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Abstract

Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative
disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To
overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from
the fetal brain. Here, we investigated the fate of these IhNSC’s immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon
unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic
injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus
callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the
ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be
accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event.
Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the
ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment,
underwent differentiation into GFAP+ astrocytes, and b-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and
GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host
and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional
integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation
into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient
immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in
the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in
neurodegenerative disorders.
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Introduction

The isolation of multipotent neural stem cells (NSCs) from the

human central nervous system (CNS) has spurred the investigation

of new cell-therapy approaches for brain injuries and neurode-

generative diseases. NSCs, which reside in specialized regions of

the adult CNS, in particular in the subventricular zone (SVZ) [1–

3] and the dentate gyrus of the hippocampus (DG), possess life-

long self-renewal and the ability to generate neurons, astrocytes

and oligodendrocytes. Although NSCs play a central role in CNS

development and cellular homeostasis throughout adulthood

[2,4,5], limited spontaneous recovery is known to occur following

brain damage [6,7]. Nonetheless, the integration of functional new

neurons following injury can be achieved by the mobilization of

endogenous stem cells [8,9] or by transplanting new cells from

different sources, as shown in experimental models of ischemia

[10–12].

Also owing to the resilience of hNSCs (human neural stem cells)

to expansion ex vivo, a relatively limited number of studies has

investigated the use of hNSCs for the experimental treatment of

cerebral ischemia [13]. An initial solution to this issue has come

from the establishment of non-transformed, v-myc immortalized

hNSCs, to give rise to stable cell lines (IhNSCs) [14], that can be

rapidly expanded in vitro and retains the features of parental NSCs,

such as proliferation, self-renewal, functional stability and multi-

potency.

In this paper, we demonstrate that the IhNSC’s immediate

progeny, represented by neural progenitors undergoing early

differentiation phases (IhNSC-Ps) exhibit widespread integration

ability and long-term survival when transplanted into the brain of

adult rats lesioned by transient global ischemia. IhNSC-Ps

generated both glial cells and mature neurons, both in the cortex

and the corpus callosum. We also found that IhNSC-P-derived

neuronal cells were able to establish heterotypic synaptic junctions

with the host tissue after 4 months from transplantation.

Although several studies have reported a weak host’ immuno-

genic response against transplanted hNSCs and their progeny in

the brain, this issue has never been unraveled [15–18]. Thus, we
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investigated the immunogenic response of our immortal hNSCs’

progeny and were able to show that grafted IhNSC-Ps have the

ability to integrate in the post-ischemic, inflammatory environ-

ment that develops in the brain after injury, also dampening the

local inflammatory reaction at the integration sites. All of the

above was accomplished even using transient immunosuppression.

Materials and Methods

Transient Global Ischemia
All animal experimental protocols were approved by the Ethics

Review Committee for Animal Experimentation of the Italian

Ministry of Health (protocol number 37/2007-B). Adult male

Sprague-Dawley rats (350–400 gr) were anesthetized with keta-

mine (60 mg/Kg) and Xylazine (10 mg/Kg). The common

carotid arteries were exposed bilaterally by means of a ventral

midline incision and occluded with microvascular clips for 10

minutes. The body temperature of the rats was mantained at

37u60.5uC by a heating pad provided with a rectal probe. All

physiological parameters were monitored and recorded through-

out the surgery with BIOPAC Data Acquisition System. During

the 10 minutes of carotid occlusion, mean blood pressure was

maintained at 50 mmHg by withdrawal of blood from the femoral

artery previously exsposed and incannulated with PE50 tubing

connected to a BIOPAC system and to a collector. After the

removal of the clips from the carotid arteries, the blood was

reinjected into the femoral artery. After the surgery, the rats were

daily treated with subcutaneous injections of antibiotics (Enro-

floxacin 10–15 mg/Kg) and painkillers (Carprofen 5 mg/Kg) for

one week.

Cell Preparation
To generate IhNSC-Ps for transplantation, IhNSC neuro-

spheres, cultured as described in De Filippis et al. 2007, were

mechanically dissociated and transferred onto laminin (Roche,

Base, Switzerland, http://www.roche-applied-science.com)- coat-

ed tissue culture flasks (or glass coverslips for immunostaining

assays) at a density of 16104 cells per cm2 in the presence of FGF2

(20 ng/ml) for 3 days. The day of transplant IhNSC-Ps were

collected with VERSENE (Gibco, Aukland, NZ) and transferred

into control medium ad the density of 16105 cells/mL.

Characterization was performed by immunostaining assays with

primary antibodies b-TubulinIII (b-Tub, TUJ-1, 1:400, Covance),

Galactocerebroside C (GalC, 1:100, Chemicon), Glial fibrillary

acidic protein (GFAP, 1:500, Chemicon), Green Fluorescent

Protein (GFP, 1:500, Sigma), Microtubule-associated protein 2

(MAP2, 1:200, Sigma), Doublecortin (DCX, 1:200, Santa Cruz)

and Neural Cell Adhesion Molecule (NCAM, 1:100, Santa Cruz).

Transduction of IhNSC with lenti-gfp
Transduction of IhNSC with a lentiviral vector carrying the gfp

gene was carried as described in [19,20] and the percentage of

GFP+ IhNSC reached 95%. After 4 passages they were used for

transplantation.

Cell Transplantation
Experimental design (Figure S3) included the following animal

groups: healthy control animals (n = 4), healthy control animals

transplanted with IhNSC-Ps in the corpus callosum (n = 2/each

time point), healthy control animals transplanted with IhNSC-Ps

in the hippocampal fissure (n = 2/each time point) and lesioned

animals transplanted with IhNSC-Ps (n = 2/each time point) and

GFP+ IhNSC-Ps cells (n = 3/each time point) [19] in the corpus

callosum (n = 5 tot/each time point) or in the hippocampal fissure

(n = 5 tot/each time point). The four groups of transplanted

animals were transiently immunosuppressed with cyclosporine (see

below) and sacrificed at 7 days, 2 weeks, 1 month, 3 and 4 months

from transplantation and analyzed in parallel with healthy

controls.

In the paralel a set of lesioned animals was transplanted with

GFP+ IhNSC-Ps in the periventricular region next to cc (n = 3

each time point) or in the hippocampal fissure (n = 3 each time

point), constitutively immunosuppressed and sacrificed 1, 3 and 4

months later.

Rats were anesthetized with an intraperitoneal injection of

ketamine (60 mg/Kg) and Xylazine (10 mg/Kg), placed in a

sterotactic frame (David Kopf Instruments, Tujunga, CA) and

injected with 2 mL of cell suspension (16105 cells/mL control

medium) using a Hamilton syringe to the hippocampal fissure

(anteroposterior: 25.3; lateral: +3.0; dorsoventral: 23.0) or to the

posterior periventricular region in the cc (anteroposterior: 25.3;

lateral, +3; dorsoventral: 22). All animals were immunosoppressed

with Cyclosporine A (15 mg/Kg; Sandimmun, Novartis) admin-

istered subcutaneously starting 2 days before transplantation and

for the duration of the study or for 14 days for transient

immunosuppression experiments.

Tissue Processing and Immunohistochemistry
Rats were anestethized with an intraperitoneal injection of

Avertin (300 mg/Kg) and transcardially perfused-fixed with 4%

paraformaldehyde. Brains were fixed overnight in 4% parafor-

maldeyde at 4uC, then sequentially transferred in 10%, 20% and

30% sucrose solutions. Brains were then cryopreserved (Killik,

Bio-Optica, Italy), frozen and stored at 280uC. Coronal sections

(18 mm thick) were obtained using a cryostat, transferred onto

Super Frost/Plus object glasses (Menzel-Glaser, Braunschweig,

Germany) and stored at 220uC. Sections were let dry at room

temperature for 1 hour, rehydrated in phosfate-buffered saline

and blocked with phosphate-buffered saline containing 10%

Normal Goat Serum and 0,3% Triton X-100 for 90 minutes at

room temperature. The following primary antibodies and dilutions

were used: Human Specific Nuclei (HuN, 1:100, Chemicon), b-

TubulinIII (TUJ-1, 1:400, Covance), Gamma-aminobutyric acid

(GABA, 1:500, Sigma), Glial fibrillary acidic protein (GFAP,

1:500, Chemicon), Green Fluorescent Protein (GFP, 1:500,

Sigma), Glutamate (GLUTA, 1:500, Sigma), Microtubule-associ-

ated protein 2 (MAP2, 1:200, Sigma), Doublecortin (DCX, 1:200,

Santa Cruz), Neural Cell Adhesion Molecule (NCAM, 1:100,

Santa Cruz), human specific Ki67 (Ki67, 1:200, Novocastra), Iba1

(1:100, Wako). The fluorescent secondary antibodies used were

labelled with Cy3 (1:800, Jackson), Cy2 (1:200, Jackson), Alexa

Fluor 546 and 488 (1:800, Molecular Probes). DAPI (ROCHE)

was used as nuclear marker. Immunofluorescence-labeled sections

were viewed under a fluorescence microscope (Zeiss Axioplan 2

imaging) and a confocal microscope (Leica Dmire2).

Quantification of cell death in the CA1 layer, survival of
transplanted cells and micro/astroglial cells

The percentage of dying cells was assessed by counting the

pyknotic nuclei over total nuclei into the CA1 layer of lesioned and

healthy control animals in serial brain sections (each 200 mm) as

described below (n = 3 rats/time point).

At different time points, the rate of survival of IhNSC-Ps was

evaluated by counting GFP+ or HuN+ cells in serial brain sections

(each 200 mm apart) spanning the graft area of n = 3 rats per time

point. The total number of surviving transplanted cells was

calculated for the whole graft using Abercrombie formula [21].

Data is presented as the percentage of surviving cells over total

hNSCs into Ischemic Brain
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transplanted cells (200.000), calculated as the mean average

among the animals of each experimental group.

The percentage of Iba1+ or GFAP+ cells was counted by

sampling three field in the hippocampal region of healthy or

lesioned rats at 3, 7, 14 and 30DAI.

For all the quantifications an average number of 3 sections was

counted per rat spanning about 500 mm along the antero-posterior

axis.

Statistical analysis was performed by one-way ANOVA. Data is

reported as means6SEM. (*P,0.05. **P,0.01, ***P,0.001).

GFP immunolabeling and electron microscopy
Animals were perfused with 4% paraformaldehyde in phos-

phate buffer (0.12 M, pH 7.4). Brain samples were then cut using

a vibratome (section thickness 30–40 mm). Free-floating brain

slices were washed in Tris-buffered saline (TBS) and pre-incubated

in 3% goat normal serum (NGS) in TBS for 30 min. Cells were

also fixed with 4% formaldehyde and rinsed in TBS. Sections and

cells were subsequently incubated with a rabbit anti-GFP antibody

(1:250 for brain slices, 1:650 for cell cultures; Chemicon

International) overnight at 4uC in 1% NGS/TBS. A secondary

antibody (goat anti-rabbit HRP-labeled, 1:250 dilution; PerkinEl-

mer, Boston, MA) was used for 1 h at room temperature before

developing the immunoreactive signal determined by the reaction

of 3,39-diaminobenzidine tetrahydrochloride (DAB; Sigma, St.

Louis, MO) with H2O2.

Immunolabeled samples were post-fixed in 1% OsO4 in

cacodylate buffer (0.12 M, pH 7.4) for 45–60 min, dehydrated

and embedded in Epoxy resin. Ultramicrotome (Ultracut E,

Reichert-Jung) 60 nm sections (both rat hippocampus and

cultured cells) were then examined by a Philips CM 10

transmission electron microscope. Images were taken with a Mega

View II digital camera (Soft Imaging System).

Results

We have previously shown that IhNSC transplantated into the

immunodficient SCID mice brain can survive for as long as 6

months [14]. Nonetheless, pre-clinical and, most important,

clinical neural transplantation are based on the concept that

continuous immunosuppressive treatments are to be used to avoid

donor cell rejection [18]. In addition, the possibility that the stroke

heavy inflammatory environment (see Fig. 1) might enhance cell

rejection compounds the problem further. In this view, we

performed experiments in which animals transplanted with

GFP-expressing IhNSC-Ps were treated with cyclosporine, either

continuously (starting on the first day after ischemia (DAI 1) till the

end of the experiment) or only transiently, i.e. for only two weeks,

starting on DAI 1 and finishing on DAI 14. Tissues were analyzed

1, 3 and 4 months after implantation. Much to our surprise, no

significant differences in the survival or integration were detected

in transiently immunosuppressed animals (56.7%; n = 17/30) as

compared to those receiving cyclosporine for the whole duration of

the experiments (66.7%; n = 10/15). In considering that the two

types of immunosuppressive protocols yielded overlapping results,

the data presented below refer to milder one, i.e the transient

administration of cyclosporine administered in the peri-transplan-

tation period (two days before cell injection, all the way to 12 days

after the latter took place).

Evaluation of the ischemic lesion
The lesion generated by transient global ischemia in the central

nervous system is widespread and involves most brain districts.

Notwithstanding, cortical areas and the CA1 layer of the

hippocampus (Figure S1A–C) are known to be the most affected

by this type of injury [22,23]. In this view, in order to assess the

ability of I-hNSC-P to integrate following ischemic brain tissue

damage, we focused our study on the hippocampal region and

standardized our investigation by quantifying the fraction of

pyknotic nuclei in the CA1 layer, as detected by hematoxilin-eosin

staining (Fig. 1A and B and Figure S1C). Therein, the fraction of

dead cells amounted to approximately 75% of the total CA1 cells

at 3 and 14 DAI, with their number progressively decreasing to

60% at 90 DAI, as compared to the physiological 25% fraction in

control animals (Fig. 1C and Figure S1F). Given the inflammatory

nature of this kind of ischemic injury, we also investigated the

activation of microglia and astroglia during the subacute phase of

the lesion, that is at 3 days (Figure S1D–F) and 1 week from

ischemia: no significative changes in the inflammatory environ-

ment were detected between these two time points. In the lesioned

brain, Iba1+ cells presenting an ameboid morphology, typical of

reactive, macrophagic microglia (Fig. 1D and E) – in sharp

contrast with the star-shaped resting microglia found in the non-

lesioned brain (Fig. 1F) – were dramatically increased both in the

CA1 layer and in the hilus of the dentate gyrus (Fig. 1G) as

compared to control animals (Fig. 1H). This was consistent with

the data concerning the analysis of reactive gliosis by GFAP

immunostaining, showing a striking alteration of astrocyte

morphology (Fig. 1I) characterized by thicker and shorter

processes in the lesioned brain as compared the healthy controls

(Fig. 1L).

IhNSC-Ps efficiently survive after transplantation into the
ischemic rat brain

In order to contribute to the neural regeneration in the early

phases following tissue damage, IhNSC-Ps cells were transplanted

nearby the CA1 layer soon after lesioning. Previous results with

various transplantation paradigms in several animal models have

shown that transplantation of undifferentiated NSCs cells from

neurospheres generate mainly glial progenitors upon engraftment

[20,24] or remain undifferentiated in vivo [25,26]. Hence, we

decided to commit the IhNSCs’ progeny in vitro, prior to

implantation. To do this, we pre-differentiated IhNSCs for 3 days

in the presence of FGF2 in order to induce early neuronal

progenitors’ proliferation and to favour their fate choice towards

the neuronal lineage [27,28]. By this, the IhNSC-Ps used for

transplantation contained cells of the neuronal lineage, that

expressed both the early markers Dcx and NCAM (21.9764.21%

and 21.1164.5%, of the total differentiated cells, respectively;

Figure S2A, B and F), and the late markers b-Tub (13.3762.71%,

Figure S2C and F) and MAP2 (6.1264.1%, Figure S2D and F), as

well as astroglial GFAP+ (15.9163.91% Figure S2C and F) and

oligodendroglial GalC+ (8.662.65%, Figure S2E and F) cells. This

was quite different from IhNSC cultured in the presence of EGF

and FGF2 (neurospheres) which, in turn, contained only sporadic

b-Tub+ cells and low percentages of MAP2+ (3.5761.75%) and

GalC+ (5.2560.77%) cells. As expected for a population intended

to contain early transient dividing progenitors, most IhNSC-Ps

were actively proliferating, with 71.166.6% (Figure S2F) being

positive for Ki67 (Figure S2A, B and D), as compared to

46.463.5% in undifferentiated IhNSC.

The IhNSC-Ps were injected into the posterior periventricular

region, next to the corpus callosum or in the hippocampal fissure

of rats at 3 DAI (Figure S3). Integrated surviving cells were

detected in approximately 60.6% (n = 37/61) of the transplanted,

injured animals, as compared to 25% (n = 7/28) in the control

animals (not lesioned) receiving the same cells. This is in

agreement with previous findings showing that the presence of

hNSCs into Ischemic Brain
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CNS injury is required to favor engraftment of exogenous cells in

the adult brain tissue [29]. In the injured animals where

engraftment was successful, the average survival rate of IhNSC-

Ps was 19.561,4% of the total transplanted cells and remained

unchanged for over 4 months. Fourteen days after transplantation

into the posterior periventricular region, donor cells were found to

be located close to the injection site (n = 4), (Fig. 2A). By 30 DAI,

IhNSC-Ps migrated medially and laterally, along the myelin fibers

of the corpus callosum and clusters of donor cells displayed long

neuronal-like processes, which were directed towards the corpus

callosum, with some of the cells migrating to the upper cortical

layer (n = 3) (Fig. 2B and C9, C0).

At 14 DAI, IhNSC-Ps injected into the hippocampus were

found to integrate into the DG (n = 3) (Fig. 2D) and in the

subgranular zone (SGZ) (n = 3) (Fig. 2E and F), crossing the hilus

and reaching the lower SGZ by 30 DAI. A subset of IhNSC-Ps

presented a stem cell-like morphology [30,31], with the cell body

nested in the SGZ and tangential processes extending along the

border of the granule cell layer and hilus (Fig. 2F, arrow). No

IhNSC-P cells were detected in the contralateral hemisphere at 2

and 4 weeks after transplantation. In control (unlesioned) animals,

IhNSC-Ps were confined to the injection site (data not shown).

The colocalization of GFP with the human specific antigen HuN

(Fig. 2F inset) confirmed the identity of these cells as donor cells.

This analysis demonstrates that IhNSCs efficiently survive in

vivo and that their engraftment and migration capacities are

improved in a lesioned brain, which is consistent with previous

results showing that injury generates a local environment

permissive for the integration of xenotransplanted cells [17,29,32].

IhNSC-Ps give rise to neuronal cells in vivo
Next, we evaluated the differentiation of IhNSC-Ps into specific

neuronal and glial phenotypes following transplantation into the

ischemic environment by analyzing the colocalization of selective

markers for neurons, astroglial and oligodendroglial cells with the

anti-human specific antibody anti-huN. This was carried out on

IhNSC-Ps that were not tagged with GFP, in order to rule out

possible effects on their differentiation properties, as consequence

of viral transduction with the GFP expression construct.

At one and three months post transplantation, IhNSC-Ps

migrating through the corpus callosum and localizing into the DG

were found to be relatively immature neuronal cells, expressing

NCAM protein (corpus callosum, Fig. 3A) or Dcx (dentate gyrus,

Fig. 3B). A subset of HuN+ cells had further matured into

neuronal cells expressing b-Tub+ (11.36 0.8% over total HuN+
cells) (Fig. 3C) and MAP2+ (marker of dendritic neuronal

processes), found in sporadic cell clusters or as isolated elements

(Fig. 3D) within the corpus callosum and cortex. Such clusters

seemed to have arisen through the in vivo, transient proliferation

of single donor cells, as supported by the sporadic expression of

Ki67 observed in HuN+ cells (Fig. 3E and inset). This would be in

agreement with recent data reporting that ischemic injury

Figure 2. GFP-IhNSC-Ps survive in the ischemic brain. (A–C0) IhNSC-Ps into the cc at 14 (A) and 30 (B) days post transplant. Long processes
from donor cells directed toward the cc (C9) and the upper cortical layer (C0). (D–F) Distribution of IhNSC-Ps along the SGZ at 14 days (D) and
migrating to the lower SGZ at 30 days (E). Single GFP-IhNSC-Ps with tipical stem cell phenotype in the SGZ (F, arrow). Confocal analysis of
colocalization of HuN with GFP (inset in F). cc: corpus callosum, GZ: granular zone, SGZ: subgranular zone, DG: dentate gyrus. Scale bars: A, F, F inset:
10 mm, C9 and C0: 20 mm, B, D, E: 50 mm.
doi:10.1371/journal.pone.0014035.g002

Figure 1. Neuronal loss and inflammation in the ischemic hippocampus. (A–B) Damaged cells at 14DAI (pyknotic nuclei, arrows) versus
normal CA1 cells (B arrowhead). (C) Quantification of damaged cells in control and lesioned animals. (D–F) Iba1+ microglial cells with ameboid
(lesioned hippocampus D–E) or stellate (control F) morphology. (G–H) Increase of microglia (Iba1+ cells) in the lesioned hippocampus (G, 7DAI) with
respect to control (H). (I–L) Morphology of astroglial cells in the lesioned hippocampus (I, 7DAI) and control (L). Scale bars: A, B: 5 mm, D, E and F:
10 mm, G, H, I and L: 50 mm.
doi:10.1371/journal.pone.0014035.g001
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generates in the cortex an environment favoring the proliferation

of local precursors [33]. We also observed IhNSC-P-derived,

stellate GFAP+/HuN+ astrocytes (29.763.03% over total HuN+
cells) amongst the engrafted, surviving cells (Fig. 3F), but failed in

detecting oligodendroglial cells.

Altogether, the results above show that IhNSC-Ps can differentiate

towards the neuronal and astroglial lineages in the ischemic brain.

Both immature migratory neuroblasts and more mature b-Tub+ and

MAP2+ neuronal cells are produced throughout this process.

Neuronal subtypes derived from grafted IhNSC-Ps
We have previously shown that IhNSCs [14] can differentiate in

vitro into GABAergic and Glutamatergic neurons, similar to their

wild-type counterpart [34]. Therefore, we analyzed the expression

of such neurotransmitters among the IhNSC-Ps’ progeny that

successfully engrafted in our model. We found both cells exhibiting

the GABAergic (Fig. 3G and inset) and glutamatergic (Fig. 3H and

inset) phenotypes in the corpus callosum and cortex, as early as 1

month after transplantation, which were still detectable 4 months

from transplantation. These findings show, for the first time, that

IhNSCs progeny can engraft in the adult brain as mature neuronal

cells expressing the GABAergic or the glutamatergic phenotypes.

Long-term survival of IhNSC-Ps
At the later time tested, i.e. 4 months (Fig. 4A, n = 3) the presence

of IhNSC-P-derived cells was obvious in the corpus callosum,

wherein they migrated tangentially (4.360.6 mm medially and

4.560.45 mm laterally, n = 3, Fig. 4B and C), also spreading into

the controlateral hemisphere (Fig. 4B). GFP+ cells were also

detected along the injection tract in the hippocampal fissure, along

the SGZ of the dentate gyrus (n = 4) (average distance of migration

400 mm medially and 380 mm laterally to the injection site up to the

Figure 3. Differentiation of transplanted IhNSC-Ps in vivo. (A–F) IhNSC-Ps at 3 months post transplantation differentiate into both
NCAM+HuN+ (A, cc) and Dcx+/GFP+ (B, dentate gyrus) neuronal progenitors and b-Tub+HuN+ (C) and MAP2+HuN+ (D) mature neurons in the cortex.
(E) Sporadic proliferating cells (Ki67+HuN+, arrow and inset magnification). (F) GFAP+HuN+ astroglial cells in the cortex. (G–H) IhNSC-Ps at 1 month
from transplantation generate GABAergic (GABA+HuN+, arrow in G and inset magnification) and Glutamatergic neurons (GLUTA+HuN+, arrow in H
and magnification). Scale bars: A, B, C, E, F: 20 mm, D, inset in E, G, H, inset in H: 10 mm, inset in G: 5 mm.
doi:10.1371/journal.pone.0014035.g003
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SVZ, wherein they migrated 1.260.53 mm (n = 3) medially along

the ventricles (Fig. 4D–H). These results support the concept that,

immunologically, transplanted human cells are well tolerated by the

adult brain and that even a quite mild immunosuppression, like the

transient one used here, may be sufficient to accomplish their

efficient integration in the lesioned CNS tissue.

Migration of IhNSC-Ps’ progeny and long-term
integration into the CA1 layer

The CA1 layer of the hippocampus is one of the areas most

prominently damaged in transient global ischemia. In addition,

neurons newly generated by adult neurogenesis in the CA1

pyramidal layer also die, due to the persistence of inflammatory

conditions [35]. Consistently with these findings, we were unable

to detect IhNSC-Ps in the CA1 pyramidal layer at 1, 2 or 3

months after transplantation. At 4 months after ischemia, we

found that some IhNSC-Ps did integrate along the CA3 layer

(n = 2), sending processes toward the CA1 layer (Fig. 5A–D) and

migrating to the underlying SVZ (Fig. 5C). Unexpectedly, IhNSC-

Ps were also found as irregular clusters, distributed along the CA1

layer (n = 4), with their nuclei organized according to the classic

multilayer pattern of the CA1 layer (Fig. 5E). These observations

show that, despite the persistence of inflammation in this region

[35], IhNSC-Ps retain the ability to interact with the to host

endogenous neurogenic pathways, suggesting that they can

undertake appropriate differentiation and contribute to the local

regeneration of the damaged hippocampal tissue.

IhNSC-P derived neurons establish synaptic junctions in
vivo

Since neither electrophysiological recordings on adult rat

brain slices nor high resolution immunofluorescence analysis

Figure 4. Long-term survival of IhNSC-Ps after transient immunosuppression. (A) Map of the brain areas colonized by IhNSC-Ps in
transiently immunosuppressed ischemic rats 4 months following transplantation. Letters in boxed area refer to the figures B–E. IhNSC-Ps migrate
extensively through the cc (B–C) and along the dentate gyrus (D, E and H) to the underling SVZ (D, E). F and G magnifications of boxed areas in E.
Scale bars: B,C,E,F,G and H: 50 mm; D: 100 mm.
doi:10.1371/journal.pone.0014035.g004
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could be performed because of the ischemia-induced decay of

tissue cytoarchitecture, we assessed the ultrastuctural features of

GFP-expressing IhNSC-Ps progeny located in the CA1 layer, 4

months after transplantation (Fig. 5E). In the hippocampus, GFP

immunoreactivity was present within IhNSC-P-derived cell

processes, mainly distributed along the cytoskeleton. Despite

the disorganization of the ischemic tissue, we observed reci-

pient axons (GFP-negative, a in Fig. 6A-C), possibly pyramidal

neurons in the CA1 layer of the hippocampus, making synaptic

contacts with the GFP-labeled processes (d in Fig. 6A-C). GFP-

labeled myelinated axons were also detected (Fig. 6D and E).

This was similar to the GFP-labeling pattern observed in cultured

IhNSC-Ps, which was associated with microtubular structures

(Fig. 6G) and could not be oserved in the non-transduced control

cells (Fig. 6F).

This supports the notion that surviving IhNSC-Ps progeny have

the ability to integrate into the lesioned CA1 area, therein

establishing heterotypic synaptic junctions with host cells.

IhNSC-Ps can modulate the inflammatory response in the
post-ischemic hippocampus

NSCs can act as immunomodulators in pathological, inflam-

matory brain environments [20,26,36–38]. We have analyzed

both the quantitative reduction and morphological changes in

reactive microglial Iba1+ cells and GFAP+ astrocytes, in post-

ischemic hippocampal area after IhNSC-Ps transplantation.

As shown in Fig. 7A, B, 1 week after transplantation, the

inflammatory reaction was significantly reduced in the transplant-

ed hemisphere as compared to the controlateral one (Fig. 7C, D),

which displayed an inflammation pattern comparable to that

Figure 5. At four months after transplant IhNSC-Ps integrate in the hippocampal layers under transient immunosuppression. (A)
Schematic map of the hyppocampal layers colonized by IhNSC-Ps in transiently immunosuppressed ischemic rats. The letters are positioned next to
the regions referred to the figures B–E. (B–D) At 4 months following transplantation IhNSC-Ps were found integrated into the CA3 layer and in the
underling SVZ (B), emitting long processes toward the dentate gyrus (boxed area in B, shown at higher magnification in (C) and CA1 layer (B–D). (E) At
this time IhNSC-Ps were also found distributed along the CA1 layer. Scale bars: in B–D: 50 mm, in E: 30 mm.
doi:10.1371/journal.pone.0014035.g005
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observed earlier on, i.e. at 3DAI (Figure S1D–F). Indeed the

fraction of Iba1+ cells in the ipsilateral emisphere amounted to

9.4563.06% of total cells in the area as compared to

14,7163.23% in the controlateral one (n = 3). Similarly GFAP+
cells in the ipsilateral side were 8.6361.07% of the total cells,

much less than the 13.1362.69% detected controlaterally. This

difference was even more striking at a later time, i.e. at 14 DAI

(Fig. 7E and F), when the inflammatory reaction induced by the

lesion is known to reach its peak: the fractions of Iba1+ cells were

10.5762.64% and 29.3667.8% and those of GFAP+ cells

6.962% and 31.6563.11% in the transplanted and control

hemispheres, respectively (n = 3 each). Moreover, the morphology

of both Iba1+ and GFAP+ cells appeared to shift from ameboid

and globular, typical of a reactive phenotype, to branching and

star-shaped, like in resident cells. At 1 month after lesion

inflammation had subsided in both sides and, no significant

differences were detectable between the two hemispheres (Fig. 7A

and B, G and H).

It is worth noting that immunosuppression by cyclosporine, be it

administered transiently or even continuously, did not affect

inflammatory response in lesioned animals, as assessed by

immunofluorescence using anti-Iba1 antibody (not shown).

Discussion

Cell survival and migration
In the adult brain, ischemia and brain trauma increase

neurogenesis in the SVZ and migration of newly generated

NSC-derived progenitors to the sites of injury [39,40]; however

this self-repair process is limited [7], so that cell therapy through

transplantation of exogenous neural cells has been envisioned as a

candidate therapeutic approach [13,41–43]. The present study

Figure 6. IhNSC-Ps form synapses into the rat hippocampus. Representative electron micrographs of rat hippocampus (A–E) and IhNSC-Ps
differentiated in vitro (F–G), immunostained for GFP. (A–C) GFP immunopositive dendrites (d) on which unstained axons (a) project, making synaptic
contacts (arrows). (D, E) GFP immunopositive myelinated axons (a). (F) Sham transfected IhNSC-Ps in culture. (G) GFP expressing IhNSC-Ps in culture.
To note, GFP is mainly associated to microtubular structures. Scale bars: 500 nm.
doi:10.1371/journal.pone.0014035.g006
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aimed at defining the capacity of IhNSCs for engraftment,

migration and differentiation in the adult brain following and

ischemic lesion, in view of their perspective use in modeling neural

transplantation of human neural cells in ischemia and as a source

of cells for cell replacement therapy.

IhNSCs can generate significant percentages of mature neurons

and oligodendrocytes in vitro [14]. Thus, we investigated their ability

to do the same in vivo, in the brain of adult rats which suffered

transient global ischemia, causing a widely distributed brain injury

that primarily affects the neocortical and the hippocampal CA1

Figure 7. Effect of IhNSC-Ps on microglia and astrocyte activation. (A–B) Charts showing the effect of IhNSC-Ps transplantation on the
number of microglia (Iba1+, A) and astroglial cells (GFAP+, B) in the hippocampal region at 7, 14 and 30 DAI. (C–H) Representative images of the
hippocampal regions, showing the morphology and density of Iba1+ cells (green) and GFAP+ cells (red) in not transplanted (C, E, and G) and
transplanted (D, F and H) brain hemispheres at 7, 14 and 30 DAI. Abbreviations: cc = corpus callosum. Scale bars: 50 mm.
doi:10.1371/journal.pone.0014035.g007
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layers [22,23]. As the survival of fetal neural tissue is markedly

impaired when grafted within the severely lesioned area in ischemic

lesion, but not in the surrounding area [44], the latter was chosen as

elective site of injection of the cells. More specifically, IhNSC-Ps

were transplanted in the posterior periventricular region, below the

neocortical layers and in the hippocampal fissure below the

damaged CA1 region. The first evidence to emerge was that the

survival rate of the grafts was higher when cells were injected into

the posterior periventricular region next to the cc (81.2% of cc

transplanted animals, n = 13/16) than in hf (53.3% of hf

transplanted animals, n = 8/15). Also, quite remarkably, IhNSC-

Ps which were transplanted in the cc showed a preferential tropism

for the lesioned cortex, while IhNSC-Ps injected into the hf

migrated primarily to colonize the NSC niche in the DG (SGZ).

This seems to suggest the existence of differential, locoregional

instructive cues in these brain regions, although this phenomenon

shall require a specific investigation to be fully unraveled, also

considering the proximity of the two injection sites.

We found that, even upon the transient immunosuppression

conditions used here, IhNSC-Ps integrated into the cortex, corpus

callosum and DG of the hippocampus as early as 14 DAI, also

migrating along preferential neurogenic pathways [31], acquiring

a typical neuronal morphology. By 30 DAI, IhNSC-Ps injected in

the periventricular region were migrating tangentially along the cc,

as shown by previous studies [45]. Consistent with this pattern,

IhNSCP-derived cells were found in the controlateral hemisphere,

diffusely spreading through the white matter, 4 months post

implantation. When injected in the proximity of the DG, IhNSC-

Ps migrated along the SGZ (30 DAI), possibly attracted by

endogenous environmental cues secreted by the activated stem cell

niche layer [32]; in accordance with these observations, at the

endpoint of the analysis, we detected IhNSCP-derived cells being

distributed all along the medial dorsal wall of the SVZ in the 3rd–

4th ventricle. The evidence above seems to suggest the existence of

differential, locoregional instructive cues in the cc and DG,

although this phenomenon shall require a full blown study to be

fully unraveled.

At least 19% of the grafted human cells survived 1 month after

transplantation, a percentage similar to that observed after 4

months. This would suggest a quite stable profile of integration

and survival of the transplanted cells over a quite long period.

Nonetheless, it is also possible that this apparent stability in the

overall number of grafted cells may be the consequence of a

dynamic balance between two competing processes, the death of

engrafted cells and the birth of new ones through cell proliferation.

In fact, it is well known that stroke-associated hypoxia enhances

the proliferation of neuronal precursors [40,46,47] and, in

agreement with this, we documented the sporadic presence of

Ki67+ elements among our donor cells.

Only 7 out of 28 of the transplanted control (unlesioned)

animals showed appreciable cell engraftment and survival with

respect to 37 out of 61 in lesioned animals. Furthermore, in

control animals, engrafted cells were mainly localized next to the

injection site (not shown). These results are in good agreement

with previous studies, showing that both IhNSC-Ps survival and

migration are enhanced by the presence of a brain lesion as

compared to the healthy CNS tissue [29]. Finally, the transplanted

IhNSC-Ps were not tumorigenic, in accordance with our earlier

findings in SCID mice [14]. Our findings are also consistent with

studies carried out with primary cultures of human progenitors

[40,48,49] and provide the initial evidence that neural progenitors

that are continuously produced by a renewable source of hNSCs

can undergo targeted migration to different areas in the adult

brain affected by a global ischemic lesion.

IhNSC-Ps proliferation and differentiation
Others and us have previously shown that NSCs undergo

prevalent glia differentiation after transplantation in neurodegen-

erative disease animal models such as metachromatic leukodys-

trophy (MLD) [20], focal demyelination [24] and multiple sclerosis

(MS) [38]. In order to enhance the neuronogenic potential of

IhNSCs, in this study we transplanted neural progenitors derived

from IhNSCs (IhNSC-Ps) which were pre-committed to differen-

tiation in vitro and cultured at 5% oxygen, a condition

approximating the physiological range of oxygen in the SVZ

and DG [50]. As early as 1 month from transplantation into the

brain of ischemic adult rats, clusters of HuN+ cells expressed

markers of early neuronal progenitors (Dcx+ and NCAM+), and

we also identified HuN+/b-Tub+ and HuN+/MAP2+ neurons

with ramificated morphology and typically star-shaped HuN+/

GFAP+ astrocytes. The expression of these markers was

maintained at 4 months from transplantation when IhNSC-Ps

appeared widely distributed in the corpus callosum and cortex,

where we could detect HuN+ cells bearing GABAergic or

Glutamatergic phenotypes, consistent with their physiological

prevalence in these brain areas and with the pattern of in vitro

differentiated hNSCs and IhNSCs [14,34]. To note, the synthesis

of GABA by newborn neurons and active cortical neurogenesis by

resident progenitors of layer 1 have been recently shown to be a

fundamental requisite to restore neuronal function after stroke

[33,51]. Intriguingly, we also found sporadic MAP2+/hu-

manKi67+ cells at 3 months post ischemia, which completely

disappear at 4 months, indicating that at least a fraction of IhNSC-

Ps undergo transient short–term proliferation, also favoured by the

local specific environmental cues [33]. Most importantly, our

findings show the expression of both GABA and Glutamate

neurotransmitters by a renewable source of human cells

transplanted in a lesioned adult rodent brain.

IhNSC-Ps are not immunogenic under transient
immunosuppression treatment

A wide array of studies have shown that NSCs are not

susceptible to immunological rejection [15–18] even when

transplanted in animal models like EAE, characterized by a

constitutively activated immunological response [25,26]. Notably,

others and us have documented the ability of NSCs to somewhat

modulate or even dampen immunological response upon trans-

plantation [26,36,38,43]. This phenomenon may, in fact,

participate in the low immunogenic response that these cells seem

to elicit in the CNS. Notwithstanding, it is also true that some level

of immune surveillance is maintained in the adult brain upon

NSCs engraftment, which explains the widespread need to use

immune suppression [18] in experimental and clinical intracere-

bral transplantation [15,17].

The succesful use of transient immunosuppression described

here, supports the twofold notion of limiting toxicity in an

experimental model plagued by high animal mortality and of

preventing the bias introduced by the known neuroprotective

effects of cyclosporine following hypoxia-ischemia [52], and

proposes a suitable milder approach to immunosuppression for

the prospective use hNSCs for clinical purposes. That the

discontinuous treatment with cyclosporine does not affect

integration of transplanted cells in most of the brain regions,

which to all effects emerge as immunoprivileged when considering

hNSCs, is in good accordance with most recent findings [18]. It

should also be noted that the rate of survival of our transplanted

IhNSC-Ps appeared more prominent than that observed in

xenografts of embryonic human neural precursor cells [53],
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transplants of fetal tissue into patients with Parkinson’s Disease

[15] or of adult human NPCs in ischemic rats [17].

Generation of mature neurons and reduction of the
inflammation by IhNSC-Ps in ischemia

Our ultrastructural analysis determined the full maturation of

IhNSCs progeny by detecting the presence of newly established

synaptic junctions between rat axonal terminals and IhNSC-Ps

progeny dendritic spines in the CA1 layer, 4 months after

transplantation. This is consistent with previous observations,

showing the ability of IhNSCs to generate post-synaptic structures

and to fire spontaneous action potentials in culture [14] and is

further supported by the detection of GFP labeled axons

enveloped by a multilayered myelin structure. Given the

prolonged timing required by human neural progenitors to

mature in vivo, analysis at further time points could provide

additional details on the functional integration of transplanted cells

in the damaged neuronal circuitry. Unfortunately, the age and size

of adult rats, combined with the dysplastic condition of the

ischemic brain tissue allowed neither electrophysiological studies,

nor an ultrastructural investigation beyond the 4 month end/

point.

Besides neurodegeneration per se, one of the hallmarks

characterizing most neurodegenerative disorders like stroke, AD,

PD, ALS, MLD [37], is the development of an inflammatory

environment, which can contribute to tissue damage. Recent

studies have shown that NSCs may also exert their therapeutic

potential through an immunomodulatory action [26,36,38]. Our

study reports that transplantation of IhNSCs can effectively

decrease reactive astrogliosis and dumpen microglial activation in

the injuried areas. This effect occurred exclusively in the

transplanted regions and was most prominent at 15 days from

transplantation, when the inflammatory reaction appeared to

reach its nadir. There was an obvious effect on the state of

activation of microglia, whose cells shifted from the activated,

macrophagic-amoeboid phenotype to the resting, stellate one, with

a concomitant shift of astrocytes from fibrotic and globular to star-

shaped and long-branching in the transplanted areas.

Conclusion
Transient global ischemia is a commonly accepted model of

vascular dementia, since it resembles the pathological features of

Alzheimer’s Disease. In this view, the findings presented in this

manuscript lend to the idea of using IhNSCs as a suitable tool to

model transplantation of hNSCs in pre-clinical settings. This is

particularly relevant in view of the fact that the first phase I clinical

trial exploiting cell therapy has been authorized and is currently

underway. The trial uses non-immortalized neural cells similar to

those described here, which may thus be considered for a

prospective use in clinical settings. This is particularly true,

considering the suitable migration and differentiation pattern of

our IhNSCs in the ischemic brain, their negligible rejection, their

ability to establish synaptic interaction with host cells and their

capacity to generate appropriate neurotransmitter phenotypes in

ischemia target areas, such as the hippocampus and cortex. The

ability of transplanted IhNSC-Ps to dampen reactive astrogliosis

and microglia activation provide an extra positive element when

considering hNSCs for therapeutic purposes in neurodegenerative

disorders.

Supporting Information

Figure S1 Analysis of the lesioned brain at 3DAI. (A–C)

Hematoxylin-eosin showing the pyknotic nuclei present in the

lesioned (A, arrows) respect to the control cortex (B), and in the

lesioned CA1 layer (C). (D–E) Microglial (Iba1+, D) and astroglial

(GFAP+, E) reaction in the hippocampal region of lesioned

animals at 3DAI. (F) Quantification of pyknotic nuclei in the CA1

layer and of Iba1+ and GFAP+ cells in the hippocampal region.

Scale bar: A and B: 50 mm, C: 5 mm, D and E: 75 mm.

Found at: doi:10.1371/journal.pone.0014035.s001 (5.38 MB TIF)

Figure S2 In vitro differentiation of IhNSC. (A–E) IhNSC-P used

for transplantation contained early neuronal progenitors (Dcx+, A

and NCAM+, B), neurons (b-Tub+, C and MAP2+, D), astrocytes

(GFAP+, C), oligodendrocytes (GalC+, E) and a percentage of

residual proliferating cells (Ki67+, A, B and D). (F) Quantification

of the neural cell lineages in IhNSC-P. Scale bars: A–E: 10 mm.

Found at: doi:10.1371/journal.pone.0014035.s002 (5.00 MB TIF)

Figure S3 Experimental design. (A) Schematic representation

showing the experimental plan with transplanted animals

undergoing transient or constitutive immunosuppression. Healthy

not transplanted animals (n = 4) have been excluded. (B) Table

showing the numerosity of the transplanted animal groups.

Abbreviations: cc: corpus callosum, hf: hippocampal fissure, AP:

anteroposterior, L: lateral, DV: dorsoventral.

Found at: doi:10.1371/journal.pone.0014035.s003 (9.30 MB TIF)
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