in cardiac

regeneration after myocardial infarction [12]. Met is only weakly

expressed in adult cardiomyocytes, but both HGF and Met

mRNA are induced following heart injury [10,11]. The beneficial

effect of HGF in the damaged heart has been documented in

experimental models. Despite the clear indications for HGF to

effectively treat post-ischemic heart failure, the knowledge on the

role of the HGF/Met system in normal cardiac development is still

limited. A few reports have shown expression of HGF/Met in the

heart during very early embryonic development [13,14], whilst

studies investigating their expression and function in the heart

during late prenatal or early postnatal life are still missing. In

particular, nothing is known about the role of the HGF/Met

system in the establishment and maintenance of the balance

between proliferative and differentiating events during postnatal

heart development, which may lead to hyperplastic and hyper-

trophic growth, respectively.

In this study, we aimed to investigate this issue by activating the

HGF/Met system specifically in the heart. To this purpose we

generated two novel gain-of-function transgenic models with

tetracycline-suppressible expression of either HGF or activated

Met under control of the a-MHC promoter. In the mouse embryo,

the a-MHC promoter is expressed throughout the myocardium

starting from E8 [6]. By E12.5, a-MHC is robustly expressed in

both left and right atria. However, transcripts are more abundant

in the right than the left ventricle. Expression in the right ventricle

is also downregulated with respect to that in the atria. At E14.5

and E16.5, a-MHC gene is strongly expressed in both atria, while

in the ventricles it retains a right dominant profile. At birth, a-

MHC transcript levels start increasing and, by postnatal day 3, a-

MHC is upregulated in both the right and the left ventricle [15].

Thus, the a-MHC promoter is especially useful for analyzing the

effect of transgenic protein during the prenatal and postnatal

period of rapid heart growth. In the HGF model, autocrine

production of HGF stimulated the activation and physiological

downregulation of endogenous Met receptor. In the model of Met

activation, the intracellular signal stemmed from ligand-indepen-

dent and constitutive stimulation of Met kinase in cardiomyocytes.

We show that even transient increases in HGF/Met signalling

during development can lead to cardiac pathology, due in part to

sustained downregulation of Cx43.

Materials and Methods

Ethics Statement
All animal procedures were approved by the Ethical Commis-

sion of the University of Torino, Italy, and by the Italian Ministry

of Health, both of which accepted the use of mice for this study

(A/R 0045 and A/R 0041).

Conditional cardiac HGF tg mice
The mouse HGF cDNA was cloned into the pBI-EGFP plasmid

which is responsive to tTA transactivator [16]. The construct was

linearized with AseI and a 6.1-kb gel-purified fragment was

microinjected into the fertilized eggs of FVB mice in the San

Raffaele-Telethon Core Facility for Conditional Mutagenesis

(Milan, Italy). Founder mice were identified as described [17]. A

transgenic line (HGF-TRE-GFP responder) was bred with the a-

MHC-tTA mouse (kindly donated by Dr. G. Fishmann [18]) and

double heterozygotes were studied under one of three conditions:

(1) Mice were never administered Doxycycline (DOX, Sigma), so

that HGF was expressed in the prenatal and postnatal period

(HGF tg mice). (2) Pregnant mothers and suckling progeny

received DOX (200 mg/ml in drinking water with 3% sucrose) to

continuously repress HGF (HGF + DOX tg mice). (3) Pregnant

mothers were not administered DOX to induce HGF in utero and

suckling progeny and weaned pups received DOX to repress

exogenous HGF after birth (prenatal HGF tg mice).

Conditional cardiac Tpr-Met mice
The Tpr-Met-TRE-GFP responder mouse [17] was bred with

a-MHC-tTA mouse and double heterozygotes were studied under

one of two conditions: (1) Mice were never administered DOX

(Tpr-Met mice). (2) Pregnant mothers received DOX throughout

gestation and DOX was removed at P1 to induce Tpr-Met after

birth (postnatal Tpr-Met mice). Control mice consisted of

identically treated littermate wild-type mice for both transgenic

models.

Real-time PCR and Semi-quantitative RT-PCR
Hearts were excised, rinsed in ice-cold Tyrode solution and

prepared in RNA later (Ambion). Total RNA was extracted with

TRIzol (Sigma). Qiagen RNAeasy kit (Qiagen GmbH, Hilden,

Germany) was used to enhance purification. After quantification

(NanoDropH ND-1000, NanoDrop Technologies), reverse tran-

scription was performed using DNA Polymerase/Superscript III

Reverse Transcriptase (Invitrogen). For Real-time PCR, primers

and Taqman probe specific for the transgene were designed using

the File builder 3.1 program (Applied Biosystems, Foster city, CA,

USA). Real-time PCR was performed on a 7300 Real-time PCR

instrument (Applied Biosystem). Sample reactions were performed

in triplicate and normalized to 18S mRNA expression. For semi-

quantitative RT-PCR, control samples were prepared without

adding the RT enzyme to the reaction. Tubulin was used as

control. See Table S1 for primers used.

Western blot - Protein extracts from heart ventricles were

prepared using RIPA buffer added with Protease Inhibitor

Cocktail (Sigma). Heart lysates were subsequently sonicated and

centrifuged at 14000rpm (259 at 4u). Protein concentration was

determined by Bio-Rad protein assay. Protein lysates (5 mg or

100 mg for Met protein) were separated by SDS-PAGE,

transferred to nitrocellulose membrane Hybond-C-extra (Amer-

sham) and blotted with primary antibodies and then with

horseradish peroxidase-conjugated secondary antibodies (Amer-

sham). Proteins were revealed by enhanced chemiluminescence

SuperSignal detection reagents (Pierce) and quantified with GS800

model Bio-Rad (Figures 3,4) and ImageJ (rsb.info.nih.gov/ij)

(Figures 2,6).

Stereomicroscopy, Immunofluorescence (IF) and
Confocal Analysis

Hearts were removed, rinsed in ice-cold Tyrode solution and

fixed in 4% paraformaldehyde (PAF) in phosphate-buffered saline

Met Signalling in the Heart
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(PBS) for 4 hours at 4uC. After PBS washings, hearts were

incubated in 30% sucrose in PBS overnight at 4uC to preserve

GFP fluorescence. Stereomicroscopy was viewed by Leica MZ12

and imaged by Evolution VF colour cool camera and Image-Pro

Plus software. Tissues for indirect immunofluorescence were

embedded in OCT (Biooptica), quickly frozen in isopentane and

stored at 220uC. Sections were 20 mm cut, post-fixed 59 in ice-

cold 4% PAF and washed with PBS. For Met staining, sections

were incubated with SP260 primary antibody (Santa Cruz)

overnight at 4u and subsequently with Alexa Fluor 546-conjugated

goat anti-rabbit antibody (Molecular Probes) for 1h at room

temperature. The double overlay pictures (Met/GFP) were viewed

with a Leica DM6000 CS confocal microscope. Optical slices

(1024 by 1024 pixels, frame resolution) were acquired at 10Hz and

processed with LAS AF software (Leica Microsystems CMS

GmbH). Quadruple overlay pictures (Laminin/Griffonia/DAPI/

GFP) were obtained by staining with rabbit polyclonal antibody

laminin (Sigma) followed by Alexa Fluor 647-conjugated goat anti-

rabbit antibody (Molecular Probes), two hours incubation with

rhodamine Griffonia Simplicifolia (Vector Laboratories) and

5 min with DAPI. Quadruple overlay pictures (Cx43/a-actinin/

DAPI/GFP) were obtained by staining with rabbit polyclonal

antibody Cx43 (Sigma) and mouse monoclonal antibody a-actinin

(Sigma) and subsequently with Alexa Fluor 647-conjugated goat

anti-rabbit antibody and Alexa Fluor 546-conjugated goat anti-

mouse antibody (Molecular Probes). Confocal microscope imaging

was performed with Leica TCS SP2 AOBS upright microscope.

Optical slices (1024 by 1024 pixels, frame resolution) were

acquired at 200 Hz, with a line average of 8, and processed with

LAS AF software (Leica Microsystems CMS GmbH).

Proliferation evaluation
Ki67 positive nuclei were immunostained in 20 mm thick heart

sections. Primary rabbit polyclonal Ki67 antibody (Novocastra)

and secondary Alexa Fluor 546-conjugated goat anti-rabbit

antibody (Molecular Probes) were used. Fluorescence imaging

and processing were performed with Leica DM6000 CS confocal

microscope and LAS AF software, respectively. 5 fields per area

(Right Ventricle, Left Ventricle and Interventricular Septum) per

mouse were analyzed. 3 mice per group were considered.

H9c2 cell proliferation assay
H9c2 cell line purchased from the American Type Culture

Collection was grown as described [19]. 4000 cells/cm2 were

seeded. Adhesion medium was replaced with fresh medium

containing 10 U/ml of HGF for 24h and 48h. AlamarBlueTM

(Invitrogen) assay was performed according to manufacturer’s

instructions. For BrdU assay, cells were seeded on coverslips and

incubated with 10 mm BrdU (Sigma) for 24h, together with

treatment. Cells were fixed with 4% PAF, permeabilized with

0.1% tween, treated with 2 M HCl for 1h and stained with BrdU-

specific antibody (Sigma) and Alexa Fluor 488-conjugated goat

anti-mouse antibody (Molecular Probes). Propidium iodide was

used for nuclear staining. Fluorescence imaging and processing

were performed with Leica DM6000 CS confocal microscope and

LAS AF software, respectively. All images were taken with the

same parameters of exposition and processed after conversion in

8bit grayscale. Stained nuclei were counted using ImageJ. A

minimum cut-off for intensity and particle size was established.

Nuclei on border edges were excluded. 7 fields per sample and 2

replicates were considered.

Antibodies
See Supplemental Table S2 for a list of antibodies used.

Lucifer yellow Assay
Gap junction permeability assay was performed as described

[20] with minor modifications. The ventricle was incubated in

buffer containing Lucifer yellow (2.5 mg/ml) and rhodamine-

conjugated dextran (2.5 mg/ml), which was continuously bubbled

with O2, for 209 at 37uC. Then, the ventricle was fixed with 4%

PAF. The area stained with Lucifer yellow but not with

Rhodamine red was used as an index of gap junction

communication. Short incubation and bubbling with oxygen were

performed to prevent anoxic effects on cellular permeability.

Images were obtained by classical microscopy analysis (Leica

DMRE microscope) of both ventricles. Data from 15 data

sampling were averaged for each of 4 fields per mouse. 3 mice

per group were analyzed.

Histological Analysis and Fibrosis Evaluation
Hearts were rinsed in PBS, dehydrated and embedded in

paraffin. Sections (6–8 mm thick) were rehydrated, stained with

hematoxylin-eosin or Masson’s trichrome and analyzed with Leica

DMRE microscope.

CSA
3 mice per group were analyzed. Transversal 20 mm thick cryo-

sections of the middle region of the hearts were stained with

rhodamine Griffonia Simplicifolia and rabbit polyclonal antibody

laminin and subsequently with Alexa Fluor 488-conjugated goat

anti-rabbit antibody (Molecular Probes) and DAPI. Fluorescence

images were taken at 406magnification with Leica DM6000 CS

confocal microscope and LAS AF software was used for

processing. 15 cross sectional areas of 6 fields per heart were

measured. Small, medium and large-sized fibers were equally

considered. Fiber CSA delimited by laminin staining was

measured using ImageJ software. Density probability distribution

curves were generated.

Cx43 quantification
Images were obtained by classical microscopy analysis (Leica

DMRE microscope) of ventricles and interventricular septum at

206. Data from 10 samplings were averaged for each heart. 6

controls and 3 transgenics were analyzed. Signal intensity of staining

was calculated as percentage of total tissue area using ImageJ.

Echocardiography
Size and function of the left ventricle of the mice were evaluated

by high-resolution echocardiography. M-mode examinations were

performed using a dedicated small-animal high-resolution imaging

unit (Vevo 770; VisualSonics, Toronto, Canada) and a 40-MHz

high-frequency linear transducer (RMV 707B; VisualSonics,

Toronto, Canada). Mice were kept anesthetized with tribromoeth-

anol (Avertin, 350 mg/kg). Real-time imaging was performed with

a frame rate of 100 Hz (temporal resolution of 10 msec). The

following parameters were measured: systolic and diastolic thickness

of the interventricular septum, end-systolic (LVESD) and end-

diastolic diameter (LVEDD) of the left ventricle, systolic and

diastolic thickness of the posterior wall of the left ventricle.

Fractional shortening (FS) was then calculated [21]. The hypertro-

phy index h/r ratio was calculated according to the formula:

h=r~
1=2X IVSTdzPWTdð Þ

1=2LVEDD

All measurements were done on 3 consecutive beats with a stable

heart rate .400 bpm.

Met Signalling in the Heart

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e14675



Figure 1. Doxycycline (DOX)-suppressible expression of HGF in the heart. (A) Schematic representation of the two components (a-MHC-tTA
and HGF-TRE-GFP transgenes) for bitransgenic conditional HGF expression. (B) Top: Experimental design: mice were never administered DOX to
express HGF in the prenatal and postnatal period (HGF tg mice); pregnant mothers and suckling progeny received DOX to continuously repress HGF
(HGF + DOX tg mice); pregnant mothers were not administered DOX to induce HGF in utero and suckling progeny and weaned pups received DOX

Met Signalling in the Heart
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Statistics
Data are expressed as the mean 6 SD. Differences between

groups were determined by independent T-tests (one or two-tailed

T-tests have been used; details in each Figure Legend).

Results

Generation and Characterization of HGF tg Mice
To examine the influence of HGF in normal prenatal and

postnatal cardiac growth, we generated a bitransgenic a-MHC-

driven tetracycline-suppressible system (Figure 1A). The GFP

reporter was chosen as being a convenient tracer of transgene

expression. Bitransgenic mice were conceived and maintained in

the absence of Doxycycline (-DOX) to induce exogenous HGF

expression (HGF tg) during prenatal and postnatal heart growth

(Figure 1B). In parallel matings, pregnant mothers were given

DOX starting from conception, throughout pregnancy and

breastfeeding period (HGF + DOX tg). qRT-PCR was performed

on exogenous and total (endogenous + exogenous) HGF mRNA in

prenatal (E16.5) and neonatal (P7) hearts from uninduced (HGF +
DOX tg) and induced (HGF tg) mice. Exogenous HGF mRNA

could be detected only in HGF tg mice kept without DOX, but

not in DOX-treated animals, both at E16.5 and at P7. Liver tissue

was used to confirm specificity of primers for HGF transgenic form

(Figure 1C, upper graph). Since primers for total HGF recognize

both the wild-type and the transgenic forms, the quantification for

uninduced mice refers specifically to endogenous HGF, while data

from induced mice must be observed also considering transgenic

HGF expression. Figure 1C shows that endogenous HGF was

undetectable at embryonic day 16.5 and was still absent at

postnatal day 7. Liver from neonatal HGF tg mice provided the

positive control (Figure 1C, lower graph). Measurement of protein

levels of HGF and GFP confirmed that the transgenes were not

expressed in HGF + DOX tg animals, indicating a tight control of

Tet-Off system of expression (Figure 1D).

Neonatal heart of HGF tg showed specific GFP expression

(Figure 1E, middle and left panels; control at left and HGF tg at

right). Expression of the transgene was heterogeneous in

cardiomyocytes and variable between sibling mice, ranging from

20 to 50% of the cardiomyocytes in the left ventricle (Figure 1E,

right panel). Bitransgenic HGF tg mice were born with the

expected mendelian ratio and showed phenotypically normal

hearts (Figure 1E and Figure S1).

In a cohort of animals (prenatal HGF tg mice), DOX was

administered to suckling progeny 1 day after birth (Figure 1B).

The HGF mRNA was repressed already after 1 day of DOX

treatment (Figure 1F), indicating effective reversibility of the Tet-

Off system.

Met Is Present in Neonatal Cardiomyocytes and
Exogenous HGF Activates its Downstream Effectors

Endogenous Met was localized all around the plasma

membrane of cardiomyocytes in heart tissue isolated from

littermate wild-type animals (control) and, at lower levels of

expression, in HGF tg neonates (Figure 2A). The Met 140-kDa

product (p140Met), clearly detectable in control neonates at P2

and P4, was downregulated at P7 and P18 (Figure 2B). In HGF tg

mice, the level of Met was lower with respect to controls since P2

and it was further downregulated in adolescent mice at P18. Next,

we evaluated whether exogenous HGF activated Met signalling in

neonatal cardiomyocytes (Figure 2C). We found that in HGF tg

mice there was a marked increase in Erk1,2, p38 MAPKs and Akt

phosphorylation with respect to controls (p,0.05). We also tested

the levels of expression and activation of Met signalling in the

H9c2 cardiomyoblast cell line upon addition of recombinant HGF

for various lengths of time (Figure 2D). After 1h of HGF

stimulation, the Met receptor was downregulated. Its level of

expression was recovered after 4h. Erk1,2 and, at lesser extent,

p38 phosphorylation was stimulated 59 after the addition of HGF

and remained activated until 1h.

Exogenous HGF Modulates Proliferation and Expression
of Sarcomeric Proteins and Connexin43 in Neonatal
Heart

To examine whether the extra-dose of HGF was able to

increase proliferation of cardiac cells, we analyzed Ki67 positive

cells in tissue sections of 7 days-old neonatal hearts. We found a

3-fold increase (p,0.05) in HGF tg mice, compared to controls

(Figure 3A). To confirm that Met receptor stimulation promotes

cardiomyocyte proliferation, we treated the cardiomyoblast cell

line, H9c2, with 10U/ml recombinant HGF in vitro and analyzed

cellular proliferation by means of AlamarBlue assay (Figure 3B)

and BrdU incorporation (Figure 3C). H9c2 cell proliferation

significantly increased after HGF treatment (p,0.005).

In parallel, we analyzed the levels of sarcomeric proteins in

newborn mice. We observed that the levels of cTnT (p,0.005)

and cTnI (p,0.05) were significantly lower in hearts of HGF tg

neonates, as compared to controls (Figure 3D). ssTnI was also

reduced, but the difference between HGF tg and controls was not

significant (Figure 3D). In the adolescent HGF tg mouse, both

cTnT and cTnI proteins were still downregulated (Figure 3E,

p,0.005 and p,0.05, respectively), but reached normal levels in

the adulthood (data not shown). At P18 ssTnI could not be

detected in controls nor in HGF tg mice (not shown). The levels of

both a- and b-MHC were decreased in HGF tg neonates, as

compared to controls (Figure 3D, p,0.05 for a-MHC; p,0.005

for b-MHC). In the adolescent mouse, a-MHC completely

replaced b-MHC, becoming the predominant isoform both in

control and in HGF tg mice (Figure 3E), as described in literature

[6]. We also evaluated the expression levels of the Cx43 protein, a

marker of the working myocardium. In the neonate as well as in

the adolescent, Cx43 protein levels were lower in HGF tg mice,

compared to controls (Figure 3D,E, p,0.005).

HGF Induction in Prenatal Heart Causes Reduced Cardiac
Contractility in the Adult

Adult HGF tg mice were analyzed by echocardiography and

compared with controls. No difference was found between single

transgenics (silent HGF and a-MHC-tTA) and wild-type mice

one day after birth to repress HGF in the postnatal period (prenatal HGF tg mice). (C) Quantitative Real-time PCR of exogenous (upper graph) and
total (endogenous + exogenous) (lower graph) HGF mRNA in fetal (E16.5) and neonatal (P7) heart samples of bitransgenic mice, conceived in the
presence or in the absence of DOX (n = 3 biological replicates). Liver tissue from HGF tg P7 mice was used as a control for the specificity of primers.
(D) Representative Western blot of heart lysates of HGF tg mice with anti-HGF and anti-GFP antibodies. HGF protein migrates as the characteristic
mature a chain of 70 kDa. Erk2 is the loading control. (E) Stereomicroscope images of GFP green fluorescence in neonatal hearts (P7) isolated from
HGF + DOX (left) and HGF tg (right) mice: fluorescence (left panel) and visible plus fluorescence (middle panel); longitudinal tissue section showing
fluorescent GFP+ cardiomyocytes in P7 HGF tg mice (right panel). Bars: 2.5mm (left panel); 250 mm (right panel). (F) mRNA expression of exogenous
HGF in prenatal HGF tg hearts at different post-birth ages.
doi:10.1371/journal.pone.0014675.g001
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Figure 2. Analysis of Met expression and downstream signalling activation in neonatal cardiomyocytes. (A) Immunofluorescence of
Met receptor (red) and GFP (green) in neonatal (P7) heart samples of control (left panel) and HGF tg mice (middle panel). A negative control of
secondary antibody was included (right panel). Bars: 50mm. (B) Western blot of Met (p140Met) protein in control and HGF tg mice at different ages
post-birth (P2 n = 6 n = 7, P4 n = 8 n = 6, P7 n = 10 n = 11, P18 n = 9 n = 14). Representative blots are shown below densitometric quantification
(normalized on GAPDH loading control, relative to P2 control). Controls vs HGF tg mice: *p,0.05 and {p,0.005 (two-tailed T-test). (C) Densitometric
quantification (normalized on tubulin loading control) and representative Western blot of phospho-Erk1,2 (P Erk1,2), phospho-p38 MAPK (P p38) and
phospho-Akt (P Akt) in HGF tg (n = 7) relative to control mice (n = 6) at two days post birth (P2). *p,0.05 (two-tailed T-test). (D) Western blot analysis
of Met receptor and downstream signalling after treatment of H9c2 cardiomyoblast cell line with 10U/ml of HGF for different lengths of time.
Densitometric quantification was normalized against tubulin and plotted as relative to time 09 of treatment. Each condition was tested 3 times.
doi:10.1371/journal.pone.0014675.g002

Met Signalling in the Heart
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Figure 3. Increased proliferation and reduced expression of sarcomeric proteins and Connexin43 (Cx43) upon HGF induction in
prenatal hearts. (A) Left panel: Quantification of Ki67 positive nuclei in tissue sections of 7 days-old neonatal hearts. Right Ventricle (RV), Left
Ventricle (LV) and Interventricular Septum (IVS) were separately or totally analyzed and compared in controls vs HGF tg neonates (n = 3 animals per
group). At least 5 fields per zone per sample were counted. *p,0.05 (one-tailed T-test). Right panel: Representative Ki67 staining in tissue sections of
7 days-old neonatal hearts of control (left) and HGF tg (right). Ki67: red-nuclear (white arrows). Bar: 100 mm. (B) AlamarBlue assay and (C) BrdU
incorporation of H9c2 cell line not treated (nt) and treated with 10U/ml HGF for the indicated times. Experiments were done in 8 (B) and 2 (C)
biological replicates for each sample group. {p,0.005 versus nt (two-tailed T-test). Right panels: representative IF. BrdU: green-nuclear; propidium
iodide (PI): red-nuclear. Bar: 75 mm. (D,E) Densitometric quantification normalized to Erk2 loading control and representative Western blots of the
indicated proteins. Results represent averaged values for immunoblot analyses performed on heart lysates in (D) P7 neonatal controls (n = 10) vs HGF
tg (n = 11) and (E) P18 young adult controls (n = 9) vs HGF tg (n = 14). Myosin heavy chains (a and b-MHC), troponins (cTnT, cTnI and ssTnI) and Cx43
have been quantified. *p,0.05, {p,0.005 (two-tailed T-test).
doi:10.1371/journal.pone.0014675.g003
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(Table 1). At 100 days of age, HGF tg mice had a significantly

higher left ventricle end systolic diameter (LVESD), in comparison

with controls (Table 1 and Figure 4A) and the fractional

shortening (FS) was significantly reduced (Table 1), suggesting

that an extra-dose of HGF is unfavourable for cardiac contrac-

tility. To distinguish between prenatal and postnatal effects of

HGF stimulation, DOX was not administered to pregnant

mothers and suckling progeny and weaned pups received DOX

starting from postnatal day 1 (prenatal HGF tg mice). At 113 days

of age, also prenatal HGF tg mice showed increased LVESD and

reduced FS (Table 1). This indicated that the extra-dose of HGF

during prenatal life was critical to produce the systolic defect and

that suppression of HGF expression after birth could not rescue

contractile function.

After echocardiographic analysis, bitransgenic animals and

controls were sacrificed and heart/body weight ratios were

measured (Table 1). No significant increase in heart weight and

heart/body weight ratio was observed in any of the bitransgenic

groups (HGF tg and prenatal HGF tg), relative to controls.

Histology of adult bitransgenic hearts and trichrome staining did

not reveal evidence of fibrosis or increased myocyte cross sectional

area (CSA), compared with age-matched controls (Figure S2).

Next, we analysed re-expression of b-MHC, a marker of cardiac

dysfunction. Figure 4B shows higher levels of b-MHC in both

HGF tg and prenatal HGF tg mice (p,0.05), while low protein

level was found in age-matched controls. Furthermore, in the

induced animals, in concomitance with re-expression of b-MHC,

a-MHC appears to be decreased. In both HGF tg and prenatal

HGF tg mice, Cx43 protein expression levels were significantly

decreased also in the adult (Figure 4B, p,0.05). Cx43 is a

component of gap junctions’ channels, which contribute to

communication between adjacent cells. To assess whether the

reduced expression of Cx43 observed in HGF tg mice alters the

permeability of gap junctions, we performed a functional test with

Lucifer yellow. The fluorescent tracer showed significantly

reduced propagation from wound to adjacent cells in HGF tg

mice (Figure 4C, p,0.005).

Induction of Constitutively Activated Met in Postnatal
Cardiomyocytes Causes Reactivation of Fetal Gene
Program and Cardiac Remodeling

We decided to extend observations to another gain-of-function

model produced in our laboratory that, differently from the HGF

tg mouse, allows activation of Met in the absence of the ligand and

cannot be downregulated [22]. The Tpr-Met responder was

crossed with the a-MHC-tTA transactivator to constitutively

activate Met signalling in cardiomyocytes in a cell-autonomous

manner. We found that expression of Tpr-Met in prenatal

development was lethal shortly after birth in 100% of cases.

Bitransgenic Tpr-Met mice were observed with an expected

Mendelian ratio of 25% at E16 (n = 17), E18 (n = 20) and P1

(n = 21), while no viable bitransgenics were found alive at P4

(n = 90). Thus, constitutive activation of Met starting from prenatal

cardiac development leads to death of pups after birth.

To overcome the early lethality of Met hyperactivation and to

evaluate effects of permanent Met activation in postnatal

cardiomyocytes, Tpr-Met mice were conceived and delivered in

the presence of DOX to suppress expression of Tpr-Met during in

utero development. The day following birth, DOX was removed

from drinking water to allow expression of the transgene

(Figure 5A) in postnatal Tpr-Met mice. In the Tet-Off system,

there is no expression at day 0 after the removal of DOX, minimal

expression from days 3 to 7 and maximal expression after day 11

[23]. Transgene expression was verified at both mRNA and

protein levels at P27 (Figure 5A). Postnatal Tpr-Met died at ,4

weeks after birth with signs of congestive heart failure (n = 6),

including lung oedema, alopecia, ascytes, dyspnea and lethargy

(Figure S3). Animals were sacrificed at day 27 and the heart weight

and the heart/body weight ratio were measured. At visual

inspection under the stereomicroscope, Tpr-Met+ hearts showed

impressively enlarged ventricles, with thick ventricular wall and

interventricular septum (Figure 5B). Postnatal Tpr-Met mice had

significantly increased heart mass (0.296 g60.080 vs control

0.160 g60.056, p,0.005) and heart/body weight ratio (2.3 fold

increase, p,0.005), indicating a marked ventricular hypertrophy

Table 1. Echocardiography of HGF tg mice.

wild-type HGF tg prenatal HGF tg silent HGF a-MHC-tTA

(n = 11) (n = 20) (n = 6) (n = 9) (n = 6)

FS 0.4960.08 0.3460.09* 0.3360.06* 0.4660.07 0.4660.13

IVSTd (mm) 1.13360.181 1.17260.281 1.25960.176 1.12860.116 1.20060.291

LVEDD (mm) 3.77260.402 4.05260.484 3.97060.473 3.86160.371 3.73261.140

PWTd (mm) 1.00960.128 1.00260.232 1.01060.125 0.98160.091 0.97060.130

IVSTs (mm) 1.65460.203 1.60260.414 1.61460.227 1.64860.140 1.63960.455

LVESD (mm) 1.94860.435 2.66360.504* 2.66560.449* 2.11360.456 2.14960.915

PWTs (mm) 1.47660.180 1.37460.305 1.33260.092 1.50260.065 1.39760.189

h/r 0.57160.068 0.53960.115 0.57760.090 0.55060.059 0.63560.223

HW (g) 0.19360.050 0.18260.036 0.22660.031 n.d. n.d.

BW (g) 33.1765.08 32.7163.76 30.3665.76 n.d. n.d.

HW/BW (g/g) 0.00660.001 0.00660.001 0.00760.001 n.d. n.d.

Wild-type: littermate wild-type control; HGF tg: bitransgenic mice conceived in the absence of DOX; prenatal HGF tg: bitransgenic mice treated with DOX at birth and
maintained in DOX thereafter; silent HGF and a-MHC-tTA: littermate single transgenics. FS, fractional shortening; IVSTd, interventricular septum thickness in end
diastole; LVEDD, left ventricle end diastolic diameter; PWTd, posterior wall thickness in end diastole; IVSTs, interventricular septum thickness in end systole; LVESD, left
ventricle end systolic diameter; PWTs, posterior wall thickness in end systole; h/r, heart rate; HW, heart weight; BW, body weight; HW/BW, heart weight/body weight
ratio. n.d., not determined.
*p,0.005 versus wild-type (two-tailed T-test).
doi:10.1371/journal.pone.0014675.t001
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Figure 4. Contractile dysfunction, b-MHC re-expression and decreased Cx43 and cell-cell communication in adult HGF tg and
prenatal HGF tg mice. (A) Representative images of Left Ventricle long-axis echocardiogram (2D and M-Mode) of control (upper panels) and HGF
tg mice (lower panels). (B) Densitometric quantification normalized to Erk2 loading control and representative Western blots of heart ventricles from
control vs HGF tg (upper graph) n = 9 mice per group and prenatal HGF tg (lower graph) n = 3 mice per group. In the latter, HGF expression was
suppressed after birth. Re-expression of b-MHC and decreased Cx43 are evident in both bitransgenic mice compared to controls. *p,0.05 (two-tailed
T-test). (C) Representative images of Lucifer yellow dye diffusion in HGF tg and control edge-cut hearts (upper panels) and zoom-in of the areas
included in dashed boxes (lower panels). Bottom graph: quantification of pixel area showed that cell-to-cell spread of Lucifer yellow was significantly
decreased in HGF tg mice vs controls (n = 3 mice per group). {p,0.005 (one-tailed T-test). Bars: 100mm.
doi:10.1371/journal.pone.0014675.g004
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Figure 5. Induction of activated Met in postnatal cardiomyocytes leads to hypertrophy. (A) Experimental design (left), RT-PCR (middle)
and immunoblot (right) of Tpr-Met expression in postnatal Tpr-Met mice (P27) with Doxycycline (DOX) suppression until birth, compared to controls.
(B) Control and postnatal Tpr-Met hearts were analyzed under stereomicroscopy for comparison (upper panel). Four-chamber cut hearts are also
showed (lower panel). Bars: 5 mm. (C) Significantly increased heart weight (upper graph) and heart/body weight ratio (lower graph) indicate cardiac
hypertrophy in postnatal Tpr-Met mice (n = 6 animals per group). {p,0.005 vs control (two-tailed T-test). (D) Mean cross-sectional area (CSA) of
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(Figure 5C). Consistent with weight measurements, histology of

cardiac tissue and cross sectional area measurements from

postnatal Tpr-Met mice demonstrated increased ventricular

cardiomyocyte size, compared to controls (p,0.005; Figure 5D,E

and Figure S4). Moreover, cardiomyocytes from postnatal Tpr-

Met mice were not only characterized by an increased area, but

also by a high variability in size compared to cardiomyocytes from

control animals (Figure 5D,E and Figure S4), possibly due to

variegated expression of Tpr-Met protein in cardiomyocytes.

Altogether, these results suggest that the hypertrophic phenotype

in Tpr-Met heart may not only involve an increase in cross

sectional area but also myocyte disarray and heterogeneous

volume of the cardiomyocyte population. Only modest signs of

fibrosis were found (data not shown). Reactivation of fetal genes,

frequently associated with hypertrophy and heart failure, was also

observed, with increased ANF and b-MHC mRNA, as detected by

semi-quantitative RT-PCR (Figure 6A). When analyzed in

Western blot, the a- to b isoform switch of MHC, typical of heart

failure, was detected in postnatal Tpr-Met hearts (Figure 6B).

Strong activation of both phospho-Akt and phospho-Erk1,2 was

observed (Figure 6B). Notably, a strong reduction of Cx43 levels

was seen in postnatal Tpr-Met hearts by Western blot and

immunofluorescence analysis (Figure 6B,C and Figure S5),

indicating remodeling of gap junctions. In contrast, mild

upregulation of ZO-1 and no difference in N-Cadherin and b-

Catenin proteins were detected in Western blot (Figure 6B). The

change of Cx43 pattern was detectable already at P15, preceding

the onset of hypertrophy (data not shown).

Discussion

In this article, first we demonstrate that during the early postnatal

period of rapid growth, neonatal cardiomyocytes express the Met

receptor in vivo and can respond to exogenous HGF by activating

downstream signalling. These findings are corroborated in vitro in

H9c2 cardiomyoblast cell line. Second, we show that an extra-dose

of HGF expression (and consequent Met activation) acts on

neonatal cardiomyocytes by influencing both proliferating and

differentiating parameters. The finding that Erk1,2 phosphorylation

is significantly enhanced in HGF-stimulated cardiomyoblasts in vitro

and in neonatal cardiomyocytes of bitransgenic mice in vivo suggests

that the mitogenic activity of HGF arises from MAPK activation, in

concordance with a previous report [24]. Notably, transition from

hyperplastic to predominant hypertrophic growth in the mouse has

been estimated to happen during the first week after birth [25]. In

our HGF gain-of-function model, at seven days post birth, we found

increased proliferation and decreased sarcomeric protein levels,

indicating that the transition between the plastic phase and the

mature, post-plastic phase was temporally delayed.

It has been shown that cardiomyocyte cell proliferation is

accompanied by a decrease of cell-cell communication [26,27] and

Cx43 has been proposed to contribute to contact inhibition of cell

growth. Accordingly, together with increased proliferation during

postnatal age, we observed markedly low levels of Cx43. This is in

line with previous studies demonstrating that HGF inhibits

intercellular communications via gap junctions in hepatocytes

and keratinocytes [28,29], where it acts as a powerful mitogen.

While the HGF effect on the contractile machinery was limited in

time, Cx43 protein levels were maintained low lifelong. Cx43 was

found to be downregulated even in adult mice with HGF

expression suppressed the day following birth. This suggests that

an imperfect organization of cell-cell communication during

development triggers a functional defect that cannot be subse-

quently reversed during adult life. Remodeling of gap junctions

has been observed in a variety of cardiomyopathic conditions,

including hibernating myocardium, infarction and dilated cardio-

myopathy [30]. Observations in ischemic and hibernating heart

disease have led to the thesis that gap junction remodeling may

contribute not only to defects in electrical signal conduction, but

also to impairment of contractile force [31]. To date, evidence

linking gap junction remodeling with ventricular dysfunction has

been correlative, with the exception of studies done on chimeric

mice, composed of variable mixtures of Cx43-null and wild-type

cells throughout all tissues of the body [32]. These mice showed no

morphological abnormalities, myocardial fibrosis or hypertrophy,

but developed significant systolic dysfunction. Mechanistically, in

our gain-of-function model, regional dysregulation of Cx43 in

cardiomyocytes, due to excessive activation of the HGF/Met

system during development, could lead to a loss of coordinated

contraction throughout the heart wall and, consequently, local

increased systolic wall stress and ventricular dysfunction. We

propose that alteration of growth specifically in the fetal/neonatal

heart and/or of intercellular communication may prime it to

develop an increased susceptibility to disease.

The inducible character of our HGF mouse model demonstrates

that prenatal development is the specific stage influenced by

activation of Met signalling. In fact, at 3 months of age our HGF tg

mice developed a contractile defect, even when HGF expression

was suppressed after birth. This result is consistent with the finding

that the endogenous Met receptor is physiologically downregulated

in terminally differentiated cardiomyocytes, making the system

insensitive to further HGF stimulation. The high susceptibility of

prenatal age to Met stimulation is further confirmed by the fact that

expressing Tpr-Met instead of HGF starting from prenatal age was

lethal soon after birth. The Tpr-Met fusion protein lacks the

extracellular, transmembrane and juxtamembrane domains of Met

receptor and has gained the Tpr dimerization motif, which allows

constitutive and ligand-independent activation of the kinase. The

loss of juxtamembrane sequences necessary for the negative

regulation of kinase activity and receptor degradation prolongs

duration of Met signalling [22]. For this reason, the Tpr-Met model

represents a very strong gain-of-function model of Met activation

and yields an exacerbated cardiac defect with respect to the HGF

model. Hypoxia and growth restriction are well described causes of

developmental origin of cardiovascular disease. Ligand-indepen-

dent Met overexpression is induced by the hypoxia inducible factor-

1 (HIF-1) [33] and by depletion of von Hippel-Lindau protein,

which is responsible for suppressing HIF-1 levels during normoxia

[34]. Hypoxia and Met itself are responsible for inducing an

adaptive process known as invasive growth through which the

organism attains homeostasis, in particular foraging for supplies for

cell survival, such as oxygen and glucose. We propose that an

alteration of Met signalling, such as HGF/Met overexpression,

giving a message of nutrition or oxygen restriction, could mimic the

molecular effect of these environmental cues. Such a trigger could

ventricular cardiomyocytes is significantly higher in postnatal Tpr-Met compared to controls (left panel). n = 300 cells from 3 biological replicates per
group. {p,0.005 vs control (two-tailed T-test). Distribution curves (right panel) of counted CSA show a shift to the right side in postnatal Tpr-Met
mice as respect to controls. (E) Representative transversal sections of left ventricles show increased size in postnatal Tpr-Met cardiomyocytes. Left
panels: laminin (red-surface). Right panels: quadruple overlay with laminin (red- surface), Griffonia (blue-endothelial), DAPI (white-nuclear) and GFP
(green-intracellular). Bars: 35mm.
doi:10.1371/journal.pone.0014675.g005
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Figure 6. Tpr-Met expressing hearts show fetal gene re-expression and remodeling of Cx43. (A) Semi-quantitative RT-PCR analysis of
controls and postnatal Tpr-Met mice (P27) showed re-expression of ANF and b-MHC mRNA. Tubulin is used as loading control. (B) a to b isoform
switch of MHC, increased phosphorylation of downstream Akt and Erk1,2 and strongly decreased Cx43, mild increase of ZO-1 and normal N-Cadherin
and b-Catenin levels in postnatal Tpr-Met vs control hearts, analyzed by Western blot. Densitometric quantification normalized on Akt loading control
and representative blots below graphs are shown. n = 10 mice for each group. *p,0.05 and {p,0.005 vs control (two-tailed T-test) (C) Left panels:
representative confocal immunofluorescence images of left ventricle sections from postnatal Tpr-Met mice showed decreased staining of Cx43 (red),
compared to controls (upper panels). Bottom panels: quadruple overlay with Cx43: red; a-actinin: blue; DAPI: white-nuclear; GFP: green-intracellular;
Bars: 35mm. Quantification of Cx43 staining was performed with ImageJ. n = 6 controls and n = 3 postnatal Tpr-Met mice.
doi:10.1371/journal.pone.0014675.g006
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induce an adaptive response pathway, which would be maintained

over time through an epigenetic footprint. It will be interesting to

investigate whether elevated Met receptor levels have a putative role

in the etiology of hypoxia-initiated cardiac disease.

Sustained activation of Tpr-Met in postnatal cardiomyocytes (1

to 4 weeks) leads to increased cross sectional area of cardiomy-

ocytes, reactivation of fetal gene program, increased cardiac mass

and, ultimately, to lethal congestive heart failure at P28. Thus, the

constitutive activation of Tpr-Met gives to the cell a signal of

growth, which, in terminally differentiated cardiomyocytes, results

in switching on a hypertrophic program. Both Ras/RAF/MEK/

ERK and Akt pathways, which are downstream to Met and Tpr-

Met, are known to be involved in the growth promotion and

protection of cardiomyocytes from apoptosis. However, their

contribution in defining ‘‘physiological’’ versus ‘‘pathological’’

growth is still controversial. In the HGF model, the low level of

Met receptor, which cannot be superinduced by HGF stimulation

in the terminally differentiated cardiomyocyte, cannot shift the

equilibrium to hypertrophic growth. Interestingly, in the postnatal

Tpr-Met model we found only mild signs of interstitial fibrosis,

albeit pathological hypertrophic growth is usually associated with

scar tissue formation. This finding confirms the antifibrotic action

of HGF/Met activation, which has been demonstrated in a variety

of tissues, including the heart [35].

Tpr-Met expression induced a dramatic decrease in Cx43

protein levels in postnatal cardiomyocytes. This reinforces the

concept that Met receptor activation acts negatively on cell-cell

communication, albeit the precise mechanism by which this

suppression is mediated awaits elucidations. Evidence is in favour

of the view that both formation and maintenance of gap junctions

is critically dependent on the presence of correct mechanical

stabilization [36]. The interdependence between mechanical and

electrical junctions seems to be unilateral, since the absence of

Cx43 does not change the structure of intercalated discs with

respect to adherens junctions, as shown in an animal model with

cardiac-specific conditional knockout of Cx43 [37]. This seems to

be the case of our study, since both Tpr-Met and HGF-activated

Met signalling in cardiomyocytes maintain connexins in a

remodeled state, with Cx43 being downregulated at the protein

level and removed from end-to-end intercalated discs. Meanwhile

proteins constituting adherens junctions show no quantitative

abnormalities, though a slight increase of cell adhesion proteins

has been observed in heart of postnatal Tpr-Met mice. The

changes in Cx43 pattern distribution were seen at a fairly early

stage in the disease progress, suggesting that Cx43 may be an early

indicator of cardiac stress.

In conclusion, our mouse models support the idea that HGF/

Met stimulation promotes cardiomyocyte growth. Although other

studies have suggested that HGF may have a beneficial function in

pathological conditions, such as ischemic injury, there are no

experimental evidences in the current study to demonstrate that

enhancement of HGF/Met signalling is favourable in a physio-

logical setting. On the other hand, excessive HGF/Met signalling

in prenatal period may raise adverse effects and might be linked to

the pathogenesis of progressive cardiac disease.

Supporting Information

Figure S1 Neonatal HGF tg hearts show no morphological

defects. Haematoxylin-eosin staining of four-chamber cut sections

of P7 control (left) and HGF tg (right) hearts. Bars: 2mm.

Found at: doi:10.1371/journal.pone.0014675.s001 (0.88 MB TIF)

Figure S2 No signs of fibrosis nor hypertrophy were found in

adult HGF tg mice. (A) Trichrome staining does not show fibrosis

in either control or littermate HGF tg mice at 4 months of age. (B)

Cross-sectional area of myocytes was not different between control

and HGF tg mice at 4 months of age (green-surface: laminin;

green-intracellular: GFP; blue-nuclear: DAPI; red-endothelial:

Griffonia). Bars: 50 mm (A); 75mm (B).

Found at: doi:10.1371/journal.pone.0014675.s002 (3.14 MB TIF)

Figure S3 Postnatal Tpr-Met mice at P27 display signs of

congestive heart failure. (A) Tpr-Met mice exhibit dyspnea and

lethargy. Extensive oedema and haemorrhage of Tpr-Met lungs

shown by haematoxylin and eosin staining of lung tissue (B),

stereomicroscopy inspection (C) and lung weight measurement

(D), compared to littermate controls. n = 4 animals per group.

* p,0.01 vs control (two-tailed T-test). Bars: 20mm (A); 100mm

(B); 5mm (C).

Found at: doi:10.1371/journal.pone.0014675.s003 (1.23 MB TIF)

Figure S4 Single immunofluorescence stainings of quadruple

overlay shown in Figure 5E: Laminin (red-surface), Griffonia

(blue-endothelial), DAPI (white-nuclear), GFP (green-intracellular)

and 4 colours merge. Bars: 35 mm.

Found at: doi:10.1371/journal.pone.0014675.s004 (2.67 MB TIF)

Figure S5 Single immunofluorescence stainings of quadruple

overlay shown in Figure 6E: Cx43 (red), a-actinin (blue), DAPI

(white-nuclear), GFP (green-intracellular) and 4 colours merge.

Bars: 35 mm.

Found at: doi:10.1371/journal.pone.0014675.s005 (2.66 MB TIF)

Table S1 Primers used throughout the study.

Found at: doi:10.1371/journal.pone.0014675.s006 (0.31 MB

PDF)

Table S2 List of antibodies used in this study.

Found at: doi:10.1371/journal.pone.0014675.s007 (0.59 MB

PDF)
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