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Abstract

Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt)
siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated
intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that
Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show
that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology
and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic
plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a
distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.
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Introduction

Yersinia pestis is usually transmitted by infected fleas and

produces bubonic plague, characterized by a painful, swollen

lymph node, the bubo [1]. Bubonic plague progresses rapidly to a

life-threatening septicemia, but septicemia without a prior bubonic

phase (primary septicemic plague), may also result from direct

injection of plague bacilli into a blood vessel during the flea

bloodmeal [2]. Other less common clinical presentations that can

follow flea-borne transmission include pestis minor (a benign form

of bubonic plague) and carbuncular plague with or without

palpable buboes [1,3]. These rare forms of plague have not been

attributed to atypical strains of Y. pestis. However, atypical strains

have been isolated from around the world and it remains unclear

whether these isolates produce one or another form of plague.

Typical Y. pestis strains form red colonies (pigmented or Pgm+)

after growth at #34uC on media containing Congo red, but white

colonies (Pgm–) may be isolated at a frequency of 1024 [4]. Most

spontaneous Pgm– mutants result from the deletion of a 102-kb

chromosomal region termed the pgm locus [5,6]. This locus

includes the haemin storage operon (hmsHFRS) which is essential

for the pigmentation phenotype and for the production of a

biofilm in the flea gut that can block normal blood feeding; the

blockage of the flea’s digestive tract is considered to be an

important process for flea-borne transmission [7]. The pgm locus

also contains the Yersinia high-pathogenicity island (HPI), which

carries among other genes the irp1-irp2-ybtU-ybtT-ybtE, the ybtP-

ybtQ-ybtX-ybtS and the psn loci that encode the yersiniabactin (Ybt)

siderophore-based iron acquisition and transport system. The irp

genes encode the high molecular weight proteins (HMWP) 1 and 2

which act in concert with YbtU, YbtE, YbtS and probably YbtT

to synthesize the Ybt siderophore [8]. Ybt is secreted, acquires iron

from transferrin and lactoferrin in host tissues, then is transported

back into Y. pestis by the TonB-dependent outer membrane

receptor Psn and the inner membrane ABC-transporter YbtP-

YbtQ. A critical role of the Ybt system in bubonic plague is

indicated by the fact that Ybt– Y. pestis strains are essentially

avirulent by the subcutaneous inoculation route that mimics the

flea bite, although these strains retain complete or nearly complete

virulence when inoculated intravenously [5,9,10,11]. Presumably,

Ybt is required to provide sufficient iron at the peripheral injection

site, in the draining lymphatic system, and/or in the lymph nodes,

suggesting that Ybt would be an essential virulence factor for flea-

borne bubonic plague.

Despite the importance of the Hms and Ybt system for flea-

borne transmission and for disease in bubonic plague models,

respectively, the pgm locus is subject to complete or partial loss at

relatively high frequency by genomic rearrangements; and Pgm–

Ybt– and Pgm–Ybt+ strains from natural plague foci have been

described [5,12]. Furthermore, human cases of plague have been

associated with non-pigmented strains [12]. Altogether, the data

prompted us to assess the role of the Ybt system in plague

epidemiology and pathogenesis in the natural context of

transmission by flea bite.
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Methods

The fully virulent Y. pestis 195/P strain which was originally

isolated from a patient with pneumonic plague [13] and an isogenic

irp2 mutant with an in-frame deletion of bases 242 to 5721 were

used in this study. The irp2 mutant was generated by allelic

exchange using the suicide plasmid pCVD442 and verified by

sequencing. Bacteria cultured overnight in Luria broth at 21uC
without aeration were quantified by using a Petroff-Hausser

bacterial counting chamber, diluted in PBS and inoculated

intravenously into the tail vein or intradermally in the upper right

thigh to groups of 8–10 week-old female RML Swiss-Webster mice.

A flea-borne transmission model was used to determine Y. pestis

infectivity after challenge by flea bite [2]. Xenopsylla cheopis rat fleas

were allowed to feed on heparanized mouse blood containing wild-

type Y. pestis or an isogenic irp2 mutant, using an artificial feeding

device, and maintained as previously described [7]. Beginning 13

days after their infectious bloodmeal (the time required for Y. pestis to

block X. cheopis), 49 to 115 fleas were applied to a restrained mouse

and allowed to feed for 60 min. Immediately after the challenge, the

fleas were examined individually under a dissecting microscope to

determine how many infective (blocked) fleas had bitten each mouse

[7]. Mice that did not develop any symptoms within 5 days

following a challenge were re-challenged until the cumulative

number of bites from blocked fleas was high enough to consider that

a successful transmission occurred [2,14]. Mice received one to six

different sequential challenges. Challenged animals were observed

at least three times daily for three weeks and euthanized upon signs

of terminal plague (evidence of lethargy, hunched posture, and

reluctance to respond to external stimuli) [15]. Bacterial load in the

spleen and blood was determined by colony-forming unit (CFU)

count. Hematoxylin and eosin (H&E) and immunohistochemical

(IHC) staining to detect Y. pestis [15] was performed on formalin-

fixed inguinal lymph node sections.

Ethics Statement
All animal experiments were approved by the Rocky Mountain

Laboratories, National Institute of Allergy and Infectious Diseases,

National Institutes of Health Biosafety and Animal Care and Use

Committees in accordance with National Institutes of Health

guidelines (animal protocol number 05-37).

Results

The Ybt system is not required for Y. pestis to colonize and block

fleas [7]. Therefore, it was possible to compare the virulence of the

wild-type Y. pestis strain and an isogenic Ybt-negative mutant after

natural transmission by infected X. cheopis rat fleas. We first tested

the virulence of our Ybt– mutant after needle-inoculation of

cultured bacteria. The LD50 of the mutant was 10 CFU after

intravenous (IV) injection, but .105 CFU after intradermal (ID)

inoculation, similar to what has been reported previously for other

Ybt– Y. pestis strains [5,9,10,11]. Next, we challenged mice using

our flea-borne transmission model. Nine of the ten mice bitten by

fleas infected with the wild-type strain developed terminal plague,

eight of them within the first four days after challenge (Figure 1

and Table 1). Interestingly, although the Ybt– mutant was highly

attenuated when inoculated intradermally by needle, fleabites

from fleas infected with this mutant produced terminal disease in

two of ten mice, at 3 and 6 days post-challenge (Figure 1 and

Table 1). Thus, the Ybt iron acquisition system is not essential to

produce plague after fleabite transmission, although the incidence

of disease was significantly lower in mice challenged by fleas

infected with the irp2 mutant (P = 0.001 by log-rank test).

Six of the nine sick mice infected by fleabite with the wild-type

strain were diagnosed with typical bubonic plague, characterized by

severe lymphadenitis with destruction of the lymph node architec-

ture and the presence of numerous bacteria admixed with cellular

debris (Fig. 2A to 2C). The other three mice did not have obvious

lymphadenitis, but the spleen and blood of all nine mice were

heavily colonized (8.761.2 and 6.960.9 log10 CFU per ml of blood

and spleen respectively). From these results one can infer that six

mice had bubonic plague followed by sepsis and 3 mice developed

primary septicemic plague (Table 1). In contrast, disease outcome in

mice bitten by fleas infected with the irp2 mutant was significantly

different (P = 0.0015 by Fisher’s exact test). Neither of the two mice

that developed terminal disease after being bitten by fleas infected

with the irp2 mutant had typical bubonic plague (Figure 2).

Histologic analyses of the lymph nodes proximal to the flea bite site

of these mice did not reveal any bacteria (Fig. 2F and 2I), but the

mouse that developed terminal plague at 6 days had evidence of

lymphadenopathy (Figure 2D and 2E). Lymph node pathology was

localized; however, many immature lymphocytes and macrophages

containing ingested apoptotic lymphocytes were present throughout

the entire lymph node. The etiology of this lymphadenitis is

uncertain. It could have resulted from hematogenous spread

subsequent to primary septicemic plague; alternatively, the lymph

node may have been initially colonized and the bacteria

disseminated to the blood before being eliminated from the node,

in an atypical form of bubonic plague. Regardless of lymph node

histopathology, both mice had a high bacterial load in the blood and

the spleen (Table 1) (8.3 and 8.6 log10 CFU in the spleen and 3.8

and 7.6 log10 CFU per ml of blood). Hence, one mouse infected

with the irp2 mutant had primary septicemic plague, and the other

had septicemic plague associated with a mild lymphadenitis. For

mice challenged with either wild-type or Dirp2 Y. pestis, disease

outcome (bubonic plague, primary septicemic plague, or no disease)

did not correlate with the cumulative number of challenges or

infective flea bites (P.0.05 by Fisher’s exact test).

Figure 1. Effect of the Y. pestis Ybt on transmission by fleas.
Incidence and time to terminal disease in mice bitten by fleas infected
with Y. pestis wild type (open squares) or the Dirp2 mutant (open
circles).
doi:10.1371/journal.pone.0014379.g001

Ybt and Plague Transmission
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Table 1. Disease outcome in mice bitten by fleas infected with wild-type or irp2 Y. pestis.

Fleas infected with:

Y. pestis wild-type Y. pestis Dirp2

Mouse
Infective flea bites*
(number of challenges)

Time to terminal
disease (days) Outcome{ Mouse

Infective flea bites*
(number of challenges)

Time to terminal
disease (days) Outcome{

1 1 (1) 4 B 11 7 (3) 6 S; a/B

2 1 (1) 7 B 12 5 (3) 3 S

3 2 (1) 4 B 13 7 (4) - -

4 4 (1) 4 B 14 9 (6) - -

5 5 (1) 3 B 15 6 (5) - -

6 6 (1) 3 B 16 6 (5) - -

7 3 (1) 4 S 17 6 (5) - -

8 8 (2) 3 S 18 8 (5) - -

9 9 (2) 4 S 19 5 (6) - -

10 11 (2) - - 20 9 (4) - -

Median 4.5 (1) 4 6.5 (5) 4.5

*Cumulative number of bites from blocked fleas.
{B and a/B, typical and atypical bubonic plague respectively; S, primary septicemic plague; -, no disease.
doi:10.1371/journal.pone.0014379.t001

Figure 2. Lymph node histology of mice with terminal plague following flea-borne transmission of wild-type and Dirp2 Y. pestis.
Lymph node sections from mice infected with the wild-type strain (A to C) or with the Dirp2 strain (D to I) were strained by H&E (A, B, D, E, G and H) or
by IHC using Y. pestis-specific antibody (C, F and I). Panels D, E and F and the panels G, H and I are photos of the lymph node from mouse with and
without lymphadenitis respectively. Masses of bacteria, indicated by green arrowheads, stained dark brown by IHC and blue by H&E. Red arrowheads
show tissue destruction in the sick mouse infected with the Dirp2 mutant. The lymph nodes (G, H and I) have an identical normal histology to
uninfected lymph node [14]. Magnification, 40x (A, D, G, C, F and I) and 400x (B, E and H).
doi:10.1371/journal.pone.0014379.g002
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Discussion

The chromosomal pgm locus is prone to relatively frequent

deletions and internal rearrangements that result in loss of the

Hms or pigmentation segment, the HPI containing the Ybt

operons, or both [16]. In previous studies, these phenotypically

Pgm– or Ybt– spontaneous mutants were genetically undefined, or

if defined were engineered in Y. pestis strains lacking virulence

factors such as the pH6 antigen and YopJ, making it difficult to

delineate the contribution to virulence of non-Ybt related genes

within the pgm locus [5,9,10]. Recently, a reconstructed wild-type

strain was mutated in the irp2 gene and found to be essentially

avirulent [11]. We found similar results using an irp2 mutant

produced from a fully virulent strain. Altogether, the data indicate

that loss of a single Ybt-synthetic enzyme in a fully virulent Y. pestis

strain can account for the avirulence observed for Pgm– or Ybt–

strains in bubonic plague infection models, and support the

hypothesis that the Ybt system provides the iron required by the

bacteria during the early steps of the infection. Nonetheless, it

cannot be excluded that the pgm locus encodes other virulence

factors required for bubonic production since it was recently

shown that a pgm negative mutant had a greater loss of virulence

than the Ybt biosynthetic mutant in mouse model of pneumonic

plague [11].

The present results with a Y. pestis irp2 mutant mirror our

previous results with a Y. pestis plasminogen activator (pla) mutant

[2]. Both mutants are avirulent by the ID route and fully virulent

by the IV route, but cause plague at low incidence following

fleabite, despite the fact that their LD50 by the ID route

(.105 CFU) is several orders of magnitude higher than the

number of CFU transmitted by blocked fleas (median ,100 CFU)

[2,17,18]. We previously proposed that direct injection of bacteria

into a dermal blood vessel during the flea bite can lead to primary

septicemic plague, with no prior bubonic stage [2]. The data

herein provides independent support for this model.

The extent to which atypical forms of plague are attributable to

atypical strains rather than the host immune response is unknown,

but non-pigmented Y. pestis strains are frequently isolated from

natural sources, and have been associated with mild cases of

human plague [12]. The unstable nature of the pgm locus indicates

that Ybt– and Pgm– clones are generated spontaneously in nature

with some regularity. These clones would be at a disadvantage

because of their decreased transmissibility, but could persist for

some time during an epidemic associated with high flea density.

The recently described early-phase transmission by fleas might

also be more conducive to the circulation of these clones [19].

Because blocked fleas are unable to ingest blood, they probe

repeatedly, a behavior that enhances deposition of bacteria into

the extravascular space of the dermis. In contrast, unblocked fleas

take a normal blood meal during early phase transmission,

suggesting that direct IV transmission would be more common.
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