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Abstract

Background: Zipf’s law and Heaps’ law are observed in disparate complex systems. Of particular interests, these two laws
often appear together. Many theoretical models and analyses are performed to understand their co-occurrence in real
systems, but it still lacks a clear picture about their relation.

Methodology/Principal Findings: We show that the Heaps’ law can be considered as a derivative phenomenon if the
system obeys the Zipf’s law. Furthermore, we refine the known approximate solution of the Heaps’ exponent provided the
Zipf’s exponent. We show that the approximate solution is indeed an asymptotic solution for infinite systems, while in the
finite-size system the Heaps’ exponent is sensitive to the system size. Extensive empirical analysis on tens of disparate
systems demonstrates that our refined results can better capture the relation between the Zipf’s and Heaps’ exponents.

Conclusions/Significance: The present analysis provides a clear picture about the relation between the Zipf’s law and
Heaps’ law without the help of any specific stochastic model, namely the Heaps’ law is indeed a derivative phenomenon
from the Zipf’s law. The presented numerical method gives considerably better estimation of the Heaps’ exponent given the
Zipf’s exponent and the system size. Our analysis provides some insights and implications of real complex systems. For
example, one can naturally obtained a better explanation of the accelerated growth of scale-free networks.
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Introduction

Giant strides in Complexity Sciences have been the direct

outcome of efforts to uncover the universal laws that govern

disparate systems. Zipf’s law [1] and Heaps’ law [2] are two

representative examples. In 1940s, Zipf found a certain scaling law

in the distribution of the word frequencies. Ranking all the words

in descending order of occurrence frequency and denoting by z rð Þ
the frequency of the word with rank r, the Zipf’s law reads

z rð Þ~zmax
:r{a, where zmax is the maximal frequency and a is the

so-called Zipf’s exponent. This power-law frequency-rank relation

indicates a power-law probability distribution of the frequency

itself, say p zð Þ*z{b with b equal to 1z1=a (see Materials and
Methods). As a signature of complex systems, the Zipf’s law is

observed everywhere [3]: these include the distributions of firm

sizes [4], wealths and incomes [5], paper citations [6], gene

expressions [7], sizes of blackouts [8], family names [9], city sizes

[10], personal donations [11], chess openings [12], traffic loads

caused by YouTube videos [13], and so on. Accordingly, many

mechanisms are put forward to explain the emergence of the Zipf’s

law [14,15], such as the rich gets richer [16,17], the self-organized

criticality [18], Markov Processes [19], aggregation of interacting individuals

[20], optimization designs [21] and the least effort principle [22]. To

name just a few.

Heaps’ law [2] can also be applied in characterizing natural

language processing, according to which the vocabulary size grows

in a sublinear function with document size, say N tð Þ*tl with

lv1, where t denotes the total number of words and N tð Þ is the

number of distinct words. One ingredient causing such a sublinear

growth may be the memory and bursty nature of human language

[23–25]. A particular interesting phenomenon is the coexistence of

the Zipf’s law and Heaps’ law. Gelbukh and Sidorov [26] observed

these two laws in English, Russian and Spanish texts, with different

exponents depending on languages. Similar results were recently

reported for the corpus of web texts [27], including the Industry

Sector database, the Open Directory and the English Wikipedia. Besides

the statistical regularities of text, the occurrences of tags for online

resources [28,29], keywords for scientific publications [30], words

contained by web pages resulted from web searching [31], and

identifiers in modern Java, C++ and C programs [32] also

simultaneously display the Zipf’s law and Heaps’ law. Benz et al.

[33] reported the Zipf’s law of the distribution of the features of

small organic molecules, together with the Heaps’ law about the

number of unique features. In particular, the Zipf’s law and

Heaps’ law are closely related to the evolving networks. It is well-

known that some networks grow in an accelerating manner

[34,35] and have scale-free structures (see for example the WWW

[36] and Internet [37]), in fact, the former property corresponds to
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the Heaps’ law that the number of nodes grows in a sublinear form

with the total degree of nodes, while the latter is equivalent to the

Zipf’s law for degree distribution.

Baeza-Yates and Navarro [38] showed that the two laws are

related: when aw1, it can be derived that if both the Zipf’s law

and Heaps’ law hold, l~
1

a
. By using a more sophisticated

approach, Leijenhorst and Weide [39] generalized this result from

the Zipf’s law to the Mandelbrot’s law [40] where z rð Þ* rczrð Þ{a

and rc is a constant. Based on a variant of the Simon model [16],

Montemurro and Zanette [41,42] showed that the Zipf’s law is a

result from the Heaps’ law with a depending on l and the

modeling parameter. Also based on a stochastic model, Serrano

et al. [27] claimed that the Zipf’s law can result in the Heaps’ law

when aw1, and the Heaps’ exponent is l~
1

a
. In this paper, we

prove that for an evolving system with a stable Zipf’s exponent, the

Heaps’ law can be directly derived from the Zipf’s law without the

help of any specific stochastic model. The relation l~
1

a
is only an

asymptotic solution hold for very-large-size systems with aw1. We

will refine this result for finite-size systems with a *> 1 and

complement it with av1. In particular, we analyze the effects of

system size on the Heaps’ exponent, which are completely ignored

in the literature. Extensive empirical analysis on tens of disparate

systems ranging from keyword occurrences in scientific journals to

spreading patterns of the novel virus influenza A (H1N1) has

demonstrated that the refined results presented here can better

capture the relation between Zipf’s and Heaps’ exponents. In

particular, our results agree well with the evolving regularities of

the accelerating networks and suggest that the accelerating growth

is necessary to keep a stable power-law degree distribution.

Whereas the majority of studies on the Heaps’ law are limited in

linguistics, our work opens up the door to a much wider horizon

that includes many complex systems.

Results

Analytical Results
For simplicity of depiction, we use the language of word

statistics in text, where z rð Þ denotes the frequency of the word with

rank r. However, the results are not limited to language systems.

Note that r{1ð Þ is the very number of distinct words with

frequency larger than z rð Þ. Denoting by t the total number of

word occurrences (i.e., size of the text) and N tð Þ the corresponding

number of distinct words, then

r{1~

ðzmax

z(r)

N tð Þp z’ð Þdz’: ð1Þ

Note that p zð Þ~Az{b with A a constant. According to the

normalization condition
Ð zmax

1
p zð Þdz~1, when bw1 and zmax&1

(these two conditions are hold for most real systems),

A~
b{1

1{z
1{b
max

&b{1. Substituting p z’ð Þ in Eq. 1 by b{1ð Þz’{b,

we have

r{1~N tð Þ z rð Þ1{b
{z1{b

max

h i
: ð2Þ

According to the Zipf’s law z rð Þ~zmax
:r{a and the relation

between the Zipf’s and power-law exponents b~1z
1

a
, the right

part of Eq. 2 can be expressed in term of zmax and a, as

z rð Þ1{b
{z1{b

max ~z{1=a
max r{1ð Þ: ð3Þ

Combine Eq. 1 and Eq. 3, we can obtain the estimation of zmax, as

zmax&N tð Þa: ð4Þ

Obviously, the text size t is the sum of all words’ occurrences, say

t~
XN tð Þ

r~1

z rð Þ&
ðN tð Þ

1

z rð Þdr~
zmax N tð Þ1{a

{1
� �

1{a
: ð5Þ

Notice that the summation
PN tð Þ

r~1 z rð Þ is larger than the

integration
ÐN tð Þ

1
z rð Þdr. The relative error of this approximation,

for
P

{
Ð� ��P

, increases with the increasing of a and decreases

with the increasing of N (see Figure S1 the numerical results on

the sensitivity of relative errors to parameters a and N).

Substituting zmax by Eq. 4, it arrives to the relation between

N tð Þ and t:

N tð Þa N tð Þ1{a
{1

� �
1{a

~t: ð6Þ

The direct comparison between the empirical observation and Eq.

6, as well as an improved version of Eq. 6, is shown in Materials
and Methods. Clearly, Eq. 6 is not a simply power-law form

as described by the Heaps’ law. We will see that the Heaps’ law is

an approximate result that can be derived from Eq. 6. Actually,

when a is considerably larger than 1, N tð Þ1{a%1 and

N tð Þ& a{1ð Þ1=a
t1=a; while if a is considerably smaller than 1,

N tð Þ1{a&1 and N tð Þ& 1{að Þt. This approximated result can be

summarized as

l~
1=a, aw1,

1, av1,

�
ð7Þ

which is in accordance with the previous analytical results

[29,38,39] for aw1 and has complemented the case for av1.

Although Eq. 6 is different from a strict power law, numerical

results indicate that the relationship between N tð Þ and t can be

well fitted by the power-law functions (the fitting is usually much

better than the empirical observations about the Heaps’ law, see

Materials and Methods for some typical examples). In Fig. 1,

we report the numerical results with fixed total number of word

occurrences t~105. When a is considerably larger or smaller than

1, the numerical results agree well with the known analytical

solution in Eq. 7, however, a clear deviation is observed for a&1
(see Materials and Methods about how to get the numerical

results for a~1).

To validate the numerical results of Eq. 6, we propose a

stochastic model. Given the total number of word occurrences t,
clearly, there are at most t distinct words having the chance to

appear. The initial occurrence number of each of these t words is

set as zero. At each time step, these t words are sorted in

descending order of their occurrence number (words with the

same number of occurrences are randomly ordered), and the

probability a word with rank r will occur in this time step is

proportional to r{a. The whole process stops after t time steps.

The distribution of word occurrence always obeys the Zipf’s law

with a stable exponent a, and the growth of N tð Þ approximately

Zipf’s Law Leads to Heaps’ Law
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follows the Heaps’ law with l dependent on a (see Figure S2 for

the simulation results of the stochastic model). The simulation

results about l vs. a of this model are also reported in Fig. 1, which

agree perfectly with the numerical ones by Eq. 6. The result of the

stochastic model strongly supports the validity of Eq. 6, and thus

we only discuss the numerical results of Eq. 6.

In addition to a, the Heaps’ exponent l also depends on the

system size, namely the total number of word occurrences, t. An

example for a~1 is shown in Fig. 2, and how l varies in the a,tð Þ
plane is shown in Fig. 3 (see Figure S3 for the comparison of fitting

functions and four typical examples of numerical results). It is seen

that the exponent l increases monotonously as the increasing of t.

According to Eq. 6, it is obvious that in the large limit of system

size, t??, the exponent l can be determined by the asymptotic

solution Eq. 7. Actually, the asymptotic solution well describes the

systems with a&1 or a%1 or t??. However, real systems are

often with a around 1 and of finite sizes. As indicated by Fig. 2 and

Fig. 3, the growth of l versus t is really slow. For example, when

a~1, for most real systems with t scaling from 104 to 108, the

exponent l is considerably smaller than the asymptotic solution

l~1. Even for very large t that is probably larger than any studied

real systems, like t~1016, the difference between numerical result

and asymptotic solution can be observed. As we will show in the

next section, this paper emphasizes the difference between

empirical observations and the asymptotic solution, and the

simple numerical method based on Eq. 6 provides a more accurate

estimation.

Experimental Results
We analyze a number of real systems ranging from small-scale

system containing only 40 distinct elements to large-scale system

consisting of more than 105 distinct elements. The results are listed

in Table 1 while the detailed data description is provided in

Materials and Methods. Four classes of real systems are

considered, including the occurrences of words in different books

and different languages (data sets Nos. 1–9), the occurrences of

keywords in different journals (data sets Nos. 10–33), the

confirmed cases of the novel virus influenza A (data set No. 34),

and the citation record of PNAS articles (data set No. 35). Figure 4

reports the Zipf’s law and Heaps’ law of the four typical examples,

each of which belongs to one class, respectively. Figure S4 in the

Supporting Information displays the probability density function

p zð Þ, the Zipf’s plot z rð Þ and the Heaps’ plot N tð Þ for all the 35

data sets with the same order as shown in Table 1.

Figure 1. Relationship between the Heaps’ exponent l and Zipf’s exponent a. The solid curve represents the asymptotic solution shown in
Eq. 7, the dash curve is the numerical result based on Eq. 6, and the circles denote the result from the stochastic model. For the numerical result and
the result of the stochastic model, the total number of word occurrences is fixed as t~105 . The Heaps’ exponents l for the numerical results of Eq. 6
and the simulation results of the stochastic model are obtained by using the least square method.
doi:10.1371/journal.pone.0014139.g001
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To sum up, the empirical results indicate that (i) evolving

systems displaying the Zipf’s law also obey the Heaps’ law even for

small-scale systems; (ii) the asymptotic solution (Eq. 7) can well

capture the relationship between the Zipf’s exponent and Heaps’

exponent, and the present numerical result based on Eq. 6 can

provide considerably better estimations (the numerical

results based on Eq. 6 outperforms Eq. 7 in 34, out of 35, tested

date sets).

Discussion

Zipf’s law and Heaps’ law are well known in the context of

complex systems. They were discovered independently and treated

as two independent statistical laws for decades. Recently, the

increasing evidence on the coexistence of these two laws leads to

serious consideration of their relation. However, a clear picture

cannot be extracted out from the literature. For example,

Montemurro and Zanette [41,42] suggested that the Zipf’s law

is a result from the Heaps’ law while Serrano et al. [27] claimed

that the Zipf’s law can result in the Heaps’ law. In addition, many

previous analyses about their relation are based on some stochastic

models, and the results are strongly dependent on the correspond-

ing models – we are thus less confident of their applicability in

explaining the coexistence of the two laws observed almost

everywhere.

In this article, without the help of any specific stochastic model,

we directly show that the Heaps’ law can be considered as a

derivative phenomenon given that the evolving system obeys the

Zipf’s law with a stable exponent. In contrast, the Zipf’s law can

not be derived from the Heaps’ law without the help of a specific

model or some external conditions. In a word, our analysis

indicates that the Zipf’s law is more fundamental than the Heaps’

law in the systems where two laws coexist, which provides a new

perspective on the origin of the Heaps’ law. For example, the

observed Heaps’ law in natural language processing was attributed

to the bursty nature and memory effect of human language

[23–25], while Serrano, Flammini and Menczer [27] recently

showed that the word occurrences in English Wikipedia also

display the Heaps’ law. Since the English Wikipedia is attributed

by many independent editors, the memory effect is obviously not a

proper interpretation. Our analysis suggests that the observed

Heaps’ law may be just an accompanying phenomenon of a more

fundamental law – the Zipf’s law. However, one can not conclude

that the Heaps’ law is completely dependent on the Zipf’s law

since there may exists some mechanisms only resulting in the

Heaps’ law, namely it is possible that a system displays the Heaps’

law while does not obey the Zipf’s law. In addition, we refine the

known asymptotic solution (Eq. 7) by a more complex formula

(Eq. 6), which is considerably more accurate than the asymptotic

solution, as demonstrated by both the testing stochastic model and

Figure 2. Effect of system size on the Heaps’ exponent l. The Zipf’s exponent is fixed as a~1.
doi:10.1371/journal.pone.0014139.g002
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the extensive empirical analysis. In particular, our investigation

about the effect of system size fills the gap in the relevant

theoretical analyses.

Our analytical result (Eq. 6) indicates that the growth of

vocabulary of an evolving system cannot be exactly described by

the Heaps’ law even though the system obeys a perfect Zipf’s law

with a constant exponent. In fact, not only the solution of the

Heaps’ exponent (Eq. 7), but also the Heaps’ law itself is an

asymptotic approximation obtained by considering infinite-size

systems. More terribly, a Zipf’s exponent larger than one does not

correspond to a true distribution p zð Þ since SzT will diverge as the

increasing of the system size, yet a large fraction of real systems

can be well characterized by the Zipf’s law with aw1 (see general

examples in Refs. [3,15] and examples of degree distributions of

complex networks in Refs. [46,47]). Putting the blemish in

mathematical strictness behind, the Zipf’s law and Heaps’ law

well capture the macroscopic statistics of many complex systems,

and our analysis provides a clear picture of their relation.

Note that, our analysis depends on an ideal assumption of a

‘‘perfect’’ power law (Zipf’s law) of frequency distribution, while a

real system never displays such a perfect law. Indeed, deviations

from a power law have been observed, but the assumption of a

perfect power-law distribution is widely used in many theoretical

analyses. For example, the degree distribution in email networks

[48] has a cutoff at about z~100 and the one in sexual contact

networks [49] displays a drooping head, while in the analysis of

epidemic dynamics, the underlying networks are usually supposed

to be perfect scale-free networks [50]. Another example is the

study on the effects of human dynamics on epidemic spreading

[51,52], where the interevent time distribution of human actions

are supposed as a power-law distribution, ignoring the observed

cutoffs and periodic oscillations [53,54]. In a word, although the

ideal assumption of a perfect power-law distribution could not fully

reflect the reality, the corresponding analysis indeed contributes

much to our understanding of many phenomena.

We also tested the power-law distribution with exponential

cutoff, as p zð Þ*z{bexp {z=zcð Þ, where zc is a free parameter

controlling the cutoff effect. According to the stochastic model (we

first generate the rank-based distribution z rð Þ corresponding to the

probability density function p zð Þ, and then generate the relation

N tð Þ versus t by using the stochastic model), when the cutoff effect

gets enhanced (by decreasing zc), the Heaps’ exponent l will

increase (see a typical example for b~2 from Figure S5 in the

Supporting Information). The simulation results suggest that the

power-law part plays the dominant role, namely even under a very

strong cutoff (e.g., b~2 and zc~1, with the maximal degree is

about 10), the Heaps’ law still holds. But if p zð Þ obeys an

exponential form (it can even have heavier tail than the power-law

distribution with strong cutoff, like p zð Þ*z{2exp {zð Þ), then N tð Þ
will grow almost linearly in the early stage and soon bend,

deviating from the Heaps’ law. The comparison of the N tð Þ curves

for power-law distribution with exponential cutoff and exponential

distribution can be found in Figure S6 in the Supporting

Information.

Figure 3. Heaps’ exponent l as a function of a,tð Þ.
doi:10.1371/journal.pone.0014139.g003
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An interesting implication of our results lies in the accelerated

growth of scale-free networks. Considering the degree of a node as

its occurrence frequency and the total degree of all nodes as the

text size, a growing network is analogous to a language system.

Then, the scale-free nature corresponds to the Zipf’s law of word

frequency and the accelerated growth corresponds to the Heaps’

law of the vocabulary growth. In an accelerated growing network,

the total degree t (proportional to the number of edges) scales in a

power-law form as t*N tð Þw, where N tð Þ denotes the number of

nodes and ww1 is the accelerating exponent. At the same time, the

degree distribution usually follows a power law as p kð Þ*k{b

where k denotes the node degree. For example, the Internet at the

autonomous system (AS) level displays the scale-free nature with

b&2:16 (see Table 1 in Ref. [55]) and thus a~
1

b{1
&0:862.

According to a recent report [37] on empirical analysis of the

Internet at the AS level, till December 2006, the total degree is

t~105652. The corresponding numerical result of the Heaps’

exponent is l&0:92 and thus the accelerating exponent can be

estimated as w~
1

l
&1:09. In contrast, the asymptotic solution Eq.

7 suggests a steady growing as w~l~1. Compared with the

empirical result w&1:11 [37], Eq. 6 (w~1:09) gives better result

Table 1. Empirical statistics and analysis results of real data sets.

No. T N Tð Þ a la ln le

1 206779 18217 1.323 0.756 0.725 0.738

2 20516 5671 0.969 1 0.858 0.859

3 109854 13906 1.063 0.941 0.845 0.817

4 449205 20220 1.464 0.683 0.667 0.679

5 68458 9191 1.095 0.913 0.823 0.810

6 81037 13254 1.025 0.976 0.859 0.832

7 63742 16622 1.057 0.946 0.840 0.852

8 138985 15550 1.188 0.842 0.787 0.765

9 101940 12667 1.117 0.895 0.818 0.799

10 504610 116800 0.893 1 0.936 0.863

11 53214 34194 0.540 1 0.983 0.946

12 310853 69185 0.939 1 0.913 0.871

13 30852 17562 0.595 1 0.972 0.939

14 2761 2328 0.397 1 0.964 0.978

15 58300 22599 0.786 1 0.941 0.914

16 20660 8155 0.790 1 0.921 0.890

17 226090 69251 0.692 1 0.977 0.894

18 176291 62567 0.572 1 0.989 0.920

19 44735 19933 0.685 1 0.961 0.915

20 1924 1323 0.463 1 0.946 0.939

21 5093 2985 0.593 1 0.941 0.920

22 3490 2442 0.500 1 0.952 0.950

23 1403 787 0.524 1 0.926 0.931

24 7469 4142 0.654 1 0.936 0.925

25 7710 3857 0.658 1 0.935 0.930

26 3232 2658 0.416 1 0.964 0.976

27 13165 7743 0.612 1 0.959 0.936

28 3749 2353 0.568 1 0.943 0.940

29 30092 11002 0.815 1 0.924 0.891

30 21894 8666 0.776 1 0.930 0.900

31 7627 3841 0.685 1 0.933 0.930

32 4185 2242 0.675 1 0.921 0.929

33 23822 10753 0.648 1 0.959 0.917

34 8829 40 3.0 0.33 0.34 0.35

35 237982 56961 0.462 1 0.993 0.929

T is the total number of elements, N Tð Þ is the total number of distinct elements, a is the Zipf’s exponent obtained by the maximum likelihood estimation [3,43], la is the
asymptotic solution of the Heaps’ exponent as shown in Eq. 7, ln is the numerical value of the Heaps’ exponent given T and a as shown in Fig. 3, and le is the empirical
result of the Heaps’ exponent obtained by the least square method. The effective number of the 34th data set is only two digits since the size of this data set is very
small. Except the 4th data set, in all other 34 real data sets, the numerical results based on Eq. 6 outperform the asymptotic solution shown in Eq. 7. Detailed description
of these data sets can be found in Materials and Methods.
doi:10.1371/journal.pone.0014139.t001
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than Eq. 7 (w~1). Actually, the asymptotic solution indicates that

all the scale-free networks with bw2 should grow in a steady

(linear) manner, which is against many known empirical

observations [34–37], while the refined result in this article is in

accordance with them. Furthermore, our result provides some

insights on the growth of complex networks, namely the

accelerated growth can be expected if the network is scale-free

with a stable exponent and this phenomenon is prominent when b
is around 2.

Materials and Methods

0.1 Relation between Zipf’s Law and Power Law
Given the Zipf’s law z rð Þ*r{a, we here prove that the

probability density function p zð Þ obeys a power law as p zð Þ*z{b

with b~1z
1

a
. Considering the data points with ranks between r

and rzdr where dr is a very small value. Clearly, the number of

data points is dr, which can be expressed by the probability density

function as

dr~p z rð Þð Þdz, ð8Þ

where

dz*r{a{ rzdrð Þ{a*r{a{1dr: ð9Þ

Therefore, we have

p r{að Þ*r{a{1* r{að Þ
{

az1

a , ð10Þ

namely b~1z
1

a
. Analogously, the Zipf’s law z rð Þ*r{a can be

derived from the power-law probability density distribution

p zð Þ*z{b, with a~
1

b{1
.

0.2 Direct Comparison between Empirical and Analytical
Results

Given the parameter a, according to Eq. 6, we can numerically

obtain the function N tð Þ. The comparison between Eq. 6 and the

empirical data for words in the book ‘‘La Divina Commedia’’ and

keywords in the PNAS articles are shown in Fig. 5. The growing

tendency of distinct words can be well captured by Eq. 6. Actually,

using a more accurate normalization condition
Ð zmaxz

1

2
1

2

p zð Þdz~1,

as an improved version of Eq. 4, the estimation of zmax is

determined by

N tð Þz
{

1

a
max ~

1

2

� 	{
1

a
{ zmaxz

1

2

� 	{
1

a: ð11Þ

Given the parameter a, for an arbitrary N tð Þ, one can estimate

the corresponding zmax according to Eq. 11 and then determine

the value of t by Eq. 5. The numerical results of this improved

version are also presented in Fig. 5, which fits better than Eq. 6 to

the empirical data. Notice that, both the two analytical results give

almost the same slope in the log-log plot of N tð Þ function, namely

the Heaps’ exponents obtained by these two versions are almost

the same.

0.3 Examples of Numerical Results
Mathematically speaking, as indicated by Eq. 6, N tð Þ does not

scale in a power law with t. However, the numerical results suggest

that the dependence of N tð Þ on t can be well approximated as

power-law functions. As shown in Fig. 6, for a wide range of a,

N tð Þ can be well fitted by tl, and the value of fitting exponent l
depends on both a and t.

0.4 The case of a~1
The numerical solution of Eq. 6 for a~1 can be obtained by

considering the limitation a?1, where N tð Þa&N tð Þ and

N tð Þ1{a&1z 1{að ÞlnN tð Þ. Accordingly, Eq. 6 can be rewritten

as

N tð ÞlnN tð Þ~t: ð12Þ

When t approaches to infinity, N tð Þ scales almost linearly with t

since limt??
lnN tð Þ
N tð Þ ~0. Actually, the solution can be expressed

as N tð Þ~t=W tð Þ where W tð Þ is the well-known Lambert W function

[56] that satisfies

W tð ÞeW tð Þ~t: ð13Þ

For any finite system, the numerical result can be produced by Eq.

12.

0.5 Data description
The data sets analyzed in this article can be divided into four

classes. According to the data sets shown in Table 1, these four

classes are as follows.

(i) Occurrences of words in different books and different

languages (data sets Nos. 1–9). The data set No. 1 is the English

book (Moby Dick) written by Herman Melville; the data sets No. 2

(De Bello Gallico), No. 3 (Philosophiæ Naturalis Principia Mathematica)

Figure 4. Zipf’s law and Heaps’ law in four example systems. (a) Words in Dante Alghieri’s great book ‘‘La Divina Commedia’’ in Italian [44]
where Z rð Þ is the frequency of the word ranked r and N tð Þ is the number of distinct words. (b) Keywords of articles published in the Proceedings of
the National Academy of Sciences of the United States of America (PNAS) [30] where Z rð Þ is the frequency of the keyword ranked r and N tð Þ is the
number of distinct keywords; (c) Confirmed cases of the novel virus influenza A (H1N1) [45] where Z rð Þ is the number of confirmed cases of the
country ranked r and N tð Þ is the number of infected country in the presence of t confirmed cases over the world; (d) PNAS articles having been cited
at least once from 1915 to 2009 where Z rð Þ is the number of citations of the article ranked r and N tð Þ is the number of distinct articles in the
presence of t citations to PNAS. In (c), the data set is small and thus the effective number is only two digits. The fittings in (c1) and (c2) only cover the
area marked by blue. In (d1), the deviation from a power law is observed in the head and tail, and thus the fitting only covers the blue area. The Zipf’s
(power-law) exponents and Heaps’ exponents are obtained by using the maximum likelihood estimation [3,43] and least square method, respectively.
Statistics of these data sets can be found in Table 1 (the data set numbers of (a), (b), (c) and (d) are 9, 10, 34 and 35 in Table 1) with detailed
description in Materials and Methods.
doi:10.1371/journal.pone.0014139.g004
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Figure 5. Direct comparison between the empirical data and Eq. 6 as well as its improved version. The left and right plots are for the
words in ‘‘La Divina Commedia’’ and the keywords in PNAS. The blue dash lines and red solid lines present the results of Eq. 6 and Eq. 11, respectively.
In accordance with Figure 4 and Table 1, the values of the parameter a are given as 1.117 and 0.893, respectively.
doi:10.1371/journal.pone.0014139.g005
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and No. 7 (Aeneis) are Latin books written by Gaius Julius Caesar,

Isaac Newton and Virgil respectively; the data sets No. 4 (Don

Quijote), No. 5 (La Celestina) and No. 8 (Cien a €�n�nos de soledad) are

Spanish novels written by Miguel de Cervantes, Fernando de

Rojas and Gabriel Garcı́a Márquez, respectively; the data set

No. 6 (Faust) is a German opera written by Johann Wolfgang von

Goethe; the data set No. 9 (La Divina Commedia di Dante) is the

Italian epic poem written by Dante Alighieri. All the above data

are collected by Carpena et al. [44] and available at http://

bioinfo2.ugr.es/TextKeywords/index.html.

(ii) Occurrences of keywords in different journals (data sets Nos.

10–33). These 24 journals, from No. 10 to No. 33 are PNAS,

Chin. Sci. Bull., J. Am. Chem. Soc., Acta Chim. Sinica, Crit. Rev.

Biochem. Mol. Biol., J. Biochem., J. Nutr. Biochem., Phys. Rev.

Lett., Appl. Phys. Lett., Physica A, ACM Comput. Surv., ACM

Trans. Graph., Comput. Netw., ACM Trans. Comput. Syst.,

Econmetrica, J. Econ. Theo., SIAM Rev., SIAM J. Appl. Math.,

Invent. Math., Ann. Neurol., J. Evol. Biol., Theo. Popul. Biol.,

MIS Quart., and IEEE Trans. Automat. Contr.. These data are

collected from the ISI Web of Knowledge (http://isiknowledge.

com/). For every scientific journal, we consider the keywords

sequence in each article according to its publishing time. Since

most of the published articles do not have keywords before 1990 in

ISI database, we limit our collections from 1991 to 2007 (except

for ACM Comput. Surv. which is available only from 1994 to

1999).

(iii) Confirmed cases of the novel virus influenza A in 2009 (data

set No. 34). The data of the cumulative number of laboratory

confirmed cases of H1N1 of each country are available from the

website of Epidemic and Pandemic Alert of World Health

Organization (WHO) (http://www.who.int/). The analyzed data

set reported influenza A starting from April 26th to May 18th,

updated each one or two days. After May 18th, the distribution of

confirmed cases in each country shifted from a power law to a

power-law form with exponential cutoff [45].

(iv) Citation record of PNAS articles (data set No. 35). This data

set consists of all the citations to PNAS articles from papers

published between 1915 and 2009 according to the ISI database,

ordered by time.
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