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Abstract

Background: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from
fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological
relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature.

Results: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle
cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the
muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this
capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly
heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population
is characterized by a dynamic equilibrium between ‘‘high CD56’’ and ‘‘low CD56’’ phenotype cells with distinct spatial
distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven
bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the
phenotypes until the low noise state is found.

Conclusions: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally
differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to
the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint
action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.
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Introduction

Phenotypic heterogeneity is an intrinsic feature of many cell

lines [1,2,3,4,5]. This heterogeneity could be simply due to the

stochastic variations at the level of gene expression or protein

synthesis [6,7]. However, the phenotype of the individual cells in

these populations is not constant. The cells fluctuate slowly but

continuously between different phenotypic states that leads to a

dynamic equilibrium with relatively constant proportions of

various phenotypic variants in the population. Theoretically it is

possible to explain the population-level stability solely as the

reflection of the bi- or multistable cell-intrinsic fluctuations of the

gene expression in individual cells where a given phenotype would

correspond to a metastable state of the fluctuating transcriptome

[8,9]. In this case, the proportion of a given phenotype would

reflect the probability of an individual cell to reach that phenotype.

Alternatively, cell-to-cell interactions between the cells in the

population can influence the noise dynamics of each individual cell

either by modulating the noise in general or by increasing or

decreasing the probability to reach a given phenotypic state. In the

present study, we set out to investigate the second hypothesis.

An obvious and well-known manifestation of the non-genetic cell

individuality in culture is the unique migration properties of each

cell. Migration can induce fluctuations of local cell density and

create spatial arrangements at the population level. It is likely that

intracellular fluctuations and variations in cell-to-cell interactions

may interfere in a non-trivial way. Very little is known about the

outcome of these interactions and their potential role in cell fate

decisions. We have previously observed that cell density can

increase the gene expression noise and induce epigenetic effects

leading to stable changes in gene expression [10]. We have also

observed that cells with stem-like characteristics tend to appear in
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low density regions of myogenic cell populations [1] suggesting that

the fate choice between a stem cell-like and a differentiation

committed phenotype is controlled by the appropriate local

microenvironment generated by the cells themselves.

In the present study, we investigated the relationship between

the phenotypic switch and spatial distribution in clonal popula-

tions of primary muscle-derived cells using cell culture experiments

and computer simulations. We show that proliferating myogenic

cells in culture can fluctuate between phenotypic states under the

effect of the local microenvironment. Computer simulations

suggest that the phenotypic fluctuations follow a bistable dynamics

driven by a microenvironmental context-dependent intracellular

noise. The microenvironment is shaped by the cells themselves

because their motion generates non-random cell interactions. In

this way each cell contributes to put together its own microen-

vironment that in turn stimulates the fluctuation between the

phenotypes until a state with low noise is found.

Results

Phenotypic heterogeneity of the primary human
myoblasts

We used populations of primary mononuclear cells isolated

from human muscle [11] that contain progenitor cells with high

proliferative capacity that are usually considered as definitively

committed to muscle fate. These cells express myogenic markers

believed to specify definitive cell commitment such as CD56

(NCAM) [12]. At high density, the cells become elongated, align

with each other and form typical wave-like structures. At

confluence, the aligned cells fuse to form myotubes. In a typical

growing population, 30 to 40% of the proliferating cells do not

express CD56 and are usually considered as ‘‘contaminating’’

fibroblasts [12]. In order to elucidate whether these two

subpopulations represent two distinct phenotypes or two stages

of the myogenic differentiation process we separated the CD56+
and CD562 cells using a cell sorter and cultured them separately.

Both subpopulations proliferated at about the same rate, reached

high density simultaneously and produced wave-like spatial

arrangements typical for myogenic cells (Fig. 1 right panel). In

spite of these similarities, the two cell fractions displayed

fundamental functional differences. At high density, cells express-

ing CD56 readily fused to form myotubes, while only a few

myotubes were observed in the population of CD56 negative cells

(Fig. 1 right panel). In order to show that the difference between

the two populations cannot be reduced to the simple ectopic

silencing or activation of the CD56 gene, we have investigated the

CpG methylation pattern of the gene. As explained in Supporting

Document S1, there was no difference in the methylation pattern.

Next, we sorted by flow cytometry individual CD56+ and

CD562 cells and cultured them separately for 14 days. The

immunochemical analysis of the resulting clonal populations (more

than 100 clones) showed that they contained both CD56+ and

CD562 cells. Since all cells in a clone derived from either a CD56+
or a CD562 founder, the simultaneous presence of both + and 2

cells in the populations indicates that the cells are able to change

phenotype. In order to determine the frequency of these phenotypic

switches, the subpopulation of the two cell types were sorted from

the original mixed population and cultured separately under similar

conditions. Four and seven days later, the proportion of CD56+ and

CD562 cells was determined by flow cytometry. The results show

(Fig. 1 left panel) that the proportion of the cells with opposite

phenotype increased constantly in both the initially CD56+ and the

CD562 cell populations. This observation shows that the

phenotypic interconversion is relatively frequent in these cells and

occurs continuously. As a result, the simultaneous presence of the

two phenotypes in the growing population is the result of a dynamic

equilibrium of the two opposite processes. Importantly, there were

proportionally less CD56+ cells in the initially CD562 population

than CD562 cells in the originally CD56+ culture (Fig. 1B)

suggesting that the transition of the CD562 cells into CD56+
occurs less frequently than the opposite. This is counter-intuitive if

we consider that the majority of the cells were CD56+ in the original

population and this latter state is usually considered as definitively

committed. A possible explanation for this apparent contradiction

could be that the rate of phenotypic switches is not a simple cell

autonomous probabilistic event, but may depend on some features

of the population as a whole.

Influence of the cellular microenvironment on the
phenotype

Therefore, we investigated whether global characteristics of the

culture such as cell density may influence the ratio of CD56+ and

CD562 cells. In a typical experiment, the cells were cultured at

the initial density of 500, 1000, 2000 and 3000 cells/cm2 for 6

days, then fixed and immunostained with a CD56 antibody. We

scanned the whole population microscopically at high resolution

and recorded the position and the fluorescence intensity of each

cell. We found that the proportion of cells with CD56 labelling

above the background level increased with the global cell density

of the culture: we observed 60%, 68%, 83.6% and 87%

CD56+cells at the 4 different densities, respectively. Importantly,

these differences are not due to the differences in the growth phase

of the populations with different starting cell densities, because the

total cell numbers suggest a similar number of cell divisions in all

four cases (14250 cells/cm2, 17450 cells/cm2, 33240 cells/cm2

and 62380 cells/cm2 in the four cultures respectively). It is clear

that at high density there are proportionally more CD56+ cells

than at low density. This conclusion is supported by the fact that

even within the same culture the spatial distribution of + and –

cells was different. Cells with high CD56 levels appeared to be

concentrated in high local cell density regions and were less

frequent in low-density regions (Fig. 2A). By contrast, CD562 cells

were less frequent in high-density regions and prevailed in low-

density regions of the culture. To evaluate statistically the validity

of this observation, we plotted the CD56 fluorescence intensity

measured for each cell in the population as a function of the

distance to the closest neighbour as an estimator of the local cell

density. The smaller these distances, the higher is the local density.

We used locally weighted scatterplot smoothing (LOWESS)

regression analysis to visualize the correlation between these two

parameters. This analysis confirmed that the spatial distribution of

the CD56 expressing cells was non-random and correlated with

the local cell density in all cases (Fig. 2B). Cells with a high

expression level tended to be located in regions of high local cell

density. Overall, the correlation was relatively modest, but

statistically highly significant as determined by the Spearman’s

rank correlation test (Fig. 2B). The negative value of the

correlation coefficient r indicates a positive correlation between

the density and the fluorescence. The strongest correlation was

observed at an intermediate global density where the differences in

local densities between different parts of the population were

substantial. The correlation between the spatial distribution and

cell phenotype points to the importance of the microenvironment

and intercellular interactions in the cell fate determination.

Nevertheless, even highly dense regions contain many low CD56

expressing cells, suggesting that the mechanistic link between the

local cell density and the cell phenotype represented by the CD56

expression level is not simple and linear.

Cell Differentiation and Noise
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These observations raise the question of how cells are able to

‘‘sense’’ local cell density. One possibility is that the sensing is

contingent on the diffusion-dependent local concentration of

molecules secreted to or depleted from the medium. Whatever the

exact chemical nature of these molecules, the cells would then

respond in a paracrine or autocrine fashion. The concentration of

such molecules is expected to vary as a function of the cell

distribution in the culture and form local concentration gradients

depending on the local cell density.

In order to investigate whether cell density dependent

concentration fluctuations can influence cell physiology we

investigated the stress-response of the cells. The intracellular

superoxide anion concentration was measured in the cells as

described in the Materials and Methods section and correlated to

the local cell density using the same approach as in the case of

CD56 expression. The intensity of superoxide anion labelling is

higher in cells of high density regions as confirmed by the fitting of

the LOWESS curve to the scatterplot of fluorescence intensities as

Figure 1. Reversibility of the CD56+ phenotype. A. Flow cytometry analysis of the human myoblast population typically shows a 1/3 ratio
CD562/CD56+ cells (Day 0, left). When sorted, CD562 cells change their phenotype more frequently than the CD56+ cells as shown by the higher
proportion of converted cells 4 days after sorting (right panel). The small insets represent the controls for cell sorting efficiency. The proportions
represent the average of at least three independent experiments. B. Low resolution micrographs of the immunostaining of whole populations
(CD56+ cells in red) show (left panel) that cloning of individual CD562 or CD56+ cells resulted in mixed populations with a higher proportion of
converted cells in the clones derived from CD562 cells. Myoblast populations derived from sorted cells were cultured for 7 days. High resolution
pictures (right panel) show the emergence of wave-like spatial patterns in both cell populations. The formation of myotubes is only observed in the
originally CD56+ population. Both cultures were stained with CFSE (green fluorescence) for better visibility. Scale bar = 200 mm.
doi:10.1371/journal.pone.0014441.g001

Cell Differentiation and Noise
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a function of minimal neighbour distances. The Sperman’s rank

correlation r was highly significant (Fig. 3). This observation

clearly shows that the cells sense the high local density and

produce a stress response to it. Although it does not demonstrate

that the superoxide anions are mechanistically involved in the

phenotypic switch, it is possible that the stress response contributes

to the initiation of the phenotypic switch. Previous observations

showed that increased cell density can indeed lead to the increase

of phenotypic heterogeneity by directly acting on gene expression

noise [10].

Overall, these observations indicate that the primary myogenic

cells show dynamic phenotypic plasticity in culture that allows

them to switch between at least two distinct phenotypes: one

characterized by the expression of a strong myogenic cell surface

molecule CD56 and able to fuse into myotubes and the second by

the absence of this marker and a low propensity to fuse.

Nevertheless, the two cell categories share several properties, such

as the capacity to proliferate and form wave-like patterns. The

transition rate between the two states is relatively low and,

unexpectedly, CD56+ cells switch to CD562 state more easily

than the opposite. In addition, the spatial distribution of the

CD56+ cells is non-random: they preferentially accumulate in

regions with high local cell density.

Modelling the phenotypic switch
The co-existence of two of phenotypically distinct subpopula-

tions suggests that the phenotypic conversion of individual cells

follows a bistable dynamics. A cell can be considered as bistable if

under the same conditions it can adopt one of two different and

stable phenotypes with the intermediate states being unstable.

Bistability may arise from the internal dynamical properties of

gene networks that bring about the phenotype. Although gene

regulatory networks are usually complicated, in the simplest cases

a single regulatory loop is sufficient to allow two stable alternative

states, attractors, with different active and silenced genes. The

probability of a cell with bistable properties to adopt one or the

other phenotypic state is specified by the regulatory parameters of

the system, more specifically by the threshold separating the two

stable states [13,14]. However, the transition between the states is

triggered by the noise arising from the stochastic nature of

molecular interactions (Fig. 4B) and the frequency of the

phenotypic switches is dependent of the noise level. As a result,

in a population of bistable cells, the proportion of the two possible

phenotypes reflects the regulatory properties of the underlying

gene network, while the velocity to reach the phenotype depends

on the noise level. The systematically observed high CD56+/

CD562 cell ratio in the myoblasts suggests that the equilibrium

between the two possible states is biased and the cells are more

prone to become CD56+. However, the observation that CD56+
cells relaxed faster to the CD562 phenotype than the opposite

contradicts this. In addition, the bistability of the individual cells

cannot explain their non-random spatial localization within the

population. This is only possible if the cells can sense the local cell

density and respond to it by changing their phenotype.

In order to understand how the generic principles of bistability

and the capacity of sensing the local cell density bring together the

dynamical properties observed in our muscle derived cell system

we performed computer simulations. The aim of the simulations

was to produce qualitative rather than quantitative predictions on

the behaviour of the system. We focused our attention on the effect

the cell density may have on the regulatory parameters of the

bistable phenotypic transition, on the noise that triggers the

change and the possible impact of the spatial patterns formed by

Figure 2. Spatial pattern of CD56+ cell distribution in
unperturbed myoblast cultures after 7 days. A. Red staining
shows the CD56+ cells detected with a fluorescent monoclonal anti-
CD56 antibody (left panel) and blue shows cell nuclei using DAPI
staining. The cell-density differences are clearly visible when nuclear
DAPI staining is shown separately (right panel). Scale bar = 100 mm. B.
Locally weighted scatter plot smoothing (LOWESS) regression analysis
(left panel) shows that the spatial distribution of the CD56 expressing
cells is correlated with the local cell density at all 4 global initial
densities examined (red, blue, green and violet lines). Distance to the
closest neighbour is used as a measure of local cell density. The CD56
fluorescence is the highest at small neighbour distances ( = high
density). The Spearman’s rank correlation r is relatively modest, but
statistically highly significant at all global densities (right panel).
doi:10.1371/journal.pone.0014441.g002

Figure 3. The intensity of superoxide anion labelling in a
typical myoblast culture with fluctuating local cell densities is
higher in cells of high-density regions as confirmed by the
fitting of the LOWESS curve to the scatter plot of fluorescence
intensities as a function of minimal neighbour distances. The
Sperman’s rank correlation r was highly significant. Scale bar = 100 mm.
doi:10.1371/journal.pone.0014441.g003

Cell Differentiation and Noise
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the cells. We first designed an agent-based model that faithfully

reproduced the formation of regions with variable cell densities

and wave-like alignments observed in myoblast cultures. Next, we

integrated in this basic model the capacity of bistable phenotypic

switch in individual cells that depends on the sensing the local and

global cell density through the consumption of a diffusion-limited

substance in the environment. Since the exact nature of the

regulatory network underlying the phenotypes of our cells is

unknown, our model focuses on the generic properties of the

system rather than a numerically accurate and detailed descrip-

tion. The effect of cell density on the frequency and localisation of

high and low P-producing cells as a function of density-dependent

regulation, intrinsic and cell-context dependent noise modulation

was investigated in cell populations with or without cell alignments.

Simulating pattern formation as a result of collective

movement. The migration and proliferation properties of the

cells were implemented in an agent-based model based on detailed

time-lapse observations of living cell cultures as described earlier

[1]. Briefly, we used time-lapse movies to obtain a large number of

data on the direction and velocity of migration. We have

quantified the cell velocities and the directions of the movement

by comparing the positions of the cell nucleus on each image of a

time sequence (Fig. S1A and B). The cell cycle length was

calculated based on individual cell tracking and cytometric

analysis of cell proliferation (Fig. S1C). The observations of the

time-lapse movies revealed that the cells start to align their

movement when the local density becomes high. The initially

random two-dimensional cell motion becomes progressively

random in a single dimension. Even at high density, the cells

move along each other and change direction apparently randomly.

The multinucleated cells derived from cell fusion also move in this

way. Therefore, the ordered spatial cell patterns seen on fixed cell

populations are in fact very dynamic; they are based on fluctuating

individual cell motions constrained by the high density. Since the

emergence of this pattern is reminiscent of the flocking of birds,

fishes or microorganisms, we used the same logic to simulate the

dynamic behaviour of myoblast: at low density, the cells move

randomly, but at high density, they align their movement with the

close neighbours. The direction and velocity of the motion remains

independent of the neighbours (Fig. 4A). These simple rules were

sufficient for the emergence of a collective movement of the

neighbouring cells. A snapshot of such a population is a spatial

pattern similar to that observed in myogenic cultures (Fig. 4A,

middle and right panels). Because of the high heterogeneity of

local densities, a proportion of cells conserved their independent

random migration behaviour both in living and simulated cell

populations.

In order to determine whether the collective movement of the

cells influences their phenotypic change we created an alternative

version of the model in which the migration of the cells was not

constrained by the cell density. The bistability of phenotypic states

and the capacity of density sensing were identical in the two

versions of the model.

The effect of the local cell density on the bistable

phenotypic switch. In order to study the effect of local cell

density on the phenotypic fluctuation we integrated the bistability

of phenotypic transition in individual cells with the agent-based

model simulating the pattern formation. We simulated the bistable

phenotype transition as a process of ‘‘production’’ of the new

phenotype ‘‘high P’’with sigmoid kinetics described by the Hill

function and a setback to the ‘‘low P’’ phenotype that followed

linear kinetics. The non-linear production and linear degradation

together ensure the capacity of dynamic bistable behaviour for

every cell (see Materials and Methods for the exact function

incorporating the Hill function for the production and linear

function for the degradation). We assume that during the in silico

experiment all cells tend to a final equilibrium of ‘‘high P’’ and

‘‘low P’’phenotypes of approximately 3 to 1, as observed in living

cell experiments. A cell in the model was considered ‘‘high P’’ if

the actual production rate of P was higher than the rate at the

inflection point of the Hill function.

The control parameters in the model were: (1) CB that determines

how P production is dependent on local cell density by setting the

threshold between the two stable states: (2) noise that can be

considered as a measure of stability. Typically, the noise term is

defined [15] by its relationship with the mean (here P). In our model,

the noise term was dissociated into two independent terms: intrinsic

noise (Nint) that depicts a white noise that occurs in any cell and is

independent of the cell density and cell phenotype and context- or

density-dependent noise (Next) that is a function of local cell density

and the cell phenotype. Next was high in ‘‘low P’’ cells in high local

Figure 4. Theoretical model of cell alignment and bistability. A.
Schematic representation of the basic rules for the migration and
alignment of the cells depending on the presence of a neighbour
within reach (left panel). Solitary cells move randomly (upper part).
Neighbours within a circle of a given radius adjust their migration
direction (lower part). Snapshot (middle panel) of a simulated cell
population shows wave like spatial pattern similar to living cells (right
panel; the cells were stained with a green membrane stain CFSO for
better visibility). B. Schematic representation of the role played by the
noise (B) and the regulation of the kinetics (C) of the transition between
the two states in a bistable system. The two stable states represented
by the two wells. The frequency of transition from one state to the
other is determined by the level of noise ( = stochastic fluctuations in
gene expression) (B), but the number of cells in each state at
equilibrium depends only on the shape and depth of the wells
( = kinetic parameter B of the system) as shown on C.
doi:10.1371/journal.pone.0014441.g004
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density regions and in ‘‘high P’’ cells in low-density regions but low

in ‘‘low P’’ cells in low local density regions and in ‘‘high P’’ cells in

high-density regions (see the Materials and Methods section and

Fig. S4 for the exact function describing CB and the noise terms). In

other terms, two cells with identical levels of P are characterized by

different level of noise i.e. different stability depending on whether

they are located in high- or low-density regions.

The cells in the model were able to sense the local density

through the detection of the concentration of a diffusible molecule

R. The value of R can be considered as a measure of local cell

density. The actual concentration of R was the result of a dynamic

equilibrium between the uptake and consumption by the cells and

the replacement by diffusion from the culture medium. In high cell

density regions, the uptake exceeds the diffusion resulting in a

reduction of the local concentration of R. Although we used the

oxygen concentration and the reaction of the cells by a hypoxic

stress as an example, we do not make any explicit hypotheses

about the chemical nature of the diffusible substance.

We explored the parameter space defined by either CB and Nint

or Next and Nint. Since it is not possible to determine experimentally

neither the exact rate of P production nor the level of noise in

living cells, the model produced only qualitative predictions. We

were interested in the range of values that allowed bistability and

resulted in changes that could be considered as biologically

plausible. The simulations started with a small number of either

CD562 (‘‘lowP’’ cells in the model) or CD56+ (‘‘highP’’) cells and

reached the maximal population size of about 5000 cells after 150

to 200 steps. This setup is the in silico equivalent of the cell sorting

experiments. For each pair of parameters (either CB and Nint or Next

and Nint) the proportion of the cells that changed phenotype was

recorded both for the initially ‘‘low P’’ and ‘‘high P’’ cells. The

difference between the two values dS (for difference in switch rate)

indicated whether sorted ‘‘low P ’’ cells switched more or less

frequently or at the same rate than sorted ‘‘high P’’ cells. dS is

represented on Fig. 5 as a function of CB and Nint or Next and Nint at

steps 40 and 100 that correspond to the exponential growth phase

of the population. The results showed that both parameter pairs

defined three qualitatively distinct regimes. As expected based on

the bistable nature of the system, the phenotypic change was

highly dependent both on the kinetic parameters and on the noise.

When the density dependence of the phenotypic switch was

strong (high CB), the ‘‘low P ’’ cells converted to ‘‘high P’’ slower

than the opposite (Fig. 5). Qualitatively, we observed a similar

tendency in living cells. Both the in vivo and in silico observations

are consistent with the fact that the initial cell density at the

beginning of the experiment was low; hence, it favoured the ‘‘low

P’’ state. As a result, ‘‘high P’’ cells had the tendency to change

their phenotype, whereas ‘‘low P’’ cells did not switch. The

increasing density during cell proliferation allowed the conversion

to the ‘‘high P’’ phenotype in regions with high local density (Fig. 5

and Fig. 6A left panel). Therefore, strict density dependence of the

bistable phenotype switch is consistent with the observed

population dynamics of living cells.

When the local cell density had only weak effect on the P

production (low CB) and the intrinsic noise was high, ‘‘lowP’’ cells

converted to ‘‘highP’’ phenotype faster than the opposite (Fig. 5

and Fig. 6A right panel). Since the cells tend to a final equilibrium

in which the ‘‘high P’’ state is more likely than the ‘‘low P’’

phenotype and the conversion rate depends only on the noise

level. This dynamics may be due to the suppression of the density

sensing when the decision to change phenotype is predominantly

cell autonomous.

Next we examined the behaviour of the system with constant

kinetic parameters (CB = 0) and as a function of local cell density-

and phenotype-dependent noise (Next) and of intrinsic noise (Nint).

As expected for a bistable system, when the two noise terms were

low no conversion occurred and dS was close to zero. When the

context dependent noise was high but the intrinsic noise was low

the ‘‘highP’’cells converted to ‘‘low P’’ easier than the opposite.

This is illustrated on the Fig. 5 and Fig. 6B (left panel).This regime

reproduced qualitatively the observations made on living cell

cultures. As expected, ‘‘low P’’ cells were preferentially located in

low-density regions and ‘‘high P’’ cells in high-density regions

(Fig. 5 and Fig. 6B left panel). The observed asymmetry of the

transformation rates was solely due to the double- (density- and

phenotype-) dependence of the noise level because the specific

regulation of the phenotype determination was identical in all cells

and independent of the local cell density. When the intrinsic noise

Nint was high and dominated over the effect of the Next we observed

a dynamic regime with the ‘‘highP’’cells converting to ‘‘low P’’

slower than the opposite (Fig. 5 and Fig. 6B right panel).

Qualitatively, this behaviour is the opposite of that observed in

normal living cell cultures and it was similar to that observed

under the conditions when the local density weakly influenced the

kinetic parameters of the phenotypic transition (low CB) with

constant intrinsic noise (see above). In addition, this dynamics is

reminiscent of a system where the rapid switch to one state and

slow relaxation to the initial state was triggered by noise excitation

without density sensing described by Kalmar et al. [3].

Based on the simulations it is likely that the apparently

paradoxical slow transformation of sorted ‘‘low P’’ compared to

sorted ‘‘high P ’’ cells is a logical consequence of the local density-

sensing capacity and the fact that the experiment always starts with

low initial cell density. The sensing of the local density may occur

either by a specific mechanism that targets the activity of myogenic

genes or by simply modulating the gene expression noise in a

density- and phenotype-dependent way. Since our model provides

only qualitative predictions, we cannot directly differentiate the

two possibilities.

The simulations suggest that if the capacity of the cells to sense

local density is reduced the phenotypic transition of the ‘‘low P’’

cells into ‘‘high P’’ will be faster than the opposite. This may

happen either by lowering the dependence of the transition

kinetics (low CB) or by overruling the context-dependent noise by

the high intrinsic noise. To test this prediction, one has either to

increase specifically the capacity of the cells to sense local density

or increase the intrinsic noise in the cells. It has been reported

earlier that Trichostatin A (TSA), a histone deacetylase inhibitor

accelerated the differentiation of mouse myoblasts in culture [16].

In order to investigate the changes in dS the CD56+ and CD562

cells were sorted by cell sorter and cultured in the presence of

TSA. As shown on the Fig. 6C, as compared to the untreated

control, the treatment increased the rate by which CD56+ cells

appeared in the culture of initially CD562 cells and substantially

slowed down the opposite process. The exact mechanism of action

of TSA treatment on the myoblasts is unknown. Nevertheless, it is

likely that increasing the level genome-wide of histone acetylation

through inhibition of histone deacetylases inducing non-specific

chromatin opening would increase gene expression noise due to

the random activation of previously repressed genes that would

overweight context-dependent noise. Although a specific effect on

genes regulating myogenesis cannot be excluded, we can

tentatively conclude that a context-dependent noise generating

mechanism contributes substantially to the density sensing.

Another conclusion of the simulations is that contrary to our

expectations, cell alignment had no effect on the process of

phenotypic switch (see Supporting Document S1 and Fig. S3). In

fact, suppressing the capacity of the cells to restrict the axis of their
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migration in dense regions did not modify substantially the

dynamics of the phenotypic transition. This aspect will not be

discussed further.

Discussion

Cell differentiation is usually considered a unidirectional process

starting with tissue stem cells giving rise to proliferating

progenitors that terminally differentiate after several rounds of

cell divisions. This view has recently been challenged by

observations demonstrating that the heterogeneity observed in

pluripotent cells is dynamic and relies on the permanent

fluctuation of the cells between different phenotypic states

[1,2,3,4]. In all these cases, the cell population represented a

dynamic distribution of related states fluctuating between each

other. In hematopoietic stem cells, all cells expressed the Sca1

surface marker at varying levels and the sorted low- and high-

expressing cells reconstituted a population with the initial

distribution slowly [2]. It was proposed that the phenotypic

heterogeneity of gene expression level is not due to independent

noise in the expression of individual genes, but reflects metastable

states of a slowly fluctuating transcriptome that is distinct in

individual cells. A model of a noise-driven bi- or multistable system

in which different phenotypes correspond to a metastable state of

the underlying transcriptional network can account for this type of

dynamics. Murine ES cells display a different heterogeneity [3].

These cells are characterized by fluctuations between two clearly

different phenotypic states of ES cells; one is stable (‘‘high Nanog’’;

HN) and the other is unstable (‘‘low Nanog’’; LN). The transition

between the HN to LN phenotype is stochastic and rare, whereas

those from LN to HN are frequent. The observations are

consistent with a model with excitable dynamics where the first

change is rapid and noise-triggered followed by slow relaxation to

the initial state [3].

In our muscle-derived cells, the phenotypic transition appears to

differ from the above-described mechanisms but displays some

Figure 5. Analysis of the parameter space. The difference in the conversion rates dS of sorted ‘‘high P’’ and ‘‘low P’’ cells is represented in the
parameter space defined by either the context dependant regulatory Coefficient CB and the intrinsic noise (Nint) or by the context-dependent noise
(Next) and intrinsic noise (Nint) parameters at the steps 40 and 100 of the simulation. The three possible regimes are indicated by a colour code. The
area in blue (high context dependent and low intrinsic noise) indicates the part of the parameter space with conversion rates higher for the ‘‘low P’’
cells, while in the area indicated in red (high intrinsic noise) the opposite tendency prevails. The area in grey indicates the regime of low noise where
no conversion occurs.
doi:10.1371/journal.pone.0014441.g005
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features of both. First, the changes are slow in both directions.

Second, the two subpopulations are clearly distinct. In addition,

the process is further complicated by the fact that both cell types

form wave-like spatial patterns that can potentially modify the

local cell density and interfere with the process of phenotypic

switch. The observations reported here led us to the conclusion

that the dynamics of myoblasts can better be described as a

bistable system with the CD56+ and CD562 phenotypes

representing the two stable states. Bistability has been observed

in cell fate decision and differentiation in various cases [17,18,19].

The observations of dynamic phenotypic fluctuations in ES cells

led to the proposition that such heterogeneity is a distinguishing

feature of the pluripotent state [20], because the capacity to

generate heterogeneity is in fact synonymous with the capacity to

generate various cell types [21]. The observations reported here

suggest that fluctuation between different states may characterise

non-terminally differentiated cell types also. We show that every

human myoblast can generate at least two phenotypically

different, but interconvertible, cell types characterized here by

the expression level of the CD56 protein. We show that the

fluctuations between the two phenotypic states follow bistable

kinetics with slow transition. The proportion of the CD56+/

CD562 phenotypes in the population of cells cultured under

constant conditions remains approximately stable suggesting that

the population is close to equilibrium. We observe that the CD56+
cells have the tendency to be localized in the highly dense regions

of the population leading to a partial spatial compartmentalization

of the two cell types. Computer simulations were able to reproduce

similar spatial compartmentalization only when the cells were able

to sense their microenvironment.

The myoblasts form wave-like spatial patterns during popula-

tion growth. The capacity to form such patterns is a common

feature of both CD56+ and CD562 cells. The computer

simulations show that these patterns may emerge by the collective

behaviour of the cells. The simulations also suggest that the spatial

patterns do not contribute substantially to the non-random

distribution of the phenotypic forms.

Previous theoretical models suggested that individual cells may

gain and loose certain properties depending on whether they

localize inside or outside a specific environment [22]. In these

models the specific environment existed before the cell’s fate

decision. Therefore, they cannot explain how the cells are able to

reproducibly generate phenotypic heterogeneity even in a

homogenous environment. We have proposed previously that cell

fate decisions may be made concomitantly with and in tight

interaction with the emerging micro-environment [23]. The cell

itself constantly contributes to the change of its own environment

by secreting and consuming various substances and/or by

physically interacting with the neighboring cells. The consequence

of these processes is that the phenotypic state of the cells is no

longer adapted to the microenvironment they contributed to

create. This inadequacy induces a stress response, increases cell-

intrinsic fluctuations and encourages the cell to explore alternative

possible phenotypic states until equilibrium is restored. Our

previous findings on the uneven spatial distribution of stem-like

cells in mouse myoblast cultures suggested that adaptation to the

local microenvironment may constitute the first step in the

emergence of a new cellular phenotype [1]. More recently, Snijder

et al. has extended our initial observations by revealing

correlations with specific cellular states that are defined by the

population context [5]. The authors demonstrated that virus

infection, endocytosis and membrane lipid composition are

determined by the cellular microenvironment, mainly by local

cell density. The observations reported here go beyond the

demonstration of the correlation between the ‘‘ecological context’’

and phenotype and suggest simple principles that can reconcile

widespread stochastic fluctuations of gene expression on one hand

and an ordered sequence of events resulting in stable cellular states

with defined spatial distribution.

Stable phenotypic states are frequently represented as ‘‘high

dimensional attractors’’ of the transcriptome in the ‘‘potential

energy landscape’’ or in the ‘‘noise landscape’’ [9,24]. In this

contemporary reformulation of the ‘‘epigenetic landscape’’

metaphor proposed by Waddington the landscape of high

dimensional attractor states inferred from the gene regulatory

network architecture is necessarily intrinsic to the cell. The

transition between two states is triggered by the noise of the

transcriptional regulatory network [24]. Recent observations on

adaptive attractor selection in bacteria provided direct experi-

mental support to this hypothesis [25]. Our work extends this view

by suggesting that the ‘‘epigenetic landscape’’ is not intrinsic to the

cell and it is not stable in time but dynamically changing. Its exact

shape is determined by all participant cells through the interplay

between the fluctuating intrinsic state of individual cells and the

interactions between the neighbouring cells that form the

microenvironment. This interpretation is similar to conceptual

models that tend to abandon the classical assumption of a strict

hierarchy during differentiation and understand cell differentiation

as a dynamic process of ‘‘isologous diversification’’ or autostabi-

lization of stochastic processes [26,27,28,29].

In vitro cell cultures like those studied here are frequently used

to investigate features of in vivo tissues. Although our experimental

system does not reproduce with precision the organization of the

muscle tissue in vivo, the observations reported here also offers

some clues for interpreting some observations made in vivo. When

satellite cells are activated by muscle damage, they undergo rapid

cell divisions before differentiating to form myofibers. However, a

fraction of the cells returns to the quiescent cell pool. The choice

between the two fates is reminiscent of the in vitro situation. A

recent study has shown that both autocrine and paracrine

Figure 6. Examples of simulations and effect of TSA. A. Examples taken from the parameter space presented on the Fig. 5. The left panel is an
example of strong dependence (CB = 15) of the kinetic parameter B on local cell density where ‘‘low P’’ (blue) cells switch to ‘‘high P’’ slower than the
opposite: dS.0. The right panel is an example of weak (CB = 5) dependence of the kinetic parameter B on local cell density where ‘‘low P’’ (blue) cells
change phenotype easier than the ‘‘high P’’ cells: dS ,0. The small diagram indicates the fraction of the cells that changed phenotype. Note the
density-dependent distribution of the blue and red cells as shown by the virtual ‘‘immunochemical’’ analysis of the cell phenotypes. The graded
background is indicative of the local concentration of R decreasing from white to green. B. Examples taken from the parameter space on Fig. 5 with
the high context-dependent/low intrinsic (left panel) and high intrinsic (right panel) noise regimes. Note the difference in the conversion rates of the
sorted ‘‘high P’’ and ‘‘low P’’ cells depending on the noise regime as shown by the virtual cytrometrical analysis. The spatial distribution of the ‘‘high
P’’ (red) and ‘‘low P’’ (green) cells is different depending on the noise regime as shown by the virtual immunochemical analysis of the cell phenotypes.
C. Trichostatin (TSA) treatment of the living cells reproduces the effect of the high intrinsic noise: the cytometry analysis of sorted and TSA treated
CD562 (blue) and CD56+(red) cells compared to non-treated controls shows high conversion rate of the sorted ‘‘high P’’(red) cells compared to ‘‘low
P’’(blue) cells (right panel). The control untreated cells show the previously observed conversion rates typical either for strong dependence of
parameter B on local cell density or for high context-dependent/low intrinsic noise regime.
doi:10.1371/journal.pone.0014441.g006
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feedback mechanisms act both in vivo and in vitro to bring about this

dichotomous fate decision [30]. It is possible that the dynamics of

this process in the complex in vivo situation also follows a noise

driven bistable logic identified in our in vitro cellular system.

Materials and Methods

Human primary skeletal muscle cell culture
We used previously described primary muscle cells [11]. Cells

were cultured in growth medium composed of one volume of

medium 199 (Gibco) and one volume of DMEM 4,5 g:l glucose

(Gibco) supplemented with 20% fetal calf serum (Gibco) at 37uC in

a humid atmosphere containing 5%CO2. For all experiments, the

myoblasts used were between 25-35 population doublings.

FACS analysis
For flow cytometric analysis, after 4 or 7 days in growth

medium, 26105 cells were detached from the surface of the culture

dish using TrypLE select (Gibco), resuspended in PBS containing

phycoerythrin-conjugated anti-CD56 (Milteny, clone AF12-7H3)

antibody diluted 1 to 15 for 10 min at 4uC. Cells were washed and

analysed using FACSCalibur (BDbiosciences). Phycoerythrin was

detected off the 488 nm line using logarithmic amplification. Each

acquisition file included at least 5000–10000 events. Sample

incubated with irrelevant isotype-matched (Milteny, clone IS5-

21F5) served as control for background fluorescence. A forward

scatter (FSC) threshold was set to eliminate debris from list mode

data and for each sample.

Isolation of CD56+ and CD56- cells
Cell-sorting was performed using Beckman Coulter MoFlo. Cells

(56106–16107cells) were detached and incubated with PE-CD56

(see FACS analysis). PE was detected off the 488 nm line using

logarithmic amplification. Sample incubated with irrelevant isotype-

matched antibody (Milteny, clone IS5-21F5) served as control for

background fluorescence. After determination of the purity of the

two types of populations (only at least 98% pure CD56+ or CD56-

fractions were used), cells were plated into 6-well plates (2000–3000

cells/cm2) or into 96-well plates in the presence of proliferation

medium (500–3000 cells/cm2 or one cell by well). Cell cloning was

performed after similar labelling procedure. The individual cells

were plated into 96-well plates in proliferation medium.

In the TSA experiment CD56+ and CD562 cells were plated at

a density of 2.86104 cells per well into 6-well plates. Trichostatin A

(Sigma) added to the growth culture medium at 70 nM for 4 days.

Immunostaining, microscopy and image processing
Cells were washed with phosphate-buffered saline (PBS) (Gibco)

and fixed with 4% paraformaldehyde for ten minutes, rinsed two

times with PBS, blocked with 2% goat serum and incubated for

one hour with PE-conjugated antibody anti-CD56 (Miltenyi; Ref:

130-090-755; dilution 1/15). Nuclei of cells were counstained by

DAPI (Invitrogen). For labeling the cell membrane, we used

CellTraceTM CFSE Cell proliferation kit (Molecular probes).

Fluorescent images were acquired using the acquisition software

Cartograph (Microvision, Courcouronne, France) controlling an

inverted IRDM microscope (Leica) mounted with a motorized

stage and a MicroPublisher 3.3 camera (Qimaging). The total

surface of each well was scanned in both fluorescence (Blue and

Red) using a 106 objective (192 images: 12616 rectangle).

Mosaics of images were exported in tif format and treated with

imageJ (http://rsb.info.nih.gov/ij/). The analysis was based on

the same philosophy as previously for the study of the stem cell-like

side population (SP) cells in the mouse myogenic cell line [31].

Cells were segmented using a threshold for the blue channel (Dapi)

and by collecting intensity information from the Red channel

(CD56). Coordinates for each cell with the CD56 intensity signal

was exported in text for the spatial analysis. The R program was

used for the statistical spatial analysis using homemade scripts as

well as the open source SpatStat Package [32] used for calculating

the nearest neighbors distances.

Superoxide detection in cultured myoblasts
Generation of superoxide anions by myoblasts in culture was

assessed using DHE (Dihydroethidium, Invitrogen, Cergy-Pontoise,

France). DHE is predominantly oxidized by short-lived superoxide

anions to ethidium, which intercalates within the cell’s DNA and

generates a nuclear fluorescence in cells. The myoblasts were grown

on glass cover slips (VWR, Fontenay-sous-Bois, France). DHE

(10 mM final concentration) was added to the cell culture medium,

and cultures were incubated for 30 min at 37uC. The medium was

then removed and cultures were rinsed once with PBS. Cells on

cover slips were fixed with paraformaldehyde (4%, pH 7.5) for

10 min at room temperature. They were then rinsed once in PBS,

stained with the nuclear fluorescent dye TO-PRO-3 (Invitrogen,

1:1000 diluted with PBS) for 5 min and washed with PBS. Glass

cover slips were mounted on slides with Fluoromount (Clinisciences,

Montrouge, France). Images were captured using a Leica DMRE

confocal microscope with laser excitation at 514 nm and emission

measurements using a 580/620 nm band pass filter.

Description of the model
The computer simulation was performed using the Netlogo

language, specifically designed to make simple agent-based models

(http://ccl.northwestern.edu/netlogo/). The code is available on

request (stockho@genethon.fr or paldi@genethon.fr).

The basic assumptions of the standard model were as follows:

the cells were able to divide, migrate and die. The cell cycle length

and migration velocity were carefully calibrated of the basis of the

time-lapse records.

Bistable switch model of phenotypic transition. In the

model, each cell is an autonomous agent. We hypothesized that the

phenotype is contingent on the accumulation of a substance P which

can represent one or several proteins in the cell. This approach made

possible the direct comparison of the simulated cellular phenotypes

described by P in the model and the level of CD56 protein that

describes the phenotype of the living cells. The actual level of P is

calculated at each step of the simulation as a function of the

production and degradation rates. It is described by the equation:

dP

dt
~

A:P2

(B2zCB
:R)zP2

{kdeg
:PzNintzNext

The first term of the equation describes the production of

phenotype ‘‘P’’ by the cell. It is assumed to be non-linear and

modelled using the Hill function with a Hill parameter n = 2. The

second term describes the degradation of ‘‘P’’, presumed to be

linear with a rate constant kdeg. The non-linear production and

linear degradation together ensure a dynamic behaviour with two

stable states. Phenotypic stability is achieved when the production

and degradation rates are equal and the amount of P in the cell

remains stable. There are three such states; one with high and the

second with low P level. These two states constitute attractor states.

The third equilibrium is unstable.

The parameter A determines the maximal rate of P production.

The form of the sigmoid curve, that is how rapidly the maximal rate
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is reached as a function of P, is determined by the parameter B. In

other terms, the proportion of ‘‘low P’’ and ‘‘high P’’ cells in the

population at equilibrium depends on B providing the degradation

rate remains unchanged. The dependence of B on the local cell

density is achieved using the term CBR. CB is a parameter that

determines how strong is this dependence and the variable R is an

indicator of local cell density. The actual value of R is calculated at

each step for each region of the virtual Petri dish (called ‘‘patch’’ in

Netlogo) as the equilibrium between the quantity that is consumed

by the cells and the constant diffusion of the substance from the

surrounding culture medium. The initial concentration of R is 100

everywhere in the culture, but it gradually decreases in the regions

of high cell density if the diffusion cannot compensate the utilization.

Therefore, CBR is high (if CB.0) in regions of low cell density and

favours ‘‘lowP’’ phenotype by increasing the denominator of the

Hill-function and decreases with high cell density making the

‘‘highP’’ phenotype more likely (Fig. 4C). In other terms, the actual

local cell density modifies the kinetics of phenotypic transition of the

cell at each step.

However, the transition between the two states is impossible

without stochastic fluctuations of the production and degradation

of P. We introduced two noise terms in the equation: Nint describes

the cell-intrinsic noise that is calculated at each step as a normally

distributed random variable with average mNint = 0 and fixed

standard deviation s= Nint.

The last term Next describes the noise generated by the

microenvironment of the cell. Next is also a normally distributed

random variable with average mNext = 0. It is calculated for each

cell at every simulation step. Hence, the actual value of the

extrinsic noise in a cell fluctuates around 0 and can increase or

decrease the level of P in the cell. We assumed that the noise

amplitude increases with the local cell density, but decreases as a

function of P level in the cell which is described by a function Next

derived from a hyperbolic paraboloı̈d (f(x,y) = xy):

Next(P,R)~
P{Pmax

Pmax

� �
: R{Rmax

Rmax

� �� �
z1

This function determines a surface depicted on the Fig. S2. As a

result, in ‘‘low P ’’ cells the amplitude of the noise is maximal if the

local cell density is high, while in ‘‘highP’’ cells the noise is the

highest at low cell density. The noise is minimal in ‘‘low P ’’ cells at

low density and ‘‘high P’’ cells at high density. In other terms, the

extrinsic noise depends on the match between the internal state of

the cell and its local environment (Fig. S1).

Statistical analysis
For all statistical calculations we used the R package [32]

version 2.8.0. (http://journal.r-project.org/).

Supporting Information

Document S1 Supporting Text describing: 1. Simulations

showing no impact of cell aligment on the phenotypic switch in

the model 2. Methylation analysis 3. Supplementary Reference 4.

Supplementary Methods for i. Analysis of cell migration using

time-lapse videomicroscopy ii. Analysis of cell proliferation and iii.

DNA extraction and DNA methylation analysis of the CD56 gene.

Found at: doi:10.1371/journal.pone.0014441.s001 (0.04 MB

DOC)

Figure S1 Quantification of the migration and proliferation

properties of the human cells for computer simulation. (A) Time

lapse experiments for the determination of cell migration

characteristics. A low cell-density culture with the cell velocity

vectors of a selection of moving cells are shown on the left panel.

The same culture 48 hours later with the velocity vectors of the

moving cells is shown on the right panel. Note the tendency of the

velocity vectors to become parallel in the high cell density regions.

(B) Example of cell trajectories in a low-density culture as detected

by time-lapse video microscopy and cell tracking (on the left

panel). Right panel: a histogram showing the exponential

distribution of the cumulative velocity magnitudes on the basis

of 16000 individual velocity values. (C) Measure of proliferation

rate of the cells using PKH26. The parental population is shown

on the left panel. The distribution of the fluorescence after three

days of culture and the deconvolution analysis (right panel)

indicate that the average cell cycle length is between 20 to 24

hours. This value was also confirmed by the tracking of individual

cells on time-lapse records.

Found at: doi:10.1371/journal.pone.0014441.s002 (1.87 MB TIF)

Figure S2 Representation of the function describing the context-

dependent noise Next as a function of the local density and the

phenotype defined by the intracellular level of P. The function

follows the general form of a hyperbolic paraboloid, f(x,y) = xy.

Found at: doi:10.1371/journal.pone.0014441.s003 (0.28 MB TIF)

Figure S3 Analysis of the parameter space in the model with

random cell migration and without cell alignment. Note that at

steps 40 and 100 the behaviour of the system in the parameter

space defined by the two noise terms is identical to that seen in the

model with cell alignment (Fig. 5).

Found at: doi:10.1371/journal.pone.0014441.s004 (1.86 MB

TIF)
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