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Abstract

Background and Methodology: Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity
and associated activation of insulin production. To identify protein markers for these variations in functional glucose
sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P)H and their proteomes
were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified
through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6
stably expressed reference proteins.

Principal Findings: All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable
proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The
proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was
characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal
constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes
involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in
mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain.

Conclusions: Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell
metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes.
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Introduction

Insulin-producing beta cells are the body’s central glucose

sensors. Key to their glucose sensing, is their dependence on low-

affinity glucose phosphorylation by glucokinase [1,2]. Freshly

isolated beta cells reveal heterogeneity in metabolic glucose

sensitivity [3]. Intercellular variations in glucokinase abundance

and activity give rise to proportionate variations in concentration-

response curves for glucose-induced NAD(P)H, insulin synthesis

and secretion [2,4–7]. This functional heterogeneity is subject to

regulation in vivo – as shown in animals exposed to sulfonylurea

[8]-, and likely contributes to normal glucose tolerance. Beta cells

with higher glucose sensitivity are also less susceptible to oxidative

damage [6,9]. Glucose intolerance and type 2 diabetes is thought

to involve progressive beta cell exhaustion, provoked by sustained

metabolic overload, leading to loss of glucose sensitivity [10].

Understanding how intrinsic glucose sensitivity is reflected in the

beta cell proteome can guide us to markers to study functional

adaptations in the beta cell mass in vivo, and ultimately to therapy

that can regulate it. Such natural variations in glucose sensitivity

are likely explained by minor variations along a normal

distribution of enzyme abundances rather than by dichotomous

absence/presence of key enzymes. Disclosing such specializations

requires precise and accurate quantifications. Data-independent,

alternate-scanning LC-MS is an ion current based mass

spectrometric analysis method that offers label-free quantification

of molar protein abundances [11,12]. The present study first

evaluated if alternate scanning LC-MS achieves sufficient accuracy

and precision to measure functional sub-specializations within a

pure cell type at the protein level. A second aim was to describe

protein markers that are quantitatively associated with the beta

cells’ metabolic responsiveness to glucose. Finally, through a tissue-
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comparative analysis, an attempt was made to catalog protein

markers with selective expression in insulin-producing beta cells.

Results

Dynamic range of detected proteomes
Molar protein amounts in FACS-purified rat islet beta and

alpha cells were measured, and compared to whole liver and brain

proteomes [11]. A total of 943 proteins were identified in liver,

brain, alpha and beta cells. The number of identifications in a

single tissue ranged from 346 (brain) to 527 (liver). Within each

tissue, the most abundant proteins were 200 to 600-fold more

present than the lowest detectable ones that still could be reliably

quantified (Table 1). The important overlap of the 4 tissue

proteomes reflects that identified proteins typically belong to

abundant functional pathways, with in decreasing order: cytoskel-

eton constituents, metabolic enzymes and proteins involved in

protein biosynthesis and intracellular signaling (Fig. 1a). Islet

endocrine alpha and beta cells showed highest similarity (Fig. 1b).

Liver had the highest number of identifications; consequently,

molar amounts in liver were in average 4-fold lower than in

endocrine and neural cells (Table 1). Quantitative comparison of

tissue proteomes thus requires normalization to reference proteins

with stable expression between tissues (Fig. S1); 6 such references

belonging to 3 different functional pathways, were selected for

geometric [13] normalization of molar amounts as specified in

Experimental procedures and Fig. S1: 2 cytoskeleton- (Tubb5,

Pfn1), 2 signaling- (Ywhae, Rab1b) and 2 protein synthesis (Ppia,

Hspa8)-associated proteins, and spread over a concentration range

of 2 decades.

Validity of alternate-scanning LC-MS-based beta cell
proteome quantification

Total imprecision (error) – reflecting true biological variation plus

the variation attributable to protein extraction, sample processing

and LC-MS analysis – was limited to 19% (median) for the beta

cell Fig. 2. Analytical imprecision calculated as variation solely on

triplicate MS injections (Fig. 2) was limited to 14–17% (median).

With such precision, molar protein expression differences between

cell types down to 45% can be confidently discerned (see

Experimental procedures).

Next, accuracy (bias) of the quantitative label-free LC-MS

analyses was evaluated. The stoichiometry of subunits within

multienzyme complexes such as mitochondrial F0F1-ATPase,

pyruvate- (PDH) and oxoglutarate- (OGDH) dehydrogenase

complexes has been extensively studied, and can serve as

reference. In liver tissue, most subunits of these macrocomplexes

were identified. As shown in Fig. 2b-c the relative ratios of their

subunits as measured by LC-MS closely matches the previously

reported stoichiometries. For the PDH complex the E1a:E1-

b:E2:E3 ratios of 40:40:40:20 were confirmed [14]. A similarly

good approximation was obtained for OGDH with E1:E2:E3

ratios previously reported of 12:24:6 [15]. Also the F1-domain of

the mitochondrial F0F1-ATPase, label-free quantitative LC-MS

approached the known 3-fold higher expression of catalytic

subunits a and b as compared to other F1-stalk subunits. Overall,

accuracy for measurement of subunit stoichiometry is 104625%.

The proteome of beta cell subsets with higher or lower
metabolic and functional glucose responsiveness

Since the applied LC-MS scanning technology can accurately

detect moderate molar expression differences in a label-free, ion

current fashion down to 45%, it was used to identify variations in

enzyme abundances as function of the beta cells’ metabolic glucose

sensitivity. Glucokinase activity is to date the only in vitro [2,4,5]

and in vivo [8] functional marker for glucose sensing capacity of

individual beta cells. Beta cells were stimulated with 7.5 mM

glucose – a concentration close to the Km of glucokinase - and

FACS-sorted for their level of glucose-derived NAD(P)H (Fig. S2).

Beta cells with higher glucose-induced NAD(P)H have a higher

subcellular complexity (light side scatter) despite similar insulin

stores [16]; their radius (forward light scatter) is on the average

11% larger (p,0.05) (Fig. S2a–b), indicating 1.35 times larger

intracellular volume. This corresponds well with earlier studies

from our group (1.25 times [2]) and others (1.32 times, [17]), and

with the higher total protein level per cell (316642 pg/cell in

highly versus 193652 pg/cell in lowly responsive beta, p = 0.12,

n = 3). Even when cellular protein synthetic activities were

corrected for difference in cell size, the highly glucose responsive

phenotype retained a 1.5–2-fold higher insulin production per cell,

reflecting size-independent intrinsic activation. For LC-MS

analysis, an identical protein amount of each phenotype was

Table 1. Overview of protein identifications and quantifications.

a cells b cells liver brain High b Low b

Number of proteins

identified 353 467 527 346 254 256

quantified 342 434 505 341 232 229

* Amount of protein

median 0.001484 0.001954 0.001521 0.001711 0.002814 0.002577

minimum 0.000057 0.000092 0.000159 0.000098 0.000069 0.000120

** maximum 0.027730 0.052581 0.025761 0.027860 0.042239 0.046572

dynamic range (log) 2.63 2.75 2.21 2.45 2.78 2.59

*target protein (ng) detected on column/total amount protein (ng) detected on column.
**excluding top 1% percentile.
A first round of LC-MS analysis compared FACS-purified pancreatic alpha and beta cells (n = 3) to whole liver and brain tissue pools. A second independent analytical
round compared rat beta cells that were sorted for their metabolic responsiveness (glucose-induced NAD(P)H) shortly after their isolation. ‘High’ and ‘low beta’ indicate
respectively beta cells with higher or lower metabolic glucose responsiveness, as reflected by their level of 7.5 mM glucose-stimulated NAD(P)H production (See Fig. S2,
Methods). The table shows number of proteins identified (above limit of detection), quantified (above limit of quantification) and general quantitative properties of the
proteomes.
doi:10.1371/journal.pone.0014214.t001

Beta Cell Glucose Sensitivity
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injected for comparison. This resulted in equal detection of the 6

chosen reference proteins (Ppia, Hspa8, Rab1b, Ywhae, Tubb5, Pfn1):

with their mean expression ratio in highly/lowly responsive cells of

1.0560.05 (n = 3, range 0.90–1.19), the data enabled direct

comparison of molar protein levels between phenotypes without

additional normalization. Overall, LC-MS detected 254 (256)

proteins in highly (lowly) glucose-responsive subpopulations – of

which 232 (229) above limit of quantification and 90% (215)

overlapping identifications (Table S2).

Highly glucose-responsive beta cells have 50% higher
expression of protein synthetic machinery

Highly glucose-responsive cells expressed more 40S and 60S

ribosomal protein: 6 ribosomal subunits were only detected in highly

glucose responsive beta cells; commonly detected ribosomal

subunits were 1.5 times (95% CI 1.2–1.8) more abundant in

highly glucose responsive beta cells. These cells also expressed

50% more translation elongation proteins (both eEF1 and eEF2)

(Fig. 3). Median molar amount of 30 endoplasmic reticulum (ER)-

associated proteins was 1.5-fold higher (average 6.962.4-fold, range

0.16–44 fold) in highly versus lowly responsive cells (Table S2).

Examples in Fig. 3 are the NADPH-dependent protein disulphide

isomerases, which mediate protein folding. Highly responsive cells

also express more coatomer-complex proteins, important for

normal trafficking of secretory proteins from ER to cis-Golgi [18].

In line with these changes, highly responsive beta cells synthesized

2 to 3-fold more protein than lowly responsive beta cells ((Fig. 3,

Fig. S2) and [2,16]).

Higher glucose responsiveness correlates with higher
glycolytic enzyme expression

Glucokinase protein was below the limit of detection in liver and

beta cells. The highest expression of glycolytic enzymes was found

in brain. Molar levels of individual glycolytic enzymes showed

strong variations with .100-fold difference in number of

molecules of most abundant and lowest detectable enzymes, e.g.

in liver glyceraldehyde-3-phosphate dehydrogenase (Gapdh) versus

phosphofructokinase (Pfkl) (Fig. 4a–b). Relative amounts of

individual enzymes were comparable in the 4 tissues studied, with

overall enzymes proximal to the lytic aldolase step systematically

less abundant than distal enzymes, or even undetectable – as in

high/low beta cell comparison. Of note, LC-MS could correctly

discern tissue-restricted isoforms, such as abundant aldolase B

(Aldob) only in liver and distribution of enolase isoforms in brain

Figure 1. Overview of detected proteomes. Panel A. shows functional pathways that are statistically enriched in the detected proteomes
(p,0.001); for each pathway (gene ontology), the average protein level, after geometric normalization, is shown for each of 4 tissues so that relative
importance of these pathways can be quantitatively estimated between tissues. Venn diagram in panel B. shows the number of protein
identifications in each tissue and their overlaps denoting overall proteome similarity.
doi:10.1371/journal.pone.0014214.g001
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(Fig. 4b). In pancreatic beta cells, pyruvate kinase (muscle isoform,

Pkm2) was the most abundant glycolytic enzyme.

Beta cells with higher metabolic glucose responsiveness

expressed on average 46% (range 16–200%) higher levels of

glycolytic enzymes than lowly responsive cells (Fig. 4a). Increased

glycolytic enzymes were coupled to a 50% higher expression of the

cytosolic arm of the malate/aspartate NADH shuttle: aspartate

aminotransferase 1 (Got1, 44% up) and malate dehydrogenase 1

(Mdh1, 77% up) (Fig. 5a). High Mdh1 appeared as metabolic

specialization of beta cells with 4-fold higher expression than liver

and alpha cells, and 2-fold more than brain (Fig. 5b), in line with

established role of this shuttle in glucose-stimulus secretion

coupling [19].

These findings suggest that glucose flux in beta cells is not only

constrained at the glucokinase step, but also below. Indeed: highly

glucose responsive beta cells also oxidized 30% more D-

glyceraldehyde (Fig. 5c, p,0.05), a triose that enters triose

phosphate isomerase step, and thus short-cuts glucokinase.

High glucose responsiveness is not associated with
higher mitochondrial enzyme expression

Despite their 2 fold higher glucose oxidation rate ([16,20] and

Fig. 5c), highly responsive beta cells show no major difference in

expression of the mitochondrial branch of the NADH shuttle (Got2

and Mdh2), various TCA cycle enzymes (Mdh2, Idh2, Aco2) or even

the anaplerotic enzyme pyruvate carboxylase (Pc) (Fig. 5a). Two

flavin cofactor-containing enzymes reached detection limit only in

the highly responsive cells, namely subunits from pyruvate

dehydrogenase (Dld) and electron transfer flavoprotein (Etfb).

Figure 2. Validity of LC-MS quantifications. A. Imprecision (error): beta cell proteins of 3 independent cell isolations (A, B, C) were injected in
triplicate. Box and whiskers plots tA, tB and tC represent analytical variation on technical replicate LC-MS injections. Median and average values are
represented by black and white triangles, respectively, with 95% confidence interval shown in grey. Total experimental imprecision (analytical +
biological variation) is shown in b1 (normalized here for Gapdh) and b2 (total amount normalization). B–C. Accuracy (bias) was evaluated taking
stoichiometry of multienzyme complexes as reference. Bar graphs represent geometrically-normalized protein levels (black bars, mean of n = 3) of
indicated enzyme subunits measured by LC-MS in liver tissue; corresponding NCBI gene symbols are mentioned in italic capitals. Gray bars shows
expected complex stoichiometry based on literature consensus. Panel B shows related pyruvate dehydrogenase (PDH) and oxoglutarate
dehydrogenase complexes (OGDH). Panel C shows F1 unit of mitochondrial F0F1 ATP synthase. BCKD E2 subunit was absent in protein search library.
doi:10.1371/journal.pone.0014214.g002
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Unlike neuronal cells (Fig. 5b), beta cells express significant

amounts of fatty oxidation enzymes, but their levels are not clearly

associated with glucose responsiveness. LC-MS analysis confirmed

the discrepantly high level of L-3-hydroxyacyl-CoA dehydroge-

nase (Hadh, formerly Hadhsc) in the beta cell beta-oxidation chain

(Fig. 5b) [21]. Together with Gapdh, Pkm2, and Mdh1, the Hadh

enzyme ranks among the most abundant enzymes in the beta

cell.

High glucose sensitivity of freshly isolated beta cells is in
part mimicked by sustained glucose stimulation in vitro

Beta cells that are chronically stimulated by glucose $10 mM

become basally hyper-activated, with left-shift of the concentra-

tion-response curves for glucose-stimulated insulin synthesis,

secretion and metabolic activation [6,22,23]. Published proteome

profiles of mouse pancreatic islets, exposed for 24 h to high glucose

(16.7 mM) versus basal (5.6 mM) [24], were compared to profiles

of rat beta cells with high or low glucose sensitivity. Thirty proteins

could be directly compared in both data sets (Fig. 6a). The major

adaptations in high glucose-exposed beta cells (Fig. 6b) were

increased expression of glycolysis, associated to higher expression

of the protein biosynthetic machinery (ribosome, protein folding),

just like in freshly isolated beta cells with higher glucose sensitivity.

TCA cycle proteins were not heavily regulated.

Quantitative view on proteins only detected in beta cells
93 of 943 proteins were below the detection limit of our LC-MS

configuration in all assayed tissues, except the beta cells (Table 2).

These include known beta cell markers (Glut2, Pcksk1, Sytl4) and

several novel candidate beta cell markers. Functionally, these

markers are enriched in ontologies involved in hormone synthesis,

processing and regulated secretion. Molar abundances are

generally 5 to 10-fold lower than those of reference proteins

cyclophilin A (Ppia) and 14-3-3 protein epsilon (Ywhae). Yet, many

fall well above our limit of quantification and even rank among the

top 35% most abundant proteins of our whole data set (943

proteins): e.g. Golgi proteins such as Copb2 and Gosr2, plasma

membrane (associated) proteins such as Drd3, Adrbk1 and Gpsm1,

Figure 3. Higher protein synthetic activity of metabolically highly responsive beta cells is associated with concerted up-regulation
of protein synthetic machinery. Panels from left to right counterclockwise: molar expression of small (40S) and large (60S) ribosomal subunits,
mRNA translation elongation factors, endoplasmic reticulum-proteins involved in NADPH-regulated protein folding (protein disulphide isomerase
family, Pdia), and subunits of the coatomer complex, involved in protein trafficking between endoplasmic reticulum and Golgi for regulated
secretion. Concerted 50% protein up-regulation is associated to 2-fold higher 3H-Tyrosine incorporation, over 0–10 mM glucose range (blue square
inset). Lowly and highly responsive beta cells represented by pale and dark blue bars respectively; absent bars indicate protein level below limit of
quantification.
doi:10.1371/journal.pone.0014214.g003
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glycerol-phosphate shuttle protein Gpd2, and several enzymes of

short chain fatty acid metabolism (Echs1, Echdc1).

Discussion

Validity of alternate-scanning LC-MS for proteome
quantification

Our study took two approaches to investigate protein markers

for glucose sensitivity of beta cells: (i) tissue-comparative analysis to

highlight (relatively) beta cell-selective expression, and (ii) a

comparison of beta cell phenotypes that were sorted for their

natural variations in metabolic glucose responsiveness. Since both

comparisons rely on adequate quantification of molar protein

abundances, the analytical validity of our technique was first

evaluated. It provided acceptable sensitivity in terms of number of

proteins identified under statistically stringent criteria. Evidently,

the inherent constraints in dynamic range of mass spectrometry

(MS), limit quantification of unfractionated cellular proteomes to

the upper 2 to 3 orders of most abundant proteins: the dynamic

ranges of 200–600 observed in our study agree with previous

reports of dynamic ranges of 2.7 or 3.5 for quantification or

detection respectively [25]. Of note, detection and identification of

proteins also depends on extraction method and fractionation of

classes of interest, which is the subject of a separate study. The MS

technique was also found to be accurate - as judged from its

unbiased prediction of multienzyme subunit stoichiometry - and

technically precise: in combination with the standardized beta cell

isolation procedures [26], overall imprecision – including true

biological variation - was limited to 620%. Consequently,

differences in molar abundance of individual proteins between

cells down to 45% - a value corresponding to a full width at half

maximum (FWHM) of the normal distribution - can be confidently

discerned.

For tissue-comparative analyses, protein abundances were

geometrically normalized towards the abundance of multiple

stably expressed reference proteins [13]. A pair of proteins

qualifies as reference or ‘‘housekeeping’’ proteins when their ratio

varies minimally across different cell or tissue types. Our 6

reference proteins were additionally chosen from different

functional pathways to avoid selecting truly co-regulated proteins.

Ppia, Hspa8, Tubb5, Pfn1, Ywhae and Rab1b were selected in the

tissue-comparative data set, and successfully validated in the

independently acquired data set on highly/lowly glucose respon-

sive beta cells. Metabolic enzymes such as Mdh2 and Gapdh

Figure 4. High glucose responsiveness is associated with higher molar expression of glycolytic enzymes. Comprehensive view on all
enzymes of glycolysis detected in highly (black bars) and lowly (gray) glucose responsive beta cells (panel A, fmolr representing relative molar
amount units, non-normalized) and in rat tissues (B, GEOnorm indicates geometrically-normalized units using 6 reference proteins). Enzymes from
start to end of the pathway are represented sorted from bottom (proximal glycolysis) to top (distal glycolysis). Enzymes denoted by their NCBI gene
name; absent bars indicate protein level below limit of quantification.
doi:10.1371/journal.pone.0014214.g004
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appeared suboptimal as reference: e.g. neurons express clearly

higher levels of glycolytic enzymes such as Gapdh (Fig. S1). Of note,

if Gapdh were chosen as reference for highly/lowly glucose sensitive

beta cells, much of their observed differences would remain

unnoticed, illustrating the inevitable introduction of interpretative

bias by normalizing.

Enzymes with beta cell selective expression in terms of
molar abundance

Several enzymes with established role in stimulus-secretion

coupling showed beta cell-selective expression in terms of high

molar abundance: L-3-hydroxyacyl-CoA dehydrogenase (short

chain) (Hadh, formerly Hadhsc) [21,27], pyruvate carboxylase (Pc)

[28], cytosolic malate dehydrogenase (Mdh1) [19] and glycerol-3-

phosphate dehydrogenase (Gpd2) [29] – the latter two central to

the shuttles that transport glycolysis-derived reducing equivalents

(NADH, FADH2) into the mitochondria. A novel and intriguing

feature is the beta cell selective expression of several enzymes with

presumed role in mitochondrial short-chain fatty acid metabolism:

though not differentially expressed as function of natural glucose

sensitivity, the roles of Acads, Echs1 and Echdc in nutrient sensing

certainly requires further study, e.g. in the context of acetoacetate-

induced insulin secretion and coupling role of short-chain acyl-

CoAs [30].

Proteins associated with intercellular differences in beta
cell glucose sensitivity

The classical glucose sensor enzyme, glucokinase (Gck) [31], was

below the MS detection limit. Low molar Gck abundance fits with

the low levels of its mRNA (3, 8 and 240 times lower than that of

respectively Gad2, Hadh and Slc2a2/Glut2, our unpublished data).

It also fits with the present finding that enzymes of proximal

glycolysis are rare as compared to those downstream of the

aldolase step. Gck is an accepted marker of beta cell glucose

sensitivity [7], and its loss- or gain-of-function mutations in

humans result respectively in loss of or excessive glucose sensing

[31]. Our group first described the technique to flow-sort rodent

beta cells for their level of metabolic glucose sensitivity: beta cells

accumulate NAD(P)H when glucose stimulated, and do so in

sigmoid kinetics with half-maximal NAD(P)H at glucose ,
7.5 mM, around the Km of Gck [6]. This glucose concentration-

dependent activation of metabolism, results in progressive

recruitment of more beta cells into a state of activated insulin

synthesis [4] and secretion [5], whereby the activation threshold of

individual beta cells correlates with their Gck expression and

activity [2]. The glucose concentration-dependence of insulin

production by the total beta cell population thus appears regulated

by normal variations in the underlying glucose sensitivity of the

individual beta cells, resulting in a response that fits the normal

Figure 5. glucose responsiveness and sugar oxidation rates are not associated with mitochondrial enzyme expression. Panel A shows
enzyme expression in low (gray) or high (black) responders (molar amount units), with in panel B the corresponding GEO-normalized protein levels in
rat tissues. Shown are malate/aspartate shuttle enzymes (cytosolic arm:Mdh1, Got1; mitochondrial arm:Mdh2, Got2), Krebs cycle enzymes (Mdh2,
Idh2, Aco2), Pdh complex unit Dld, anaplerotic enzyme pyruvate carboxylase Pc, and various beta oxidation enzymes (Hadha, Hadh, Acat1, Etfa, Etfb).
Panel C shows mitochondrial oxidation rates from hexose (5 mM D-glucose) or triose (1 mM D-Glyceraldehyde) sugar in highly (black) or lowly (gray)
responsive beta cells. Data represent mean6SD (n = 4) with ** p,0.001 and * p,0.05 in high versus low. Absent bars indicate protein level below
limit of quantification.
doi:10.1371/journal.pone.0014214.g005
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distribution with average activation around the Km of Gck.

Dichotomous sorting of the beta cell population for 7.5 mM

glucose-induced NAD(P)H thus yields the two tails of the normal

population (Fig. S2), and provides a unique view on functionally

relevant proteome variations within a pure (695% insulin-

positive) cell population.

The higher protein synthetic capacity of highly glucose sensitive

beta cells was reflected in a 650% up-regulation of all stages in

their protein production line: from ribosome over translational

control, to protein folding (Ppia family) in endoplasmic reticulum

(ER) and ER to Golgi transport (coatomer complex) for secretion.

The picture was not comprehensive - with several other likely

regulators [32], such as translation initiation factors and S6 kinase

not detected – but its consistency with cellular function serves as

positive control.

Abundant Mdh1 was not only characteristic for beta cells, its

level also correlated with glucose sensitivity of the beta cells. In

highly responsive beta cells, the 50% higher Mdh1 was paralleled

with 46% (16–200%) higher level of glycolytic enzymes. These

cells oxidize glucose and D-glyceraldehyde respectively 2-fold and

30% more than lowly responsive beta cells: the former corresponds

to their previously reported 2-fold higher Gck activity [2], the latter

matches their overall higher glycolytic capacity – since D-

glyceraldhyde enters at the level of glyceraldehyde-3-phosphate,

independent of Gck [16]. Our study thus emphasizes the

importance of glycolysis and transport of derived NADH into

the mitochondria in regulation of glucose sensing. It is in line with

the previously reported role of distal glycolytic intermediates in

nutrient-regulated beta cell function [33].

These findings do not argue against the crucial role of

mitochondrial nutrient oxidation and NADH (re)generation in

stimulus-secretion coupling [34], but indicate that molar abun-

dances of mitochondrial metabolic enzymes are not limiting

oxidative sugar flux: several enzymes of Krebs cycle, electron

transport and fatty acid oxidation could be studied, but none

correlated with glucose sensitivity. Neither did the level of

pyruvate carboxylase, though its anaplerotic activity is crucial for

beta cell function [35].

Cell size and intrinsic activity synergistically account for
higher protein synthesis of beta cell subsets with higher
glucose sensitivity

The highly glucose responsive beta cells have a larger cell

volume (630%) and contain more protein per cell than lowly

responsive beta. Of note, these values are averages and appear

normally distributed within each sorted subset. An identical

protein amount of both phenotypes was injected into the LC-MS;

the fact that this resulted in statistically similar detection of the 6

chosen reference proteins, indicates that our chosen references

indeed qualify as ‘housekeepings’, and that increased size/total

protein content of highly responsive beta cells is associated with a

proportionate increase of all 6 ‘housekeepings’. Reference protein-

normalized protein levels thus reflect the size-independent or

Figure 6. The phenotype of highly glucose responsive beta cells is partly mimicked by sustained glucose stimulation ex vivo. Of 93
proteins, 57 (61%) were up-regulated by 24 h 16.7 mM as compared to 5.6 mM glucose, and 36 (39%) down-regulated (p,0.05) in mouse islets [24].
Panel A shows their NCBI gene name in a plot, indicating their relative amount in highly/lowly glucose-responsive rat beta (Y-axis) and 16.7/5.6 mM
glucose-exposed mouse islets. In blue, proteins of glycolysis; in green, protein biosynthesis; in orange, mitochondrial; in black: miscellaneous (Prdx3,
Cfl1, Rps18, Rplp1, Park7 out of scale). Panel B shows % of glucose-regulated proteins (black: glucose-induced, gray: glucose-suppressed) that belong
to indicated functional ontologies. For 30 of 93 proteins, molar abundances could be measured in rat highly/lowly glucose-responsive beta cells.
doi:10.1371/journal.pone.0014214.g006
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Table 2. Proteins identified only in the beta cells.

Ontology Symbol Gene name percentile molar amount

(%) GEOnorm

Endoplasmic reticulum, Golgi apparatus and secretory vesicles

Gosr2 golgi SNAP receptor complex member 2 90 0.8865

Copb2 coatomer protein complex, subunit beta 2 (beta prime) 70 0.3747

Ufm1 ubiquitin-fold modifier 1 65 0.3604

Pcsk1 proprotein convertase subtilisin/kexin type 1 65 0.3285

Sytl4 synaptotagmin-like 4 60 0.3080

Sec31a SEC31 homolog A (S. cerevisiae) 55 0.2466

Sec13 SEC13 homolog (S. cerevisiae) 55 0.2414

Uso1 USO1 homolog, vesicle docking protein (yeast) 50 0.2209

Prrc1 proline-rich coiled-coil 1 40 0.1830

Bnip1 BCL2/adenovirus E1B 19 kDa-interacting protein 1 30 0.1268

Gorasp2 golgi reassembly stacking protein 2 30 0.1327

Nsfl1c NSFL1 (p97) cofactor (p47) 20 0.0960

Nsfl1c NSFL1 (p97) cofactor (p47) 20 0.0960

Rnpep arginyl aminopeptidase (aminopeptidase B) 15 0.0768

Intracellular signaling

Adrbk1 Adrenergic, beta, receptor kinase 1 90 1.1449

Drd3 dopamine receptor D3 90 1.2612

Tpt1 tumor protein, translationally-controlled 1 80 0.5835

Ppp1r1a protein phosphatase 1, regulatory (inhibitor) subunit 1A 65 0.3683

Gpsm1 G-protein signaling modulator 1 (AGS3-like, C. elegans) 55 0.2456

Map2k1 mitogen activated protein kinase kinase 1 30 0.1378

Camk2d calcium/calmodulin-dependent protein kinase II delta - nq

Camk2a calcium/calmodulin-dependent protein kinase II alpha - nq

Camk2g calcium/calmodulin-dependent protein kinase II gamma - nq

Metabolism

Echs1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial 65 0.3315

Echdc1 enoyl Coenzyme A hydratase domain containing 1 60 0.2786

Ddc dopa decarboxylase (aromatic L-amino acid decarboxylase) 60 0.2903

Gpd2 glycerol-3-phosphate dehydrogenase 2, mitochondrial 55 0.2506

Aco1 aconitase 1, soluble 50 0.2151

Cox5b cytochrome c oxidase subunit Vb 50 0.2205

Aldh7a1 alpha-amino adipic semialdehyde dehydrogenase (antiquitin) 45 0.2076

Atp6v1e1 ATPase, H+ transporting, lysosomal V1 subunit E1 45 0.2012

Slc2a2 facilitated glucose transporter 2 35 0.1532

Aldh6a1 methylmalonate semialdehyde dehydrogenase 30 0.1386

Ddt D-dopachrome tautomerase 30 0.1347

Acaa1a acetyl-Coenzyme A acyltransferase 1 (peroxisomal) 25 0.1023

Sardh sarcosine dehydrogenase 25 0.1074

Acads acyl-Coenzyme A dehydrogenase, short chain 15 0.0716

Cell motility and cytoskeleton

Vcl vinculin 50 0.2149

Wdr1 WD repeat domain 1 50 0.2195

Dctn2 dynactin 2 45 0.2066

Dcx doublecortin 25 0.1123

Tpm4 tropomyosin 4 20 0.0940

Fis1 fission 1 (mitochondrial outer membrane) homolog (S. cerevisiae) 20 0.0954

Capzb capping protein (actin filament) muscle Z-line, beta 10 0.0644
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‘intrinsic’ functional properties. At first sight, there appeared a

discrepancy between the relatively moderate (61.5-fold) higher

expression of glycolysis and protein synthetic machinery in the

highly responsive beta cells, and their 2 to 3-fold higher actual

protein synthetic rates (Fig. S2c). This discrepancy is resolved

when also the 1.3-fold size differences are taken into account, and

both factors are synergistically (1.361.5 = 2) combined to explain

actual functional differences. This is summarized in the scheme of

Fig. S2d.

Consistency with other models
The ‘natural’ variations in glucose sensing are partly recapit-

ulated by two in vitro models. A first is the loss of glucose

sensitivity of MIN6 insulinoma cells after long-term culture [36];

the second is the proteome adaptations of primary beta cells to

high glucose concentrations [24].

In the first model, Clynes et al. reported mRNA and proteome

adaptations in MIN6 insulinoma cells with progressive loss of

glucose sensitivity in culture [36]. Of note, they [37], and others

[38], found a limited correlation between mRNA and proteome

adaptations, underlining the importance of proteome studies.

They identified 35 proteins as differentially regulated with varying

glucose sensitivity: high sensitivity correlated with increased

expression of ER proteins, including the NADPH-dependent Pdia

family also emphasized in our study. Another parallel was that

high glucose sensitivity correlated with high peroxiredoxin and

superoxide dismutase 1 expression, suggesting that oxidative

radical scavenging preserves normal glucose sensing. Besides, beta

cells had relatively abundant expression of peroxiredoxin and

superoxide dismutase enzymes as compared to other tissues (Table

S1), contrary to the widely held notion of their poor oxidative

scavenging capacity [39]. Also in MIN6 cells, high glucose

sensitivity was associated with high Mdh1, elevated expression of

several – but not all – glycolytic enzymes and no detectable

differences in mitochondrial enzymes.

As second model, sustained stimulation with glucose .10 mM

brings beta cells into a functional state that is partly reminiscent of

in vivo high glucose sensitivity: left-shift of the glucose-induced

metabolic activation (NAD(P)H) and insulin production [22],

correlated with increased mRNA expression of glucose-cataboliz-

ing enzymes, endoplasmic reticulum (ER) proteins and secretory

vesicle-associated proteins [40,41]. A major difference is that

sustained high glucose in vitro provokes basal secretory hyper-

activation leading to cellular exhaustion partly due to depletion of

insulin content. Waanders et al. confirmed this at the protein level

[24]: 24 h high glucose (16.7 mM versus 5.6 mM) activated

glycolytic enzymes, and multiple ER proteins involved in protein

folding and processing; also it activated ROS-scavenging proteins

such as Prdx3 but down-regulated vesicle-associated proteins

(Vamp2). Similarly; increased expression of glycolytic enzymes

and ER proteins was found in the highly glucose sensitive beta

cells, as well as increased expression of several peroxiredoxins

(Prdx3, Prdx5 and to a lesser extent Prdx1 and Prdx2) and down-

regulated level of secretory granule-associated proteins (Vamp2,

Chga, Scg3). A major difference consists in the up-regulation of

mitochondrial metabolic (TCA) enzymes after sustained high

glucose, but not in the naturally highly glucose sensitive cells.

Can our findings be translated to a clinical context? Lu et al.

performed a careful in-depth study of loss of beta cell glucose

sensitivity in MKR mice, a rodent model of type 2 diabetes [42].

MKR beta cells initially adapt well to insulin resistance, but with

time lose function leading to hyperglycemia. Their phenotype

Ontology Symbol Gene name percentile molar amount

(%) GEOnorm

Tpm1 tropomyosin 1, alpha 5 0.1831

Proteasome

Psmc3 proteasome (prosome, macropain) 26S subunit, ATPase 3 45 0.1946

Psmc2 proteasome (prosome, macropain) 26S subunit, ATPase 2 20 0.0858

Psmc5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 15 0.0777

Protein synthesis - translation

Wars tryptophanyl-tRNA synthetase 40 0.1799

Gars glycyl-tRNA synthetase 40 0.1657

Tars threonyl-tRNA synthetase 30 0.1275

Asns asparagine synthetase 20 0.0988

Sars seryl-tRNA synthetase 15 0.0673

6 reference proteins present in all tissues and used for GEOnormalization

Tubb5 tubulin, b5 - 2.0417

Ppia peptidylprolyl isomerase A (cyclophilin A) - 2.0273

Hspa8 heat shock protein 8 - 1.2830

Ywhae 14-3-3 protein epsilon - 1.0002

Pfn1 profilin 1 - 0.7672

Rab1b RAB1B, member RAS oncogene family - 0.2454

93 proteins were only identified in the beta cells. Table 2 shows a selection of proteins, from statistically overrepresented (p,0.005) functional ontologies. Percentile (%)
score ranks the proteins molar abundance (not normalized) to those of all other 943 identified proteins in tissue-comparative analysis with 100% = highest abundance.
GEOnorm molar amount represents measured molar units, normalized to the 6 stably expressed proteins that are shown as reference at bottom of the table.
doi:10.1371/journal.pone.0014214.t002

Table 2. Cont.
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presumably reflects both the initial attempts to adapt to increased

insulin demands, and with time accumulates signs of decompen-

sation. Though comprehensive comparison is complex, MKR beta

cells share global proteome fingerprints with highly glucose

sensitive beta cells, with increased expression of glycolytic

enzymes, Mdh1, many ER- and protein translation-associated

proteins, and Golgi markers such as Copb2. A major difference

here is the global suppression of TCA enzyme and electron

transport proteins expression in MKR beta cells. Such loss of

mitochondrial metabolic activity, in the face of up-regulated

glycolysis, could explain the observed oxidative imbalance in these

diabetic beta cells [6].

In conclusion: beta cells show natural variations in glucose

sensitivity. The associated proteomic fingerprints can be quanti-

tatively captured by alternate scanning LC-MS. Though the

associated proteome profiles are partial - with several known

regulators (e.g. glucokinase) below the MS detection limit – they

are consistent with functional state. Beta cells at the upper limits of

the glucose sensitivity distribution are equipped for a higher insulin

synthetic capacity. They express higher levels of all glycolytic

enzymes and shuttles that transport glycolysis-derived reducing

equivalents into the mitochondrial. Molar abundances of mito-

chondrial enzymes however, are not limiting glucose oxidative

flux. More generally, the present study shows that variations in

glucose sensing and associated glucose-regulated functions are

stably reflected in the proteome, supporting the existence of such

phenotypic variations in vivo.

Materials and Methods

Cellular characteristics
Rats were housed according to the Belgian animal welfare

regulations. Animal killing was kept to the strict minimum, after

proper CO2-anesthesia. Use of animal cells and tissues was

approved by the Commissie Proefdiergebruik (CPG) of the Vrije

Universiteit Brussel (VUB), for a project entitled ‘‘in vitro and in

vivo markers for beta cell death and function’’ (CPG approval ID

07-274-3). Rat beta and islet non-beta cells were FACS-purified as

previously described [4,5,26]. These isolates consisted of $95%

endocrine cells and ,2% exocrine cells. Beta cell preparations

consisted of 90% insulin+, 3% glucagon+, 1% somatostatin+ and

2% pancreatic polypeptide+ cells; alpha cells contained 2%

insulin+, 94% glucagon+, 1% somatostatin+ and 2% pancreatic

polypeptide+ cells. Functional data on 3H-tyrosine incorporation,

D-glucose and D-glyceraldehyde oxidation rates in highly and

lowly glucose-responsive beta cells were in part previously reported

[16].

Protein extraction and trypsinization
Freshly isolated rat cells were washed trice with PBS (4uC), and

soluble protein was extracted in 50 ml 0.5% (w/v) RapiGest

detergent in 50 mM ammonium bicarbonate (Waters Corpora-

tion, Milford, MA.) in the presence of Complete Protease Inhibitor

Cocktail (F. Hoffmann–La Roche Ltd, Basel, Switserland) as

specified by manufacturer’s protocol and bovine DNAse II

(Boehringer Ingelheim GmbH, Ingelheim am Rhein, Germany,

2 mg/mL) solution, followed by ultracentrifugation to remove

cellular debris. 25 ml protein extract was reduced with 2.5 ml

100 mM dithiothreitol (DTT) at room temperature for 60 min,

followed by 3 subsequent washes with 400 ml 50 mM ammonium

bicarbonate and 4 ml 100 mM DTT using a 5 KDa cut-off

membrane filter. This step removes protease inhibitors and most

of reduced insulin molecules. Proteins were denatured by heating

at 80uC for 15 min, followed by 30 min at 60uC after addition of

2.5 ml 100 mM DTT and another 30 min at ambient temperature

in the dark after addition of 2.5 ml 200 mM iodoacetamide.

Trypsinization was carried out overnight at 37uC (1:25 w/w

trypsin ratio) in final volume of 100 ml. Finally, RapiGest detergent

was removed by acidifying digest to pH = 2 with trifluoroacetic

acid and incubation for 15 min at 37uC.

LC-MS configuration
Nanoscale LC separation of tryptic peptides was performed with

a nanoACQUITY system (Waters Corporation), equipped with a

Symmetry C18 5 mm, 2 cm 6180 mm precolumn and an Atlantis

C18 3 mm, 25 cm 675 mm or a Atlantis C18 3 mm, 15 cm

675 mm analytical reversed phase column (Waters Corporation).

The samples, 2 mL full loop injection, were initially transferred

with an aqueous 0.1% formic acid solution to the precolumn at a

flow rate of 4 mL/min for 3 min. Mobile phase A was water with

0.1% formic acid whilst mobile phase B was 0.1% formic acid in

acetonitrile. After desalting and preconcentration, the peptides

were eluted from the precolumn to the analytical column and

separated with a gradient of 3% to 40% mobile phase B over

90 min at a flow rate of 300 nL/min followed by a 10 min rinse

with 90% of mobile phase B. The column was re-equilibrated at

initial conditions for 20 min. The column temperature was

maintained at 35uC. The lock mass compound, [Glu1]-Fibrino-

peptide B, was delivered by the auxiliary pump of the LC system at

250 nL/min at a concentration of 100 fmol/mL to the reference

sprayer of the NanoLockSpray source of the mass spectrometer.

All samples were analyzed in triplicate.

Mass spectrometric analysis of tryptic peptides was performed

using a Synapt MS mass spectrometer (Waters Corporation,

Manchester, UK). For all measurements, the mass spectrometer

was operated in v-mode with a typical resolution of at least 10,000

full width at half maximum. All analyses were performed in

positive mode ESI. The time-of-flight analyzer of the mass

spectrometer was externally calibrated with a NaI mixture from

m/z 50 to 1990. The data was post-acquisition lock mass corrected

using the doubly charged monoisotopic ion of [Glu1]-Fibrinopep-

tide B. The reference sprayer was sampled with a frequency of

30 s. Accurate mass precursor and fragment ion LC-MS data were

collected in data independent, alternate scanning (LC-MSE) mode

of acquisition. This method alternates the energy applied to the

collision cell of the mass spectrometer between a low and elevated

energy state and is described in detail elsewhere [12]. The spectral

acquisition time in each mode was 0.6 s with a 0.02 s interscan

delay. In low energy MS mode, data were collected at constant

collision energy of 4 eV. In elevated energy MS mode, the collision

energy was ramped from 15 eV to 35 eV during each 1s

integration. The radio frequency amplitude applied to the

quadrupole mass analyzer was adjusted such that ions from m/z

300 to 2000 were efficiently transmitted, ensuring that any ions

observed in the LC-MS data less than m/z 300 were known to

arise from dissociations in the collision cell.

LC-MS data processing, protein identification and error
assessment

Continuum LC-MS data were processed and searched using

ProteinLynx GlobalSERVER v2.4 (Waters Corporation). Protein

identifications were obtained by searching a species specific Rattus

norvegicus databases (v15.12, 7,449 entries). Sequence information

of Alcohol dehydrogenase Saccharomyces cerevisiae was added to the

databases to afford the ability to normalize the data sets and to

estimate amounts and concentration [11] and that of known

contaminant proteins (serum albumin Bos taurus and trypsin Sus

scrofa). A decoy was generated on the fly with every database
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search experiment conducted to estimated the protein false

positive rate of identification [43]. Data independent scanning

protein identifications were accepted when more than three

fragment ions per peptide, seven fragment ions per protein and

more than 2 peptides per protein were identified. Furthermore, the

identification of the protein had to occur in at least 2 out of 3

replicate injections. Typical search criteria used for protein

identification included automatic peptide and fragment ion

tolerance settings (approximately 10 and 25 ppm, respectively), 1

allowed missed cleavage, fixed carbamidomethyl-cysteine modifi-

cation and variable methionine oxidation.

Relative molar amount units are used throughout unless stated

otherwise and calculated by dividing the determined molar

amount for a given protein by the summed determined amount

for all identified proteins as this accounts for both technical and

biological variations.

Imprecision (error) attributable to purely analytical variation was

calculated as coefficients of variation on molar values from

triplicate LC-MS injections of the same sample, taken over the 10

to 90% percentile of dynamic range of quantification, i.e.

excluding 10% lowest or highest abundances. Total error -

including the true biological variation, as well as all sample (pre)

processing procedures (islet isolation, beta cell FACS purification,

protein extraction, tryptic digestion and LC-MS analysis) – was

calculated on triplicate injections for all independent isolations

(n = 3), after normalization. Normalization was either on total on

column protein amount, with median (average) error of 22%

(24%) or on that of an endogenous mid concentration range

reference (Ppia), giving median (average) total imprecision of 19%

(20%). Excluding biological variation, the sole technical LC-MS

measurement impression, affords median measurement variation

of 11.4%. To determine the statistically acceptable discrimination

limit between two samples, a normal distribution of the proteome

data was assumed. Full width at half maximum (FWHM) of these

distributions was chosen as statistical discrimination limit to assess

protein expression – a value corresponding to 2.35 times the

median total error (19% times 2.35 = 45%).

Selection of reference proteins and geometric
normalization for tissue-comparative analysis

A first criterion to consider a pair of two proteins as reference, is

that they are systematically co-regulated, i.e. that their relative

expression level in different cell types remains constant. Evidently,

proteins that belong to a same functional ontology are likely to be

co-regulated though their absolute levels might vary between cell

types; as second criterion, proteins were selected that were

systematically co-regulated with proteins belonging to a different

functional ontology. The relative expression ratios was calculated

for all n proteins that were identified in all tissues (n = 104) along

with their coefficient of variation between the 4 analyzed tissues

for these (n 6 (n-1))/2 unique ratios (Fig. S1a). Protein pairs were

selected with CV% ,40% and extensive co-regulation with at

least 7 other proteins, preferentially belonging to different

functional pathways. In the data set of this study this yielded a

set of 638 possible reference proteins (Fig. S1b). Finally, 6 proteins

were chosen with lowest inter-tissue CV% (ranging from 23–38%)

and highest number of co-regulations, not only within their own

functional pathway, but particularly with members of other

functional pathways. From 3 different functional pathways, 2

proteins were chosen: cytoskeleton (Tubb5, Pfn1), cell signaling

(Ywhae, Rab1b) and protein synthesis (Ppia, Hspa8). Each of these 6

references was then sequentially used to normalize all detected

molar protein amounts (Fig. S1). Since reference proteins

themselves also range in abundance over one order of magnitude,

the geometric instead of the arithmetic averages of 6 normalized

ratios were calculated [13].

Supporting Information

Figure S1 Selection algorithm of reference proteins for geomet-

ric normalization in tissue-comparative analysis. A set of 104

proteins was detected in all 4 tissues. For each tissue, the relative

ratio of each candidate reference was calculated with any of the

other candidates. Next, average, standard deviation and associated

coefficient of variation was calculated for each ratio across the 4

tissues. Couples with CV% on their ratio , 40% were marked in

red, others in blue (panel A). Couples with highest number of co-

regulation were subselected (panel B), including functionally co-

regulated proteins e.g. of intermediary metabolism (yellow),

protein synthesis (green), cytoskeleton (blue) or cell signaling (14-

3-3 proteins and small GTPases). Finally, 6 reference proteins

were chosen that showed the most intense co-regulation not only

within their own pathway but also with members of other

functional pathways.

Found at: doi:10.1371/journal.pone.0014214.s001 (1.49 MB

TIF)

Figure S2 Cell size-dependent and -independent functional

properties of beta cell subsets with varying metabolic glucose

responsiveness. Panel A shows FACS-separation of 7.5 mM

glucose-responsive (high NAD(P)H)) and less responsive beta cells

(low NAD(P)H). Panel B: highly responsive beta cells are on the

average larger (forward light scatter, FSC, reflecting cell radius),

and have higher subcellular complexity (side scatter, SSC). Both

populations show similar (oxidized) riboflavin level (FAD, FMN)

but show . 2-fold difference in glucose-induced NAD(P)H. Panel

C: highly (purple bars) responsive beta cells produce 2 to 3 -fold

more insulin than lowly responsive cells (pale blue bars), and this

difference persists (1.9-fold versus lowly responsive cells, n = 3, * p

, 0.05) also after correction (light purple bars) for the 1.3 6 0.1

larger cell size of the high responders. Panel D summarizes main

conclusion of this and earlier studies: highly responsive beta cell

populations show intrinsic activation of glycolysis and insulin

productive machinery, as reflected by 6 1.5-fold higher

GEOnormalized protein levels. On top, these intrinsic phenotypic

differences are further 1.3-fold amplified by the higher cell size of

highly responsive cells, thus accounting the observed 2 to 3-fold

higher insulin synthesis over the 0-10 mM glucose range.

Found at: doi:10.1371/journal.pone.0014214.s002 (1.26 MB

TIF)

Table S1 Overview of protein identifications in tissue-compar-

ative analysis. Table shows gene symbol, protein accession and full

name of all identified proteins, with the relative molar amount

units in respectively alpha, beta, brain and liver. Molar amounts

represent mean of 3 independent experiments, each injected in

triplicate.

Found at: doi:10.1371/journal.pone.0014214.s003 (0.31 MB

XLS)

Table S2 Overview of protein identifications in rat beta cells,

FACS-sorted for higher or lower glucose responsiveness. Table

shows gene symbol, protein accession and full name of all

identified proteins, with the relative molar amount units in

respectively highly (HIGH) or lowly (LOW) glucose responsive

beta cells. Molar amounts represent mean of 3 independent

experiments, each injected in triplicate.

Found at: doi:10.1371/journal.pone.0014214.s004 (0.10 MB

XLS)
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