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Abstract

Background: The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how
CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly
different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the
substantial false positive and false negative rates associated with those methods. In this study, we use variations of four
common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap
(any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions
of overlap on CNV discovery.

Methodology and Principal Findings: We used a 56 K Illumina genotyping array enriched for CNV regions to generate
hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-
matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total
number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and
the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal
subjects ranged from 0 to 212.

Conclusions and Significance: Motivated by the availability of multiple publicly available genome-wide SNP arrays,
investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders.
However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on
the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both
guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for
validation of CNVs are needed.
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Introduction

Rapidly developing technologies such as chip array-based

genotyping platforms have facilitated recent large-scale interroga-

tion of the human genome. Many of these investigations have been

successful in identifying specific single nucleotide polymorphisms

(SNPs) associated with complex disorders [1,2], but these

investigations cannot identify all forms of genetic variation because

they focus on the common SNPs [1]. The availability of densely

spaced SNPs generated by genome-wide studies has also enabled

the investigation of genome structural variations, such as copy

number variants (CNVs). CNVs range in size from a few to several

thousand base pairs (bp), and because they frequently affect gene

dosage or structure, they are likely to have a biological impact.

Furthermore, CNVs are likely enriched in genes encoding proteins

related to human evolution and environmental adaptation [3],

making CNVs ideal candidates for genetic susceptibility factors in

complex disorders such as schizophrenia.

The presence of CNVs is inferred through array-based

technologies using calling algorithms that can vary substantially

and that can result in vastly different findings. These inferences are

made based on hybridization intensities and allele frequencies.

Large ratios of normalized intensities and/or higher than

anticipated heterozygosity at specific genomic locations indicate

excessive hybridization and suggest that a duplication, triplication,

or other excess copies of the genomic region may exist, whereas
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small intensity ratios or long runs of homozygosity suggest that a

deletion may be present.

The detection of previously undiscovered CNVs and the results

of CNV-disease association studies rely on how CNVs are defined.

Several authors have noted the large-scale variability between

CNV-detection methods, as well as the substantial false positive

and false negative rates associated with those methods (e.g.,

Winchester et al. [4], Zhang et al. [5]). For example, Winchester

et al. [4] examined the results of a number of different SNP-based

algorithms, including Birdsuite [6], Chromosome Copy Number

Analysis Tool (CNAT) (www.Affymetrix.com), Genome Alteration

Detection Algorithm (GADA; [7]), PennCNV [8], and Quan-

tiSNP [9]. These algorithms were applied to CEPH sample

NA12156 from HapMap, which was genotyped using both

Illumina and Affymetrix arrays, as well as sequenced for structural

variations using fosmid end-pair sequence (EPS) methods [10].

Whereas the EPS method detected a total of 638 CNV events, the

number of events reported by the CNV algorithms ranged from 8

to 546, and the false positive rate (based on lack of overlap with the

molecular method) ranged from 51% to 80%. Using the 299

events detected by Kidd et al. [10] on another CEPH sample

(NA15510), Winchester et al. [4] found false negative rates ranging

from 77% to 96%. Additionally, they compared consistency across

algorithms and found that no pair of algorithms had greater than

60% concordance. Consequently, Winchester et al. [4] recom-

mend using multiple algorithms and using software specific to the

array platform that generated the data to identify CNVs.

Whether a CNV is newly discovered compared to the CNVs

cataloged in a reference database depends on how overlap with

previously discovered CNVs is defined. There are at least two

issues to consider: (1) how to combine ‘‘overlapping’’ CNVs found

in unique individuals into one CNV and (2) how to determine

whether a potential newly discovered CNV overlaps with a

reference CNV. Redon et al. [11] define CNV regions (CNVRs) as

the union of locations where CNVs from multiple individuals have

any (i.e., at least 1 bp) overlap, and Perry et al. [12] use this

definition, as do Cooper et al. [13]. Redon et al. [11] also define

independent juxtaposed CNVs according to the criterion that

individual-specific CNVs must overlap by more than a threshold

proportion (e.g., 40% of the length of each CNV) in order to be

merged. In the context of identifying de novo CNVs in an individual

that were not present in either parent, McCarroll et al. [14] use

stringent criteria, joining CNVs across samples only if they overlap

across at least 80% of their length. Wain et al.’s [15] definition of

CNV loci is similar to Redon et al.’s independent juxtaposed

CNVs except that the CNV locus is defined as the intersection (not

the union) of the overlapping CNVs. Wain et al. [15] showed that

the selection of overlap threshold for defining CNV loci affected

the nominal significance level in a genome-wide association study

of amyotrophic lateral sclerosis. However, the general effects of

overlap definitions on identified CNVs have not been specifically

compared across studies.

In this study, we use variations of four common algorithms for

CNV detection (PennCNV [8], QuantiSNP [9], HMMSeg [16],

and cnvPartition [17]) and two definitions of overlap (any overlap

and an overlap of at least 40% of the smaller CNV; see Figure 1) to

illustrate the effects of varying algorithms and definitions of

overlap on CNV identification and discovery. Our initial sample

included 50 Caucasian schizophrenia cases and 48 age-, ethnicity-,

and gender-matched control subjects who were evaluated with a

56 K Illumina genotyping array enriched for CNV regions

(deCODE; www.decode.com). Although no algorithm variation

found a difference in CNV burden between the two groups (results

not shown), we found substantial differences between the results

generated by the algorithms for the number of CNVs, size of

CNVs, CNVs per person, and whether or not we discovered novel

CNVs.

Results

Merging CNVs Reported in Published Databases
As of March 2009, there were 29,292 CNVs reported in the

literature from normal subjects [18,19,20,21,22,23]. However, after

merging CNVs across individuals and between studies, only 6,735

unique CNVs (i.e., CNVRs) exist when applying the ‘‘any’’ overlap

criteria (Table 1). Of the 3,581 CNVs reported in the literature for

schizophrenia subjects [20,21,22,23], only 479 were not already

reported for normal subjects, and of these, 418 are unique. Using

the ‘‘40% either’’ overlap criterion instead of the ‘‘any’’ overlap

criterion increases these numbers only slightly (Table 1). Supple-

mental Figures S1, S2, S3, S4 show summary statistics for the

numbers and sizes of CNVs within merged CNV groups.

Effect of Algorithms on Number of CNVs Detected
Table 2 shows the number of CNVs detected in 96 subjects (48

schizophrenia subjects and 48 control subjects) for each algorithm by

type (loss versus gain; see Methods). The total number of CNVs

detected ranged from 3,765 based on PennCNV alone to 102 based

on requiring HMMSeg, cnvPartition with a 3-probe minimum,

PennCNV, and QuantiSNP to all identify the same CNV. With the

exception of the algorithms that involved cnvPartition with a 10-

probe minimum, most of the detected CNVs were less than 100

kilobases (kb). For all the detected CNVs, losses were more common

than gains, with the ratio ranging from 7-to-1 to 2-to-1. Again, with

the exception of the algorithms that involved cnvPartition with a 10-

probe minimum, most of the losses were less than 100 kb, whereas

for all of the algorithms except PennCNV, most of the gains were

greater than or equal to 100 kb. The average size of the detected

CNVs ranged from 46 kb based on PennCNV alone to 787 kb

based on cnvPartition with a 10-probe minimum (Table 3). The

largest CNV found by PennCNV or HMMSeg alone was under 2

megabases (Mb), and the largest found by QuantiSNP alone was

slightly under 5 Mb, but all other algorithms (all of which involved

cnvPartition) detected a 10-Mb CNV. The average number of

CNVs per person (Table 4) ranged from 39.2 based on PennCNV

alone to 1.1 based on requiring two algorithms (HMMSeg and

cnvPartition with a 10-probe minimum) or four algorithms

(HMMSeg, cnvPartition with a 3-probe minimum, PennCNV,

and QuantiSNP) to all identify the same CNV. Note that for six of

the algorithms, there were several subjects with no CNVs detected.

For Tables 2, 3, and 4, the results of algorithms that involve

determining overlap (the last four rows listed in each table) were the

same regardless of which definition of overlap was used (‘‘any’’ versus

‘‘40% either’’; see the Methods section and Figure 1). Supplemental

Figure S5 shows the range of sizes of overlapping CNVs (within

individual and chromosome) by chromosome for CNVs identified by

requiring HMMSeg, cnvPartition with a 3-probe minimum,

PennCNV, and QuantiSNP to all identify the CNV.

Effect of Algorithms on Number of ‘‘Newly Discovered’’
CNVs

Figure 2, supplemental Figures S6, S7, S8, S9, S10, and Tables 5

and 6 demonstrate that we found widely varying results depending

on the algorithm(s) used. Figure 2 demonstrates that requiring

both cnvPartition with a 3-probe minimum and HMMSeg to

identify CNVs using the ‘‘any’’ overlap criterion results in finding

one CNV not previously reported in the literature for normal

subjects (a gain at genomic locations 25046920–25130278 on

Effect of Algorithms on CNVs
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chromosome 8). However, this CNV was found in a control

subject, thus no novel CNVs were discovered in schizophrenia

subjects. Using HMMSeg alone with the ‘‘any’’ overlap criterion,

we found two novel CNVs (both gains) in schizophrenia subjects

(supplemental Figure S6), whereas using only cnvPartition with a

3-probe minimum with the ‘‘any’’ overlap criterion, we found

three novel CNVs (all losses) in schizophrenia subjects (supple-

mental Figure S7). Thus, using either algorithm alone resulted in

discovering novel CNVs in schizophrenia subjects (although not of

the same type), but using the criterion that both algorithms must

identify the same CNV resulted in the discovery of no novel CNVs

in schizophrenia subjects.

Tables 5 and 6 show results for all ten algorithms. Using the

‘‘any’’ overlap criterion, the number of novel CNVs compared to

previously published normal databases ranged from 189 to 0 over

the ten algorithms, and the number of novel CNVs found in our

Table 1. Number of CNVs in Normal and SCZ databases based on the literature, by overlap algorithm.

Overlap Algorithm1 Merged CNVs in Normals2
CNVs in SCZ from Lit, Not Previously
Discovered in Normals3

Merged Version of CNVs in SCZ from Lit,
Not Previously Discovered in Normals

Loss Gain Both Total Loss Gain Both Total Loss Gain Both Total

Any 4,007 1,273 1,455 6,735 135 344 479 119 293 6 418

40% Either 4,293 1,426 1,506 7,225 167 414 581 148 357 6 511

1‘‘Any’’ overlap means the CNVs share at least one base pair. ‘‘40% either’’ overlap means that the length of the overlap has to be at least 40% of the size of at least one
of the CNVs.

2Normals database contains 29,292 CNVs (9,538 gains; 18,983 losses; 771 both) before any kind of internal merging based on overlap is performed.
3SCZ database contains 3,581 CNVs before omitting any CNVs that overlap with the CNVs in Normals database.
doi:10.1371/journal.pone.0014456.t001

Figure 1. Illustration of how CNVs are merged based on the ‘‘any’’ overlap criterion (A) and the ‘‘40% either’’ overlap criterion (B).
(A) CNVs that have any overlap are merged. The start position of the resulting CNV is defined to be the minimum base pair position of the
overlapping CNVs, and the end position is defined to be the maximum base pair position of the overlapping CNVs. (B) CNVs are merged only if the
length of overlap is at least 40% of the size of at least one of the CNVs. The start position of the resulting CNV is defined to be the minimum base pair
position of the overlapping CNVs, and the end position is defined to be the maximum base pair position of the overlapping CNVs.
doi:10.1371/journal.pone.0014456.g001

Effect of Algorithms on CNVs
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schizophrenia subjects that were not previously reported in either

normal or schizophrenia subjects ranged from 55 to 0 (Table 5).

Using the ‘‘40% either’’ overlap criterion resulted in a slightly

higher number of novel CNVs (Table 6). The coordinates of

CNVs not previously published in databases of normal subjects are

given in supplemental Datasets S1–S10 in File S1.

Discussion

Multiple recent studies have used new whole-genome genotyp-

ing methods to discover structural variations in the DNA segments

of normal subjects and subjects with a variety of disorders. The

identification of novel rare CNVs in autism (NRXN1, SHANK3,

and CNTNAP2 [24]) and schizophrenia [21] has generated much

excitement. These CNVs range in size from a kb to several Mb.

The majority of these CNVs are thought to be rare, highly

penetrant, and found in only a small number of individuals (e.g.,

,1% of subjects with schizophrenia). However, the role of specific

genes within these CNVs that are associated with schizophrenia

remains unknown.

We, Zhang et al. [5], and others [4] demonstrate that the

number of CNVs identified depends on the algorithm(s) utilized.

Because CNVs are inferred from observed intensity data instead of

being directly called, as is the case for SNP genotypes, Winchester

Table 2. Number of CNVs detected in 96 subjects by each algorithm.

All CNVs CNVs ,100 kb CNVs $100 kb

Algorithm Loss Gain Total Loss Gain Total Loss Gain Total

PennCNV1 2,531 1,234 3,765 2,280 966 3,246 251 268 519

HMMSeg2 664 302 966 584 27 611 80 275 355

cnvPartition with 3 Probes3 590 103 693 432 28 460 158 75 233

cnvPartition with 5 Probes3 427 87 514 289 12 301 138 75 213

cnvPartition with 10 Probes3 175 75 250 93 4 97 82 71 153

QuantiSNP4 159 81 240 117 21 138 42 60 102

HMMSeg & cnvPartition with 3 Probes5 262 37 299 215 2 217 47 35 82

HMMSeg & cnvPartition with 5 Probes5 172 37 209 129 2 131 43 35 78

HMMSeg & cnvPartition with 10 Probes5 71 34 105 35 1 36 36 33 69

HMMSeg & cnvPartition with 3 Probes & PennCNV &
QuantiSNP6

87 15 102 56 2 58 31 13 44

1Default settings, then CNVs ,10 bp omitted.
2HMMSeg using Cooper et al. [13] implementation.
3Default settings, except minimum number of probes required to identify that a CNV was varied.
4Default settings, then CNVs with Log Bayes Factor ,30 omitted.
5Only CNVs identified by both HMMSeg and cnvPartition that overlap are included.
6Only CNVs identified by HMMSeg, cnvPartition, PennCNV, and QuantiSNP that overlap are included.
doi:10.1371/journal.pone.0014456.t002

Table 3. Size of CNVs (kb) detected in 96 subjects by each algorithm.

All CNVs CNVs ,100 kb CNVs $100 kb

Algorithm Mean SD Min Max Mean SD Min Max Mean SD Min Max

PennCNV 46 105 0.003 1,623 17 25 0.003 100 226 195 100 1,623

HMMSeg 126 215 1 1,751 16 25 1 100 316 260 100 1,751

cnvPartition with 3 Probes 345 998 0.1 10,283 31 33 0.1 99 966 1,544 102 10,283

cnvPartition with 5 Probes 443 1,138 1 10,283 40 35 1 99 1,013 1,605 102 10,283

cnvPartition with 10 Probes 787 1,550 8 10,283 30 17 8 94 1,266 1,827 103 10,283

QuantiSNP 410 849 1 4,733 39 36 1 99 911 1,123 100 4,733

HMMSeg & cnvPartition
with 3 Probes

247 801 1 10,283 28 32 1 99 827 1,375 103 10,283

HMMSeg & cnvPartition
with 5 Probes

344 942 2 10,283 38 36 2 99 857 1,403 103 10,283

HMMSeg & cnvPartition
with 10 Probes

607 1,270 8 10,283 32 10 8 52 907 1,484 121 10,283

HMMSeg & cnvPartition
with 3 Probes & PennCNV
& QuantiSNP

345 1,129 2 10,283 45 43 2 99 740 1,646 110 10,283

See Table 2 for explanation of algorithms.
doi:10.1371/journal.pone.0014456.t003
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et al. [4] recommend using two calling algorithms instead of just

one. However, although the net effect of this strategy decreases the

false positive rate, it also increases the false negative rate.

Furthermore, Carter [25] notes that it is inevitable that any

hybridization studies will generate false positive and false negative

results, regardless of how the data are analyzed. It is particularly

important that these two rates are assessed in any study that uses

SNP arrays for CNV detection, as high false positive rates will lead

to publicly available databases becoming populated with regions

incorrectly called as CNVs. However, without a true gold standard

(e.g., full-genome sequencing), the false positive and false negative

rates of any particular algorithm or combination of algorithms are

impossible to estimate. Many of the regions in CNV databases

today will prove to be false discoveries, particularly loci that have

not been validated independently or are not replicated between

studies [25]. Finally, in hybridization studies, standardized

measures of uncertainty (e.g., confidence intervals) are unavailable

in the literature due to unknown statistical properties of the

algorithms (e.g., some published results were derived from

algorithms that include manual inspection), inconsistent definitions

of a ‘‘reference’’ genome, and a lack of commonly implemented

gold standards.

Despite multiple reports of associations between specific CNVs

and a disease, it is important to note that CNVs are also

commonly found in normal individuals [26], and the presence of a

CNV does not necessarily indicate that it is related to the disease

phenotype [27]. Therefore, the selection of the appropriate

reference database of CNVs found in ‘‘normal’’ individuals is

critical. With a few exceptions, the majority of previous

publications do not discuss in detail the definition of ‘‘novel’’

CNVs, that is, CNVs that were not previously found in normal

reference databases or literature. We demonstrate that the choice

of algorithm and overlap criteria affects how many (if any) CNVs

are found that have not been previously reported in the literature.

Limitations of this study include the relatively low array density

of the 56 K chip we used compared to current commonly used

higher density chips. However, both Winchester et al. [4], who

used Illumina 1 M and Affymetrix 6.0 arrays, and Zhang et al. [5],

who used the Affymetrix 6.0 array, also found large variability in

the number of CNVs detected depending on the algorithm used.

Another limitation of our study is that because we did not find

novel CNVs associated with schizophrenia, we did not proceed

with molecular validation. However, the main point of this study

was to demonstrate the marked variability in putative CNV

detection between algorithms, not to demonstrate whether any of

the CNVs were in fact valid.

In summary, both better guidelines for identifying CNVs using

high-density arrays and a gold standard for validation of CNVs are

needed. Although the availability of high-density SNP arrays

increases the opportunity for discovery of novel genetic variants,

much caution is necessary to establish CNV–disease associations.

In general, molecular validation is necessary to confirm the

presence of CNVs. Ultimately, the role of putative ‘‘disease-

causing’’ gene(s) that are disrupted within CNVs will require

additional confirmatory molecular genetic and molecular biologic

studies. The application of the various algorithms to datasets that

do not include molecular validations will generate many false

positives. Issues of sensitivity and specificity will need to be further

evaluated with next-generation sequencing (such as genomic

resequencing data from the 1000 Genome Project; http://

browser.1000genomes.org/index.html). The availability of ge-

nome-wide sequencing data will help to establish consensus

guidelines for the identification and validation of true CNVs.

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. Both the Consortium on the

Table 4. Number of CNVs per person detected in 96 subjects by each algorithm.

All CNVs CNVs ,100 kb CNVs $100 kb

Algorithm Mean SD Min Max Mean SD Min Max Mean SD Min Max

PennCNV 39.2 11.2 14 78 33.8 9.0 14 60 5.4 4.8 0 30

HMMSeg 10.1 3.4 3 26 6.4 1.9 3 12 3.7 2.7 0 17

cnvPartition-with 3 Probes 7.2 3.6 1 23 4.8 2.3 1 12 2.4 2.7 0 20

cnvPartition with 5 Probes 5.4 3.1 1 23 3.1 1.7 0 7 2.2 2.6 0 20

cnvPartition with 10 Probes 2.6 2.6 0a 21 1.0 0.9 0 3 1.6 2.3 0 19

QuantiSNP 2.5 2.7 0b 20 1.4 1.2 0 5 1.1 2.5 0 19

HMMSeg & cnvPartition-with 3
Probes

3.1 1.7 0c 8 2.3 1.4 0 7 0.9 1.1 0 5

HMMSeg & cnvPartition with 5
Probes

2.2 1.5 0d 6 1.4 1.1 0 5 0.8 1.1 0 5

HMMSeg & cnvPartition with 10
Probes

1.1 1.2 0e 5 0.4 0.5 0 2 0.7 1.0 0 5

HMMSeg & cnvPartition with 3
Probes & PennCNV & QuantiSNP

1.1 1.1 0f 5 0.6 0.8 0 3 0.5 0.8 0 4

See Table 2 for explanation of algorithms.
a4 control and 5 schizophrenia subjects with no identified CNVs.
b6 control and 6 schizophrenia subjects with no identified CNVs.
c1 control and 2 schizophrenia subjects with no identified CNVs.
d5 control and 5 schizophrenia subjects with no identified CNVs.
e15 control and 19 schizophrenia subjects with no identified CNVs.
f19 control and 17 schizophrenia subjects with no identified CNVs.
doi:10.1371/journal.pone.0014456.t004

Effect of Algorithms on CNVs
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Genetics of Schizophrenia (COGS) and the University of

Washington (UW) Alzheimer’s Disease Research Center (ADRC)

studies were approved by both the UW institutional review board

and the VA Puget Sound Health Care System institutional review

board. All subjects provided written informed consent for the

collection of samples and subsequent analyses.

Subjects
We recruited 50 schizophrenia subjects and 20 control subjects

between 2003 and 2008 as part of the NIH-funded COGS [28].

Schizophrenia subjects met the DSM-IV-TR criteria for schizo-

phrenia via the administration of the Diagnostic Interview for

Genetic Studies (DIGS; [29]) and the Family Interview for Genetic

Figure 2. Process Flow Chart based on overlap between HMMSeg and cnvPartition (3-probe minimum). Numbers are based on the
‘‘any’’ overlap criterion. All data on sex chromosomes have been omitted. Gains are compared only to gains or both, and losses are compared only to
losses or both.
doi:10.1371/journal.pone.0014456.g002

Effect of Algorithms on CNVs
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Studies (FIGS; [30]). The ascertainment and screening procedures

and inclusion/exclusion criteria are discussed in detail by Calkins

et al. [28]. Control subjects did not meet DSM criteria for

schizophrenia or other psychotic disorders and did not have a

family history of schizophrenia or other psychotic disorders. An

additional 28 control subjects were obtained from the UW ADRC

[31].

Of the 50 schizophrenia subjects, DNA from 1 subject was not

genotyped due to poor DNA quality, and 1 subject was omitted

from the analysis due to a substantially lower call rate compared to

all of the other samples. The 48 remaining schizophrenia subjects

had a mean age of forty-one years (SD 12), and 9 (19%) were

female, compared with a mean age of forty-four years (SD 13) for

the 48 control subjects, of whom 9 (19%) were female.

SNP Genotyping
We prepared DNA from peripheral blood samples using standard

protocols in order to avoid artifacts related to transformation and

cell culture. We submitted 98 samples (50 schizophrenia subjects

and 48 age-, ethnicity-, and gender-matched controls) to deCODE

Genetics (www.decode.com) for genotyping. Because of our specific

interest in CNVs, we chose to genotype our samples using the 56 K

CNV-enriched deCODE-Illumina BeadChip array. This platform

contains 52,167 markers: 34,965 polymorphic markers (67%) and

17,202 nonpolymorphic markers (33%). After excluding markers on

sex chromosomes, there were 46,875 markers, including 32,159

polymorphic markers (69%) and 14,716 nonpolymorphic markers

(31%), with an average distance of 59 kb between markers (SD =

228 kb, range = 1 to 21,470 kb).

Table 5. ‘‘Newly discovered’’ CNVs detected by each algorithm based on 48 normal and 48 schizophrenia subjects, using the
‘‘any’’ overlap criterion.

Algorithm
CNVs Not Previously Discovered
in Normals

CNVs Found Only in SCZ, Not
Previously Discovered in
Normals

CNVs Found Only in SCZ, Not
Previously Discovered in Normals
or SCZ

Loss Gain Both Total Loss Gain Both Total Loss Gain Both Total

PennCNV 72 84 33 189 24 31 2 57 24 29 2 55

HMMSeg 4 6 10 2 2 2 2

cnvPartition with 3 Probes 12 2 14 3 3 3 3

cnvPartition with 5 Probes 10 1 11 4 4 4 4

cnvPartition with 10 Probes 2 2 1 1 1 1

QuantiSNP 1 1 0 0

HMMSeg & cnvPartition with 3 Probes 1 1 0 0

HMMSeg & cnvPartition with 5 Probes 1 1 0 0

HMMSeg & cnvPartition with 10 Probes 0 0 0

HMMSeg & cnvPartition with 3 Probes &
PennCNV & QuantiSNP

1 0 0

See Table 2 for explanation of algorithms.
doi:10.1371/journal.pone.0014456.t005

Table 6. ‘‘Newly discovered’’ CNVs detected by each algorithm based on 48 normal and 48 schizophrenia subjects, using the ‘‘40%
either’’ overlap criterion.

Algorithm
CNVs Not Previously Discovered
in Normals

CNVs Found Only in SCZ, Not
Previously Discovered in
Normals

CNVs Found Only in SCZ, Not
Previously Discovered in Normals
or SCZ

Loss Gain Both Total Loss Gain Both Total Loss Gain Both Total

PennCNV 83 98 31 212 30 34 2 66 30 28 2 60

HMMSeg 6 10 16 1 4 5 1 3 4

cnvPartition with 3 Probes 14 4 18 3 3 3 3

cnvPartition with 5 Probes 10 3 13 4 4 4 4

cnvPartition with 10 Probes 2 1 3 1 1 1 1

QuantiSNP 1 1 0 0

HMMSeg & cnvPartition with 3 Probes 1 2 3 1 1 0

HMMSeg & cnvPartition with 5 Probes 2 2 0 0

HMMSeg & cnvPartition with 10 Probes 1 1 0 0

HMMSeg & cnvPartition with 3 Probes &
PennCNV & QuantiSNP

1 1 0 0

See Table 2 for explanation of algorithms.
doi:10.1371/journal.pone.0014456.t006
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Identifying CNVs
We received SNP intensity data on genotypes with a call rate of

greater than 95% from deCODE and then read these into

Illumina’s BeadStudio software (version 3.1.3.0; Genotyping

version 3.3.7; Illumina Genome Viewer 3.2.9; www.illumina.

com). Intensities were normalized by forming clusters using the

raw data (as opposed to forming clusters using some external

source, such as HapMap samples). The resulting log2 R ratios

(LRR) and B-allele frequencies (BAF) [32] were used to identify

CNVs on autosomes for each subject. We used variations of four

algorithms for CNV detection: PennCNV [8] (May 1, 2010),

QuantiSNP [9] (version 2.3), Cooper et al.’s [13] implementation

of the Hidden Markov Segmentation Model (HMMSeg, [16]), and

cnvPartition [17] (version 1.2.1). For PennCNV, we used the

default settings, then omitted CNVs less than 10 bp. For

QuantiSNP, we used the default settings, and then, following the

advice of the documentation, we omitted CNVs with a Log Bayes

Factor less than 30. For cnvPartition, we used the default settings,

except we varied the minimum number of consecutive probes

necessary to define a CNV (3, 5, or 10). For HMMSeg, for

homozygous deletion (loss) predictions, we required events to be at

least 3 probes and 1 kb in length with an average LRR value less

than 21. For hemizygous deletion events, we required at least 10

probes and 1 kb in length with an average LRR value ,20.25,

and we required the proportion of heterozygous SNP calls to be

less than 10%. For amplification events (gains), we required a

minimum of 10 probes and 1 kb in length, LRR values of greater

than 0.25, and BAF deviation values at heterozygous SNPs greater

than 0.05. For all results except those from HMMSeg, none of the

CNVs spanned the centromere (coordinates obtained from UCSC

genome browser database; http://genome.ucsc.edu). One CNV

identified by HMMSeg that spanned the centromere was split into

two separate CNVs on either side of the centromere region.

Besides these six different algorithms (PennCNV, QuantiSNP,

HMMSeg, and cnvPartition with a 3-, 5-, or 10-probe minimum),

we also looked at results where CNVs were required to be

identified by both the HMMSeg algorithm and the cnvPartition

algorithm (3-, 5-, or 10-probe minimum) for each subject/

chromosome combination. We also looked at results where CNVs

were required to be identified by HMMSeg, cnvPartition with a 3-

probe minimum, PennCNV, and QuantiSNP. In these instances,

the CNVs identified by the two or four algorithms had to overlap;

the start position of the resulting CNV was defined as the

minimum bp position of the two overlapping CNVs, and the end

position was defined as the maximum bp position of the

overlapping CNVs. We used two different methods to determine

whether two CNVs overlapped: (1) any overlap and (2) a condition

where the length of the overlap had to be at least 40% of the size of

at least one of the CNVs (denoted as the ‘‘40% either’’ criterion).

Figure 1 illustrates these two different methods. In all cases, losses

were compared only with losses, and gains were compared only

with gains.

Finding CNVs Previously Unreported in the Literature
To determine whether any of the CNVs we discovered in our

schizophrenia subjects had not yet been reported in the literature

and did not appear in our own normal control subjects, we first

compared all of our CNVs (from both our normal control and

schizophrenia subjects) to a database constructed from CNVs that

had been reported in the literature for normal subjects. We then

disregarded the CNVs we had discovered that were in this

‘‘normals’’ database and/or were present in our normal control

subjects. To determine whether we discovered any CNVs in our

schizophrenia subjects that had not been previously reported in

either normal or schizophrenia subjects and that were not present

in our own normal control subjects, we compared the remaining

CNVs in our schizophrenia subjects to a database constructed

from CNVs that had been reported in the literature for

schizophrenia subjects.

Constructing the Database of CNVs in Normal Subjects

from the Literature. To construct the database of CNVs that

have been reported in the literature for normal subjects, we

initially combined CNVs from six sources: Itsara et al. [19],

Database of Genomic Variants (DGV; http://projects.tcag.ca/

variation/)[18], ISC [20], Stefansson et al. [21], Walsh et al. [22],

and Xu et al. [23]. CNVs reported on X and Y chromosomes were

omitted. CNVs reported in Itsara et al. [19] and ISC [20] were

translated from hg17 to hg18 using LiftOver (http://genome.ucsc.

edu/cgi-bin/hgLiftOver). CNVs reported by Itsara et al. [19]

from the hgdp study were omitted because subjects had

neurological conditions. CNVs reported in Database of Genomic

Variants (DGV; http://projects.tcag.ca/variation/) that were less

than 10 bp were omitted, as were CNVs for which both gain and

loss were reported as blank or 0.

We denoted this database ‘‘CNVs in Normals from Lit’’ (see

Figure 2). This database contained CNVs that were reported as

gains and losses, as well as some CNVs that were reported as both

gains and losses (denoted ‘‘both’’). We then merged overlapping

CNVs to create a set of unique CNVs, and we denoted this

database ‘‘Merged CNVs in Normals.’’ When determining

whether CNVs overlapped, we compared gains only to gains or

both, and we compared losses only to losses or both. We used our

two different definitions of overlap (‘‘any’’ and ‘‘40% either’’) to

produce two distinct databases.

Constructing the Database of CNVs Not Previously

Discovered in Normal Subjects. To construct a database of

CNVs that we had discovered that were not previously reported in

normal subjects, we compared our CNVs with the ‘‘Merged CNVs

in Normals’’ database and kept only CNVs that did not overlap.

Again, we compared gains only to gains or both, and we compared

losses only to losses or both. We denoted this database ‘‘CNVs Not

Previously Discovered in Normals’’ (see Figure 2). We used our

two different definitions of overlap to produce two distinct

databases. From these remaining CNVs, we constructed a new

database by keeping only those CNVs that were present in our

schizophrenia subjects and not present in our normal control

subjects; we denoted this database ‘‘CNVs Found Only in SCZ,

Not Previously Discovered in Normals.’’

Constructing the Database of CNVs in Schizophrenia

Subjects from the Literature. To construct the database of

CNVs that had been reported in the literature for schizophrenia

subjects, we initially combined CNVs from four sources [20,22].

We denoted this database ‘‘CNVs in SCZ from Lit’’ (see Figure 2).

We then compared these CNVs with the CNVs in the ‘‘Merged

CNVs in Normals’’ database and kept only CNVs that did not

overlap. Again, we compared gains only to gains or both, and we

compared losses only to losses or both. We denoted this database

‘‘CNVs in SCZ from Lit, Not Previously Discovered in Normals.’’

We used our two different definitions of overlap to produce two

distinct databases.

Constructing the Database of CNVs Found Only in

Schizophrenia Subjects and Not Previously Reported in

Either Normal or Schizophrenia Subjects. To determine

whether we had discovered any CNVs in our schizophrenia

subjects that had not been previously reported in either normal or

schizophrenia subjects, we compared the CNVs in the database

‘‘CNVs Found Only in SCZ, Not Previously Discovered in

Normals’’ to the CNVs in the merged version of the database

Effect of Algorithms on CNVs
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‘‘CNVs in SCZ from Lit, Not Previously Discovered in Normals.’’

Again, we compared gains only to gains or both, and we compared

losses only to losses or both. We denoted this database ‘‘CNVs

Found Only in SCZ, Not Previously Discovered in Normals or

SCZ.’’ We used our two different definitions of overlap to produce

two distinct databases.

Statistical Analysis
All data manipulation and statistical computations using the

results of the CNV analyses were done in R version 2.8.1 [33].

Supporting Information

Figure S1 Mean, Min, Max, and Range of CNV sizes within

merged CNV Groups vs. number of CNVs in the group, using the

‘‘any’’ overlap criterion, for CNVs reported in the literature for

normal subjects.

Found at: doi:10.1371/journal.pone.0014456.s001 (2.80 MB TIF)

Figure S2 Mean, Min, Max, and Range of CNV sizes within

merged CNV groups vs. number of CNVs in the group, using the

‘‘40% either’’ overlap criterion, for CNVs reported in the

literature for normal subjects.

Found at: doi:10.1371/journal.pone.0014456.s002 (2.80 MB TIF)

Figure S3 Number of CNVs per chromosome for CNVs

reported in the literature for normal subjects, as well as number

of CNVs based on merging overlapping CNVs.

Found at: doi:10.1371/journal.pone.0014456.s003 (2.80 MB TIF)

Figure S4 Distribution of CNV size for CNVs reported in the

literature for normal subjects, as well as distribution of CNV size

based on merging overlapping CNVs.

Found at: doi:10.1371/journal.pone.0014456.s004 (2.80 MB TIF)

Figure S5 Range of sizes of overlapping CNVs (within

individual and chromosome) vs. chromosome for CNVs identified

by requiring HMMSeg, cnvPartition with a 3-probe minimum,

PennCNV, and QuantiSNP to all identify the CNV. N = 102

CNV groups (15 gains; 87 losses).

Found at: doi:10.1371/journal.pone.0014456.s005 (2.80 MB TIF)

Figure S6 Process Flow Chart based on HMMSeg alone.

Found at: doi:10.1371/journal.pone.0014456.s006 (2.80 MB TIF)

Figure S7 Process Flow Chart based on cnvPartition (3-probe

minimum) alone.

Found at: doi:10.1371/journal.pone.0014456.s007 (2.80 MB TIF)

Figure S8 Process Flow Chart based on PennCNV alone.

Found at: doi:10.1371/journal.pone.0014456.s008 (2.80 MB TIF)

Figure S9 Process Flow Chart based on QuantiSNP alone.

Found at: doi:10.1371/journal.pone.0014456.s009 (2.80 MB TIF)

Figure S10 Process Flow Chart based on overlap between

HMMSeg, cnvPartition (3-probe minimum), PennCNV, and

QuantiSNP.

Found at: doi:10.1371/journal.pone.0014456.s010 (2.80 MB TIF)

File S1 Datasets S1–S10. Coordinates of CNVs not previously

published in databases of normal subjects.

Found at: doi:10.1371/journal.pone.0014456.s011 (0.24 MB

XLS)
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