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Abstract

Background: Information processing in neuronal networks relies on the network’s ability to generate temporal patterns of
action potentials. Although the nature of neuronal network activity has been intensively investigated in the past several
decades at the individual neuron level, the underlying principles of the collective network activity, such as the
synchronization and coordination between neurons, are largely unknown. Here we focus on isolated neuronal clusters in
culture and address the following simple, yet fundamental questions: What is the minimal number of cells needed to exhibit
collective dynamics? What are the internal temporal characteristics of such dynamics and how do the temporal features of
network activity alternate upon crossover from minimal networks to large networks?

Methodology/Principal Findings: We used network engineering techniques to induce self-organization of cultured
networks into neuronal clusters of different sizes. We found that small clusters made of as few as 40 cells already exhibit
spontaneous collective events characterized by innate synchronous network oscillations in the range of 25 to 100 Hz. The
oscillation frequency of each network appeared to be independent of cluster size. The duration and rate of the network
events scale with cluster size but converge to that of large uniform networks. Finally, the investigation of two coupled
clusters revealed clear activity propagation with master/slave asymmetry.

Conclusions/Significance: The nature of the activity patterns observed in small networks, namely the consistent emergence
of similar activity across networks of different size and morphology, suggests that neuronal clusters self-regulate their
activity to sustain network bursts with internal oscillatory features. We therefore suggest that clusters of as few as tens of
cells can serve as a minimal but sufficient functional network, capable of sustaining oscillatory activity. Interestingly, the
frequencies of these oscillations are similar those observed in vivo.
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Introduction

Intense synchronous firing activity is one of the hallmarks of

developing and active neural networks. These synchronized events

have been extensively mapped both in in vivo and in vitro

investigations [1]. It was shown that the collective activity of

neuronal networks is marked by bursts of intense firing (several

hundreds of milliseconds), separated by longer periods (several

seconds) of only sporadic firing [1,2]. Synchronous activity

patterns are thought to play a major role in the development of

the neuronal circuitry [3], as well as in information processing

(coding), in sustaining memory and in regulating network level

activity [1,4,5,6,7,8]. More specifically, it was shown that tetanic

electrical stimulations induce network-level pathway-dependant

modifications to coupling strength [4,9]. The collective activity of

neurons was shown to have both complex temporal organization,

as well as auto-correlations over long time periods [5,6]. In slices

and in vivo this spontaneous activity involves network level

oscillations which are characterized by high coherency over distant

network sites [10]. In addition, repetitive spatio-temporal patterns

of firing with defined propagation schemes were identified in the

network spontaneous activity [11,12,13,14]. These patterns could

be artificially evoked by targeted electrical [15] and chemical [16]

stimulations.

Despite the ubiquitous nature of synchronized activity patterns

in neural networks, and the growing understanding of neuronal

function, the manner by which a network of neurons and glia cells

can give rise to synchronized activity is still under intensive

research [11,14,17,18,19]. Understanding the functional proper-

ties of neurons has evolved from a basic view of threshold-

dependent pulse generators that perform simple activity integra-

tion to highly complex processors that perform a variety of self

regulated computational tasks [20]. Interestingly, this evolved view

of single neurons is insufficient to describe the collective dynamics

and activity patterns of connected neurons [17].

Understanding how the electrical activity properties vary upon

crossover from single neurons to the network level, may provide

the insight needed to reveal the innate properties of neuronal

network dynamics. This understanding is particularly intriguing as

it may be implemented in various fields, ranging from neural

network modeling [21,22], network theory [23], and engineering

and bio inspired (bionic) devices [16,24], to name just a few.
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To characterize the transition from single cells to neuronal

populations in terms of their electrical activity, we engineered

small isolated neuro-glia clustered networks of various sizes and

examined their collective activity. Clusters are of particular interest

as they form spontaneously in vitro with only minimal external

intervention [25,26,27,28,29]. Moreover, clustering characterizes

many biological brain networks. We promote the formation of

clusters by exploiting the tendency of dissociated neuronal cells to

self-organize into patterned architectures due to their preferential

attachment to cell-attracting chemistries, such as poly-d-lysine

(PDL) or to rough surfaces, such as carbon nanotubes (CNTs)

[26,28]. By controlling their dimensions, we can systematically

form and map the activity of neural networks with well identified

cell numbers, ranging between several cells up to several hundreds.

As we show below, such small systems demonstrate well

characterized activity reflecting a clear transition from sporadic

to well synchronized network level activity.

Results

Engineering freely organized small neuronal circuits
Isolated small neuronal circuits or neuronal clusters made of a

few to several hundreds of neurons and glia cells were engineered

using rectangular arrays of adhesive micro islands made of CNTs

or PDL deposited on planar recording electrodes [28]. Dissociated

neurons and glia cells placed on such integrated multi electrode

arrays or neuro-chips, self-organized into small isolated clusters

with dimension between 20–120 mm in diameter (Figure 1). The

activity of each cluster was recorded by an underlying micro-

electrode allowing recordings from as many as 60 isolated islands

in parallel.

To determine the cluster size and cellular arrangement

within each cluster, neurons, glia and cell nuclei were specifically

labeled (with GFAP, TUJ1 and DAPI, respectively) and imag-

ed (Figure 1b). We found that each cluster was made of both

neurons and glia cells spatially arranged as glia carpets with

overlying neurons (see details in Text S1). Moreover, neurons in

all clusters exhibited extensive neurite growth (Figure 1b) and

synapse formation (Figure S1). The area of each cluster was

used as a measure of its size and the number of cells in each cluster

was estimated from the cluster size (see details in Text S2 and

Figure S2).

Emergence of network events in small neuronal circuits
After two weeks in vitro, neuronal clusters exhibited noticeable

spontaneous activity (Figure 2a). We note that since each cluster

was recorded by a single electrode, the recorded activity represents

the sum of firing of many neurons. Consequently, we defined a

population-level cluster activity intensity measure (CAI)(Figure 2b)

which is estimated from the recorded voltage waveform (see details

in Text S3, Figure S3 and Figure S4). The recorded spontaneous

activity of isolated clusters was marked by synchronized bursting

events or network bursts (NB). These network events are similar to

the network bursts observed in large homogeneous networks

composed of hundreds of thousands of cells. More specifically,

they are characterized by short time windows of intense neuron

firing followed by longer intervals of sporadic firing (Figure 2c).

Additional similarity is in the intra burst patterns and in the burst

statistics. These topics are presented in the next sections.

The activity of all the clusters in each neuro-chip was recorded

and analyzed. During the self-organization process, some of the

clusters became linked by bundles of axons. To distinguish

between isolated and linked clusters, we calculated the Pearson

correlation between the activities of all cluster pairs. As can be seen

in Figure 1c, the activity of some clusters is correlated, but there

are some pairs of clusters with vanishingly small correlations. The

latter are the isolated clusters whose activity we analyzed while

connected clusters, which had significant correlation with at least

one other cluster, were eliminated from the analysis. The

identification of linked clusters was also validated by visual

inspection (bright field and fluorescent images). Finally, the

temporal loci, as well as the width for each NB were detected

(see details in Text S4 and Figure S5) and the inter burst intervals

(IBIs) were calculated.

Temporal characteristics of network bursting
It was previously shown that inter-burst-intervals (IBIs) of NBs

are characterized by a long tail multi time-scale distribution [5].

Interestingly, the IBI distribution of our small clusters revealed

similar behavior (Figure 3a). The general trend is that smaller

networks exhibit network bursting with lower rates (IBIs on the

order of minutes), while larger clusters exhibit faster network

Figure 1. Isolated cluster formation on CNT multi electrode
array (MEA). (a) A bright field image of a neuronal cluster on a CNT
electrode. The electrode diameter is 30 mm and the inter electrode
distance is 200 mm (b) A fluorescent microscope image of the cluster in
(a), stained for cell nuclei (DAPI-blue), glia (GFAP-green) and neurons
(TUJ1-red). (c) A bright field image of clusters on a MEA chip. Color
coded lines show the Pearson correlation between the electrical
activities of all cluster pairs above a threshold of 0.1. The electrically
isolated clusters (red full circles) were distinguished from linked clusters
(blue full circles) both functionally (no significant correlations to other
clusters) and visually (no apparent extensions to other clusters).
doi:10.1371/journal.pone.0014443.g001
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bursting (IBIs on the order of seconds). The fast bursting rate is

comparable to that of large homogeneous networks (Figure 3c).

Despite this apparent trend, there is also significant variability in

the network bursting rate between different clusters of the same

size. Additionally, in some of the clusters, the IBI distribution was

characterized by more than one peak due to the fact that many

NBs were grouped into bursts of NBs with short intervals (on the

order of one second) between them. In Figure 3b we show the NB

width distribution for a typical cluster. This distribution has a

narrow typical time scale, as shown in Figure 3b, with high

variability in the mean NB width between different clusters

(Figure 3d).

Closer inspection of the effect of the cluster size
The effect of the size of the clusters on the network bursting rate

and event width is shown in Figures 3c–f. Figures 3c,d show results

from all analyzed clusters while figures 3e,f show the average rate

and width, respectively, calculated in consecutive logarithmic time

windows (error bars represent the standard deviation of the mean

value – standard deviation of the data points in each bin divided

by the square root of the number of data points). The most

intriguing feature is the onset of network activity at clusters with as

few as several tens of cells. Apparently, clusters larger than

5000 mm2, corresponding to about 40 cells (see details in Text S2),

already exhibit synchronized network activity. We therefore

approximate that the upper limit for the onset of synchrony is

about 40 cells. Based on our data we can estimate that a transition

Figure 2. Network bursts in small isolated clusters. (a) A typical
voltage trace of a network burst recorded in a single electrode. (b) The
cluster activity intensity (CAI) (calculated in 10 ms bins) of data shown
in (a). (c) Raster plot of the activity intensity of three isolated clusters
recorded from the same MEA chip (the blue rectangle marks the time
window in (b)). Recorded activity is characterized by network bursts
(NBs).
doi:10.1371/journal.pone.0014443.g002

Figure 3. Collective synchronized activation in small clusters. (a) and (b) show the IBI and the NB widths distributions, respectively, in a
typical isolated cluster. The IBI distribution is characterized by an asymmetric distribution with non vanishing probability for the occurrences of long
intervals, while the width distribution is characterized by a typical time scale. The average NB rate (1/IBI) and width (orange line in (a) and (b),
respectively) are calculated for every cluster separately and are presented as a function of the cluster’s size (in log scale) in (c) and (d), respectively.
Ninety-seven clusters from six different cultures (three CNT and three PDL-coated electrodes) were analyzed. Four additional cultures of uniform
networks were analyzed for comparison (black dots). The average NB rate and width were calculated for consecutive and equal time bins on a
logarithmic scale in (e) and (f), respectively. The error bars represent the standard deviation of the average value in every bin. The high variability in
the activity properties observed in clusters is also observed in uniform networks of 106 cells (black dots). The red area (corresponding to clusters of
2500–5000 mm2) marks the estimated transition to spontaneously bursting clusters (its upper limit corresponds to approximately 40 cells).
doi:10.1371/journal.pone.0014443.g003
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occurs within a cluster area range of 2500–5000 mm2, corre-

sponding to about 20–40 cells (marked by the red box in

Figures 3c,d). None of the smaller clusters in our experiments

(below 2500 mm2) exhibited synchronized network activity. This

result suggests the existence of a minimal network size which is

required to generate and sustain collective activity. It is important

to note that such small clusters (assigned zero NB rate in Figure 3c)

do exhibit tonic single spike activity. However, the single neuron

firing is not sufficient to generate collective network bursts. There

are also silent small clusters that did not exhibit any electrical

activity. Those were eliminated from the analysis (see Methods for

further details). As was mentioned above, the NB rate and the NB

width appear to increase with cluster size (Figure 3c,d – colored

dots). This increase converged to the NB rate and width of large

uniform networks of 106 cells (Figure 3c,d - black dots).

Synchronous oscillations within the network bursts
We now inspect the internal temporal features of the network

events. First, similarly to large homogeneous networks [19], most

of the network events recorded in isolated clusters have a

stereotypical temporal profile with a fast rise (tens of milliseconds)

in the activity intensity, followed by a slower activity decay

(hundreds of milliseconds), as is shown in Figure 2a. This activity

profile reflects the fact that many neurons are rapidly activated at

the onset of NBs and are gradually relaxed or inhibited with time

leading to the NB intensity decay.

The overall similarity between consecutive NBs described above

reflects a much more significant correspondence between them.

To reveal this correspondence, the CAI traces of consecutive NBs

were aligned in a way that maximizes the correlation between

them, as shown in Figure 4a. The existence of repeated patterns

and synchronous oscillations are readily apparent (Figure 4a,b).

Although the temporal motif of synchronous oscillations is

conserved for many consecutive network bursting events

(Figure 4a shows 500 consecutive events from a single cluster),

each event has its own temporal fingerprint. The exact duration of

the oscillations varies between consecutive NBs (Figure 4a). In

addition, some of the NBs are aborted before the onset of network

oscillations (Figure 4a). Such aborted network bursts were

previously reported in uniform cultures [19]. Unique finger prints

were also detected on the millisecond scale. In Figure 4c we show a

series of voltage profiles of consecutive network events from

Figure 4a. Evidently, while they all show the same pattern of

synchronous oscillations on the global scale (tens of milliseconds),

each event has its own temporal profile on the millisecond scale.

These observations are consistent with the idea that synchronous

oscillations are generated by synchronized firing of several

neurons, with different neurons participating in different network

events. Alternatively, it is possible that the same neurons

participate but with a different phase delay in their firing [30].

The general intra-burst activity patterns described above were

consistently observed for the majority of the clusters.

Examining the averaged power spectra (see Methods) of the

NBs revealed that they are typically characterized by several well

defined peaks (Figure 4d). The low frequency peak with the highest

amplitude is associated with the gradual (long time) decay in firing

intensity towards the end of the termination of the network event.

The second peak (green circle in Figure 4d) is associated with the

primary synchronous oscillations during the decay in the firing

activity (green rectangle in Figure 4b). In a small fraction of the

Figure 4. Spontaneous oscillations in small isolated clusters. (a) Five hundred consecutive CAI traces (400 ms long) from one cluster
temporally aligned to maximize the correlations between them. (b) The average over the CAI traces in (a). (c) The voltage traces of 5 consecutive NBs
from (a) during the time window marked by a green rectangle in (b). The fine details of each voltage trace are different but all show oscillating activity
which involves the synchronous firing of several superimposed spikes from several neurons. (d) The average power spectrum of the NBs in (a)
presented in log scale. The second and third peaks at 64 Hz and 139 Hz represent the primary and secondary oscillations in the cluster occurring
during the time windows marked by the green and red rectangle in (b), respectively. (e) The oscillation frequency histogram, presented separately for
clusters grown on CNT and PDL.
doi:10.1371/journal.pone.0014443.g004
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clusters (12%) an additional peak in higher frequencies was

detected. These peaks were classified as secondary oscillations (red

rectangle in Figure 4b and red circle in Figure 4d). The

distribution of both primary and secondary oscillations across

the whole population of recorded clusters is presented for clusters

grown on CNT and on PDL in figure 4e. Clusters that did not

exhibit NBs or those with a very small number of NBs (,100) were

not analyzed. In total, 73% of the clusters exhibited oscillations

(71% of the CNT clusters and 74% of the PDL clusters), 20%

did not show detectable oscillations and 7% were not analyzed due

to their low activity. For most clusters, the frequency peaks appear

in the gamma range (25–100 Hz). The average oscillation

frequencies of the clusters grown on CNT islands was

92646 Hz (mean6std) (distribution peak at 65 Hz), and the

average oscillation frequencies of clusters grown on PDL islands

was 54638 Hz (distribution peak at 25 Hz). No significant

correlation was found between the oscillation frequency and

the cluster size (correlation coefficient = 20.15, p-value = 0.19).

In addition, the oscillations were abolished following the addition

of 30 mM Bicuculline (see details in Text S5 and Figure S6),

a c-Aminobutyric acid (GABA) receptor inhibitor, suggesting

that inhibitory neuronal activity is required to sustain the

oscillations.

Mutual events in two coupled clusters
Our unique neuronal engineering scheme also allows us to study

the activity of two clusters coupled by a bundle of neurites

(Figure 5a). Typical recordings of such a system reveals that a

network of two coupled clusters can exhibit mutual NBs

(Figure 5b). We note that in addition to the mutual NBs, each

cluster may also exhibit individual NBs where a NB is activated in

one cluster but does not propagate to the other cluster.

In the case of mutual events, there is a relatively long (up to

hundreds of milliseconds) time delay between the onset of

synchronized activity in the two clusters (Figure 5c, d). We note

that since the clusters are coupled bi-directionally, we cannot

determine that the activity during mutual events was initiated

individually in one cluster and propagated to the other cluster. A

more plausible scenario is that the NB was first initiated in one of

the clusters due to mutual interaction between neurons in both

clusters, and later appeared with a time delay in the other cluster.

For this reason, an adequate description of the activity

propagation should be in terms of time delays in a mutually

synchronized network, rather than by simple triggering. Similarly

to the findings in large coupled networks [31], we found a

spontaneous emergence of master/slave asymmetry in the

activation delays in both clusters. The activity of one specific

cluster preceded the activity of the other cluster in the majority of

mutual events (Figure 5d).

During the mutual events, the activity of each cluster exhibits

the same temporal features that are observed for the isolated

clusters including the existence of synchronous oscillations. We

also found that each cluster has its own temporal identity. In

the example presented in figures 5e,f we show that each cluster has

synchronous oscillations with specific characteristic frequency,

23.4 Hz and 28.8 Hz, for clusters 1 and 2 respectively. We

note that these frequencies are within the range of the typical

frequencies observed in isolated clusters grown on PDL islands.

This implies that the coupling between the two clusters leads to

mutual events but does not alter the existence and typical

frequency of the synchronous oscillations. As shown for isolat-

ed clusters, the oscillations in coupled clusters are abolished

by application of 30 mM Bicuculline (see details in Text S5 and

Figure S6).

Discussion

It is often suggested that cooperative activity within neuronal

assemblies enhances their information processing capacity com-

pared to that of isolated neurons [32]. However, the transition in

activity from the single neuron to the population level has not been

mapped experimentally. For example, it is unclear as to what is the

minimal number of cells which is required to define a functional

network. Here we showed that neuro-glia cortical cell assemblies

Figure 5. Activity in small coupled networks. (a) A bright field
image of an engineered network of two clusters coupled by a bundle of
neurites (substrate: PDL, Electrode diameter is 30 mm, distance between
electrodes is 500 mm) (b) Activity intensity (250 ms bins) during a 60 sec
window of clusters 1 and 2 showing that both exhibit network bursts
(color code is the same as in Figure 2c). (c) Activity intensity (10 ms
bins) during a 700 ms window in (b)(marked by the transparent blue
rectangle). Blue and red lines represent activity of clusters 1 and 2,
respectively. (d) Activity intensity (2 ms bins) during 700 ms windows of
50 consecutive NBs (color code is the same as in Figure 4a). The fine
details in the activity of both clusters are different for each NB. (e) and
(f) show the average power spectrum extracted from the NBs in cluster
1 and 2, respectively, presented in a log scale. Both clusters 1 and 2
exhibit a peak at 23.4 Hz and 28.8 Hz, respectively.
doi:10.1371/journal.pone.0014443.g005
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of approximately 40 cells already exhibit spontaneous network-

level bursting activity, which is absent in smaller (below

approximately 20 cells) neuronal clusters (Figure 3c). While some

of these clusters contained at least one spontaneously active cell,

they failed to elicit spontaneous network bursts. This suggests that

despite the high range of network sizes within which NBs are

maintained, there exists a minimal network size below which the

requirements for collective spontaneous activation are unmet.

Interestingly, theoretic considerations as well as physiological data

suggest the existence of minimal networks of similar size in real

brains [32].

We also found that the statistical parameters of the network

activity scale with the cell number. Namely, the rate and width of

the network bursts were found to increase with cluster size.

Interestingly, these parameters converge to that of large networks

(,106 cells). Large networks usually exhibit NB rates of several

NBs per minute. These rates are already achieved by clusters of

about 100 cells. This suggests that increasing the cell number

above 100 cells does not dramatically change the statistical activity

properties of the network. It is worth noting that clusters of similar

sizes exhibited high variability in the NB rate and width

(Figure 3c,d). This may suggest that additional unmeasured cluster

properties (beyond cell number) influence the cluster activity. This

high variability is consistent with previous reports which

concerned large networks [33]. Although previous measurements

of small homogeneous networks [5] and model simulations [34]

are consistent with our data, this is the first time that the effect of

population size was quantitatively studied.

Invariability between entirely different clusters is an additional,

important feature of the data described above. It is commonly

believed that neuronal circuit architecture determines its function-

ality. However, it is not clear to what extent does variability in

circuit parameters, such as neuronal excitability and synaptic

connectivity, relate to variability in the circuit’s functionality.

Theoretic models [35], as well as physiological data [36], suggest

that neuronal circuits are able to maintain similar functionality with

variable architectures. The organization of our clustered networks

into connected circuits was self-executed by the neurons and the glia

cells. Consequently, the exact architecture of each neuronal cluster

was different. In addition, our cortical cultures contained many cell

types, each having distinct morphological and function features

[37]. For small clusters, this implies that the distribution of cell types

was different for every cluster. It is also likely that the exact

connectivity scheme of the cells within each cluster was different.

Despite the above variability, all the clusters showed spontaneous

persistent collective activity in the form of NBs with markedly

similar features (Figure 3,4). This hints that almost every network,

independently of its architecture and size, self regulates its activity to

sustain persistent activity patterns. This assumption is supported by

the well known existence of both redundant cellular mechanism that

support synchronization [38], and homeostatic mechanisms that

support activity regulation [7,18].

We have also demonstrated that our small clustered networks

exhibit persistent network-level oscillation in the range of 25–

100 Hz (Figure 4e). These frequencies are of particular interest as

they are manifested in brain activity and are typically associated

with functional properties such as temporal encoding, sensory

binding, and storage and recall of information [10,39]. Oscilla-

tions were observed in most of the analyzed clusters, suggesting

that they are a generic property of small neuronal populations

rather than the outcome of specific network architecture. In

addition, the oscillations were more prominent at the decaying

phase of the NBs. Such delayed activation may suggest that the

oscillatory state is the outcome of a collective dynamics process

that has to evolve until oscillations appear. Alternatively, the time

delay may be related to a delayed activation of a synchronizing

mechanism.

It was previously shown, both in experimental and in theoretical

studies, that oscillations in the cortex are generated by a

combination of network interactions and cellular mechanisms

[39]. More specifically, the combined action of recurrent

excitation and modulating inhibition (mediated by GABAergic

receptors) are required to produce the oscillations. In addition, gap

junctions were shown to play an important role in synchronizing

neurons during oscillations [40]. Clearly, investigation of the

mechanisms mediating the oscillatory behavior in our small

clusters is of major importance. We have shown that the

oscillations are inhibited by blocking GABAergic receptors (Figure

S6). However, only a detailed examination will determine the

relevance of the oscillations to the ones observed in vivo. The

uniqueness of our setup enables us to study how activity patterns,

in general, and the oscillations, in particular, are modulated by

different network configurations, i.e., by the ratio between

excitatory and inhibitory neurons, the synaptic density, the density

of gap junctions or the ratio between neurons and glia cells.

Although the existence of oscillations did not depend on

network architecture, the oscillation frequency differed between

clusters grown on PDL and on CNT islands (Figure 4e). This

discrepancy may be the outcome of morphology differences

dictated by the support substrate. While CNT islands serve as

three dimensional highly entangled substrate with which cell

mechanically interact [41], PDL islands are flat. Another possible

explanation may be related to the increased excitability reported

for neurons grown on CNTs surfaces [42]. Further investigation is

required to resolve this issue.

Our approach for studying network-level activity focuses on

artificially constructed isolated micro-circuits. Alternative ap-

proaches can be used to study small scale isolated circuits. Both

vertebrates and invertebrates have central pattern generators

(CPGs), these are micro-circuits which produce oscillations in

absence of any sensory inputs [43]. Indeed, such circuits served as

a valuable small-scale model for examining network level

interactions, and for unraveling the underlying mechanisms of

synchronous activity in large networks [43,44]. However, there are

marked differences between the two approaches. Although CPGs

can be considered as analogous to cortical circuits [45], there are

some differences. Most importantly, CPGs are developmentally

hard-wired to perform a pre-designed task, while cortical circuits

are highly plastic and are constantly reshaped by incoming stimuli.

In addition, our engineering approach is aimed not only to create

a simplified small scale neuronal circuit but rather to design its

topology in order to understand how this topology relates to

activity. For example, our observation of spontaneous oscillations

in isolated clusters with frequencies closely related to those

observed in vivo, provide a strong incentive to explore how

several connected clusters function. Indeed, our approach allows

us to systematically address higher hierarchical levels by

examining the activity of two coupled clusters or networks of

several connected clusters. Such experiments are currently

underway.

Finally, based on the data presented here, it is evident that

engineered neuronal networks are a powerful platform to

systematically approach questions related to the dynamics of

neuronal assemblies. Unlike networks in vivo, in which multiple

activation pathways are impinging on any recorded region,

isolated networks can be studied in a controlled isolated

environment. The high susceptibility to manipulations obtained

when working in vitro allows the construction of networks of

Oscillations in Clusters
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various sizes, thus enabling the study of scaling properties in

networks. Furthermore, engineered networks are highly suited for

comparison with modeling results as they allow testing predictions

in simplified and pre-designed scenarios.

Materials and Methods

Cell culturing
The entire culture preparation process was described in detail in

a previous publication [28]. The procedure was done in

accordance with the NIH standards for care and use of laboratory

animals and was approved by the Tel-Aviv University Animal

Care and Use Committee (permit number - M08064). Briefly,

entire cortices of (E18) Sprague Dawley rat embryos were

removed, chemically digested and mechanically dissociated by

trituration. Dissociated cells were suspended in growth medium

and plated onto the patterned substrates at a density of 700 cells/

mm2. To promote the long-term survivability of the cells on the

isolated islands it was crucial to use a ‘‘feeder’’ colony of cells [46].

In order to do this, a PDL coated (Sigma, Cat. No. p7889) thin

disk of polydimethylsiloxane (PDMS) was placed around the

patterned area. The surrounding feeder culture on the disk

covered approximately 75% of the total chip area and did not

directly contact the patterned culture. The mitotic inhibitor, FuDr

(80 mM FuDr, Sigma, Cat. No. F0503 and 240 mM Uridine,

Sigma, Cat. No. U3303) was added once after four days in culture.

The cultures were maintained at 37uC with 5% CO2 and 95%

humidity. The growth medium was partially replaced every 3–4

days.

Immunostaining
The entire immunostaining process was described in detail in a

previous publication [28]. Briefly, neurons, glial cells and neuronal

synapses were fixed and immunostained with primary anti-bodies

for MAP2 (Abcam, AB2935-ab), GFAP (Biotest, Cat. No.

MAB3402) and Synapsin (Biotest, Cat. No. AB1543). These were

conjugated with secondary anti-bodies with the following markers:

Cy3 (Chemicon, AP194) for MAP2, Alexa fluor 488 (molecular

probes, Cat. No. A-11029) for GFAP, and Alexa fluor 546

(molecular probes, Cat. No. A-11035) for Synapsin. For fixed cells,

nuclei were stained with 0.01 mg/ml DAPI (49,6-Diamidino-2-

phenylindole dihydrochloride) (Sigma, D9542) for 5 min. For live

cells, nuclei were stained with 4 mg/ml bisbenzimide Hoechst

33342 (Sigma, B2261) for 5 min. Finally, samples were mounted

using a mounting medium (Sigma, Cat. No. G0918) and covered

with a cover slip. Culture images were obtained using both

Olympus BX51WI and Zeiss LSM 510 META NLO microscopes.

Electrophysiological recording
Extra-cellular recording were conducted utilizing low noise pre-

amplifiers board (MEA1060-BC amplifier, gain 61,100 with a

band-pass filter of 10 Hz to 3 kHz, by Multi Channel Systems,

MCS, Reutlingen, Germany). The signals collected from the

microelectrodes were sampled at a 10 kHz sampling rate and

stored on a personal computer equipped with a 60 channel, 12-bits

data acquisition board (MC_Card, MCS) and a MC_Rack data

acquisition software (MCS). An additional 200 Hz high pass filter

was applied to the data stream on software. Recordings were

performed between 16 to 25 days in vitro. The statistical activity

parameters and power spectrum for every cluster were extracted

from continuous electrical activity recordings of at least 8 hours.

Some of the clusters did not exhibit detectable electrical activity.

Since this may be the outcome of damaged electrodes or bad

coupling between the electrode and the clusters, these electrodes

were removed from the analysis. In total, out of the silent

electrodes only 8.5% had clusters with areas larger than 5000 mm2

and 70.2% had areas smaller than 1000 mm2. However,

measuring the cluster size or validating the existence of cells in

very small clusters (,1000 mm2) could not be properly determined

using bright field imaging. Generally, very small clusters are often

silent and large clusters are rarely silent.

Power spectrum analysis
The power spectrum of every cluster was calculated from its

CAI activity traces (in 2 ms bins). First, consecutive NBs were

extracted (see details in Text S4 and Figure S5). The power

spectral density was then estimated using a periodogram [47] for

every NB on windows of 2048 ms (NBs with duration less than

2048 ms, were zero padded). Finally, the power spectral density

function was averaged over all NBs and then smoothed by

convoluting it with a normalized constant function (2.44 Hz wide).

Patterning isolated network using CNT-MEA
The entire fabrication process was described in detail in a

previous publication [48]. Briefly, underlying TiN lines are used as

conducting tracks. These lines are passivated with sputtered Si3N4

which is later removed at the regions of the active electrode using a

reactive ion etch step. A thin nickel layer is e-beam evaporated at

the openings. The process is concluded with a CNT thermal

chemical vapor (CVD) deposition growth procedure utilizing the

nickel as a catalyst material. To perform electrical recordings from

cultured networks using CNT-MEA chips, clean silicon chips were

bonded to printed circuit board (PCB) supports and were adjusted

with quartz tubes to contain the biological medium.

Patterning isolated network using PDL
The process of PDL patterning was detailed in a previous

publication [26]. Briefly, PDL islands on top of MEAs were

prepared with a soft lithography process using polydimethylsilox-

ane (PDMS) stencils. An SU8-2075 (Micro Chem) mold with

approximately 120 mm thickness is patterned on a silicon wafer.

The pattern is identical to the negative pattern of the electrode

array. The stencil is prepared by spin coating the wafer with

PDMS. After detaching the PDMS substrate from the mold, the

stencil is placed on commercial MEAs (MCS) and the stencil’s

pattern is aligned with the electrode locations. The PDL solution is

dripped onto the PDMS stencil and the PDL is dried on a hot

plate at 37uC. The PDMS stencil is removed before cell plating.

Supporting Information

Figure S1 The spatial arrangement of synapses and glia cells in a

cluster. (a), (b) and (c) are plane cross-sections perpendicular to the

Z,Y and X axes, respectively, of a cluster grown on a CNT

electrode (Diameter = 80ÎJm) in which neuronal synapses appear

in red (stained with synapsin) and glia cells appear in green (stained

with GFAP). The Z, Y and X cross-section planes are represented

by the blue, green and red lines, respectively. Clusters are typified

by an underlying glia cell layer and mostly overlaying neurons with

clearly visible synaptic development.

Found at: doi:10.1371/journal.pone.0014443.s001 (0.88 MB TIF)

Figure S2 Correspondence between cluster size (S) and cell

number (N). (a) A bright field image of a cluster on a CNT

electrode. The cluster area is manually marked (blue) and its area

calculated. (b)–(f) A series of fluorescent images of the cluster in (a)

taken in consecutive focal planes (from top to bottom) in which live

cell nuclei were stained with Hoechst 33342. In each plane the
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counted cells are marked (blue full circles). (g) Three dimensional

reconstruction of a confocal microscope image of four clusters on

CNT electrodes. The geometrical shape of the clusters resembles a

spherical dome. Electrode diameter is 80 mm and cluster heights

are 41 mm (left up), 31 mm (right up), 27 mm (left down) and 43 mm

(right down). (h) The number of cell nuclei (N) as a function of the

cluster area (S) for several clusters (dots). The blue dot corresponds

to the cluster in (a) – (f). The data points were linearly fitted with

N = 0.0079*S-1.9 (solid line). The dashed lines represent one

standard deviation of the number of cells for all clusters around the

fitted curve.

Found at: doi:10.1371/journal.pone.0014443.s002 (9.51 MB TIF)

Figure S3 CAI validation. (a) Binary raster plot of spiking

activity in a uniform network of cortical neurons during a NB.

This activity was recorded by 41 electrodes and was used as a

model for the activity in a single cluster. First, the binary spike time

series of every single neuron (b) is taken and convoluted with a

typical extracellular spike waveform (c) from the same recording to

form the convoluted waveform (d). (b),(c) and (d) show the example

of neuron number ten (marked by the gray line in (a)). The sum of

all convoluted waveforms of all neurons in addition to normally

distributed noise is used as a model of the waveform of a cluster

during an NB (e). The firing rate (FR) of the cluster during the NB

is shown in (f) and the cluster activity intensity (CAI) is estimated

according to equation S1 and presented in (g) by a color code. (h)

The correspondence between FR and CAI is linear for firing rates

of up to 4000 spikes/second. At higher firing frequencies this

relation increases monotonically but not linearly. CAI and FR

were calculated in time windows of 10 ms.

Found at: doi:10.1371/journal.pone.0014443.s003 (2.98 MB TIF)

Figure S4 Cluster activity intensity (CAI) measure. (a) Voltage

waveform of a neuronal cluster recorded from a CNT electrode.

(b) The unbiased kurtosis of the waveform in (a) calculated for

consecutive 20 ms time windows. Windows with kurtosis values

below a threshold of three (red line) correspond to windows with

noise signals and are chosen for noise level estimation (blue dots).

(c) CAI of the waveform in (a) calculated using equation (S1) in

10 ms windows. Negative values (below the red line) correspond to

noise segments and their value is set to zero. (d) CAI presented

using color coding (same color code as in Figure S3).

Found at: doi:10.1371/journal.pone.0014443.s004 (2.22 MB TIF)

Figure S5 NB occurrence and width detection. (a) Example of a

CAI (2 ms bins) time series of a NB. (b) The number of CAI active

bins (corresponding to non-zero values) in consecutive widows of

10 ms of the time series in (a). (c) The time series in (b) after

convolution (convolution kernel is a constant function of one with

duration of 100 ms). To eliminate single spikes from this time

series, a threshold is applied (threshold = 10 counts). (d) The

widened (see text) binary time series of NB locations. (e) The CAI

of the NB during the time window marked in black in (d). The

exact beginning and ending of the NB are taken as the edges (first

non-zero value from both sides) of the CAI function (red lines).

(f) The peak time of the NB is taken as the maxima (red circle) of

the CAI function after convoluting it with a Gaussian kernel

(s= 50 ms, bin = 10 ms).

Found at: doi:10.1371/journal.pone.0014443.s005 (0.76 MB TIF)

Figure S6 Effect of Bicuculline on oscillations. (a) and (b) show

the average power spectrum before (blue trace) and after (red

trace) the addition of 30ÎJM Bicuculline for a typical isolated and

coupled cluster, respectively. In both clusters, a clear oscillation

peak was observed before the application of Bicuculline and

abolished after application. (c) and (d) show 100 CAI traces of

consecutive NBs from the cluster in (a) and (b), respectively, before

the addition of Bicuculline. Clear oscillations are observed in

individual NB traces before the application of Bicuculline. (e) and

(f) show the average CAI profile over all NBs in (c) and (d),

respectively. (g) and (h) show 100 CAI traces of consecutive NBs

from the cluster in (a) and (b), respectively, after the addition of

30ÎJM Bicuculline. (i) and (j) show the average CAI profile over

all NBs in (g) and (h), respectively. The color code in all plots is the

same as in Figure S3.

Found at: doi:10.1371/journal.pone.0014443.s006 (20.95 MB TIF)

Text S1 Synaptic development and spatial organization of cells

in isolated clusters

Found at: doi:10.1371/journal.pone.0014443.s007 (0.03 MB

DOC)

Text S2 Relation between cluster area and number of neurons

Found at: doi:10.1371/journal.pone.0014443.s008 (0.03 MB

DOC)

Text S3 The cluster activity intensity (CAI) measure

Found at: doi:10.1371/journal.pone.0014443.s009 (0.03 MB

DOC)

Text S4 Detecting the occurrence and width of network bursts

Found at: doi:10.1371/journal.pone.0014443.s010 (0.03 MB

DOC)

Text S5 Effect of GABA blockers on oscillations

Found at: doi:10.1371/journal.pone.0014443.s011 (0.03 MB

DOC)
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