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Abstract

Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing
an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed
mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1
(NS1) encoded by the virus genome suppresses induction of IFNs-a/b. Here we show that expression of avian H5N1 NS1 in
HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and
STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and
STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-
mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we
observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses.
Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and
ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By
contrast, treatment of ex vivo human lung tissues with IFN-a results in the up-regulation of a number of IFN-stimulated
genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling
to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1
and H1N1 virus infections.
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Introduction

Transcriptional activation of IFNs-a/b is rapidly initiated in

response to detection of viral-derived factors by cellular pattern

recognition receptors [1]. IFNs-a/b subsequently bind their cognate

cell surface receptor, leading to the activation of the receptor-

associated kinases, Jak1 and Tyk2 [2]. Signal transducers and

activators of transcription (STAT) proteins are recruited to the

receptor, phosphorylated on tyrosine residues by these Jaks, then

released from the receptor to form transcription factor complexes that

translocate into the nucleus and upregulate the expression of IFN-

stimulated genes (ISG). IFN signaling can be negatively regulated by

members of the suppressors of cytokine signaling (SOCS) family.

SOCS1 has been shown to block IFN signaling through direct

physical binding with Jak1, whereas SOCS3 and CIS can interact

with the phosphorylated receptor to prevent the recruitment and

phosphorylation of downstream mediators like STAT proteins [2].

Given the critical role of IFNs-a/b as a first line of defense

against infection, it is not surprising that many viruses have

evolved strategies to block an IFN response as a means to increase

their replication efficiency [2,3]. Viral-mediated inhibition of IFNs

can be generalized into three categories, including disruption of

IFN induction, disruption of IFN-inducible signaling and disrup-

tion of IFN-mediated effector functions.

The non-structural protein 1 (NS1) of influenza A viruses exerts

its inhibitory effects on IFN predominately by interfering with IFN

production [4]. NS1 disrupts the induction of IFNs by first

inhibiting the intracellular sensor RIG-I, which plays a critical role

in detecting ssRNA during influenza A virus infection [5]. RIG-I

activation leads to association with the downstream adaptor IPS-1,

resulting in phosphorylation of IRF3 and subsequent transcrip-

tional activation of IFN-b [5,6]. Experimental evidence suggests

that NS1 can associate with RIG-I, as well as TRIM25, a

ubiquitin ligase required for RIG-I activation, to prevent its
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downstream activation of the IFN-b promoter [7,8]. Both IRF3

translocation and NFkB activation are impaired in the presence of

NS1, which in turn blocks the induction of proinflammatory

cytokines and IFNs [9,10]. In addition, NS1 can interfere with

host mRNA splicing and polyadenylation by interacting with U6

snRNA and the cleavage polyadenylation specificity factor 30

(CPSF30), respectively. Notably, in addition to inhibition of IFN-b
gene transcription, NS1 promotes the accumulation of IFN-b pre-

mRNA transcripts [11].

NS1 can activate phosphoinositide 3-kinase (PI3K) by interact-

ing with the regulatory subunit, p85, through a putative SH2-

binding domain. Activation of PI3K by NS1 leads to the

downstream activation of Akt, and delays apoptosis of influenza

virus-infected cells [12,13]. Given that NS1 has been shown to

modulate intracellular signaling events and inhibit the induction of

IFN, we undertook experiments to determine whether avian

H5N1 influenza NS1 can also influence facets of IFN-a/b-

inducible signaling. In addition, as more influenza A viruses,

including the highly pathogenic avian H5N1 strain and the

circulating swine origin H1N1 pandemic 2009 strain (S-OIV,

H1N1pdm) are developing resistance to the antiviral agents

oseltamivir and/or the adamantine derivatives, there is an urgent

need for alternative antiviral therapies [14,15,16]. Accordingly we

examined the therapeutic potential of the synthetic IFN-a, IFN

alfacon-1, as an antiviral against H5N1 and H1N1 influenza A

infections, employing a novel human non-tumor lung tissue

explant model.

We provide evidence that expression of H5N1 NS1 reduces

IFN-inducible phosphorylation of STAT proteins and results in

decreased formation of downstream STAT:DNA complexes. We

attribute this NS1-medited inhibition of IFN-inducible signaling to

the effects of NS1 on restricting the cell surface expression of IFN

receptor expression, and also upregulation of the signaling

inhibitors SOCS1 and SOCS3. We provide evidence that

treatment of human lung tissue with IFN alfacon-1 inhibits both

H1N1 and H5N1 viral replication, overriding the inhibitory effects

of NS1.

Materials and Methods

Cells and reagents
The human cervical carcinoma cell line HeLa was obtained

from ATCC (Manassas, VA). Cells were cultured in Dulbecco’s

modified Eagle’s medium (Invitrogen), supplemented with 10%

fetal calf serum (FCS), 100 U/mL penicillin, 100 mg/mL strepto-

mycin (Invitrogen). Plasmids pBudCE4.1 and pBudCE4.1-H5N1

NS1-HA (A/Duck/Hubei/L-1) were kindly provided by Dr. Bing

Sun. Monocyte-derived macrophages were produced, as described

previously [17]. Fresh lung biopsies were obtained from non-

tumor lung tissue obtained during surgical resection of lung tissue

at Queen Mary Hospital in Hong Kong. Written, informed

consent was obtained from all patients and institutional approval

was granted by The Hong Kong University and Hospital

Authority (Hong Kong West) Institutional Review Board. The

biopsies or tissue fragments were excess to the requirements of

clinical diagnosis. Lung tissue from each donor was cut into

multiple fragments (2–3 mm). The tissues were immediately

placed into culture medium (F-12K nutrient mixture with L-

glutamine, and antibiotics) and infected with either influenza A

H5N1 (A/Vietnam/3046/04 or A/HK/483/97) or H1N1 (A/

HK/54/98 or A/Ca/04/09 (H1N1pdm)) viruses within three

hours of collection. Virus was adsorbed for one hour at 37uC, then

free virus was removed by washing the tissue fragments in warm

PBS. Biopsies with no virus added were used as controls. The

biopsy or tissue fragments were incubated at 37uC for the

indicated times.

Human recombinant IFN alfacon-1 (IFN alfacon-1, specific

activity, 66108 U/mL) was provided by Three Rivers Pharmaceu-

ticals (Pittsburgh, PA). Human IFN-b (IFN b-1a, specific activity,

1.26107 U/mL) was provided by BiogenIdec Inc., Cambridge,

MA. Antibodies against p-STAT1, p-STAT2, p-STAT3, STAT1,

STAT3, HA, SOCS1, and SOCS3 were purchased from Cell

signaling. Antibodies against STAT2 and b-actin were obtained

from Santa Cruz Biotechnology (Santa Cruz, CA).

Transfection and virus infections
Cells (26105) were transfected using Lipofectamine LTX

(Invitrogen, CA) according to the manufacturer’s protocol. Briefly,

cells were seeded in 6 well plates 24 hours before transfection.

Plasmid DNA and transfection reagent were mixed in serum-free

medium and incubated for 30 minutes at room temperature.

Transfection complexes were then gently added into individual

wells of the 6-well plate.

For influenza A infection of primary lung tissues, virus was used

at a titer of 16107.3TCID50/mL for H5N1, 16106.4TCID50/mL

for A/HK/54/98 H1N1 and 16107TCID50/mL for pandemic

A/Ca/04/09 H1N1. Human monocyte-derived macrophages

were infected with A/HK/483/97 H5N1 or H1N1 at an MOI

of 2, or mock infected.

Measurements of viral infectivity
The extent of viral infection was determined using a TCID50

(50% tissue culture infectious doses per mL) assay. Briefly, a

confluent 96-well plate of MDCK cells was prepared one day prior

to the viral titration. Cells were then washed with PBS and

overlayed with serum-free Minimum Essential Medium (MEM)

supplemented with 100 U/mL penicillin and 100 mg/mL strep-

tomycin and 2 mg/mL of TPCK (tosylsulfonyl phenylalanylchlor-

omethyl ketone) treated trypsin. 1:10 serial dilutions of stock virus

were adsorbed onto the plates in quadruplicate. The plates were

observed for cytopathic effect daily. The end-point of viral dilution

leading to CPE in 50% of inoculated wells was estimated using the

Karber method [18].

Immunoblotting and immunoprecipitation
Cells were lysed in 30 mL of lysis buffer (1% Triton X-100,

0.5% Nonidet P-40, 150 mM NaCl, 10 mM Tris-HCl, pH 7.4,

1 mM EDTA, 1 mM EGTA, 0.2 mM phenylmethylsulfonyl

fluoride). Protein concentration was determined using the Bio-

Rad protein DC assay kit (Bio-Rad Laboratories, Hercules, CA).

30 mg of protein lysate/sample was denatured in 56 sample

reducing buffer and resolved by SDS-PAGE. The separated

proteins were transferred to a nitrocellulose membrane followed

by blocking with 5% bovine serum albumin (w/v) in TBS-T for

1 h at room temperature. Membranes were probed with the

indicated specified antibodies. Proteins were visualized using the

ECL detection system (Pierce, Rockford, IL). For immunoprecip-

itation assays, cells transfected with vector alone or with H5N1

NS1 plasmid were incubated in hypotonic lysis buffer containing

10 mM HEPES, pH 7.4 for 30 minutes on ice, and the suspension

was then briefly sonicated. The suspension was centrifuged at

14000 rpm for 30 min at 4uC. The supernatant was collected and

protein concentration measured using the Bio-Rad protein assay

kit. 500 mg of protein was incubated with 1 mg of either anti-

STAT1 antibody, anti-STAT2 antibody or IgG isotype control

antibody. Antibodies were immunoprecipitated with protein A/G-

Sepharose beads (Santa Cruz Biotechnology) and washed 6 times

NS1 Interferon Signaling
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with pH 7.4 HEPES buffer. Beads were denatured in 56 sample

reducing buffer and resolved by SDS-PAGE.

Cell sorting and flow cytometric analysis for IFNAR1 and
IFNAR2 cell surface expression

24 hours post-transfection, cells were first washed with PBS and

subsequently incubated with Versene for 15 minutes. Suspended

cells were collected and centrifuged at 1500 rpm for 5 minutes.

Cell pellets were then resuspended at 16107 cells/mL in 2% FCS.

56105 GFP+ sorted cells were incubated with either anti-human

IFNAR1 (BiogenIdec)[19] or anti-human IFNAR2 antibody

(Caltag), followed by PE-conjugated anti-mouse IgG antibody.

As isotype controls, cells were incubated with PE-labeled isotype

control IgG antibody (eBioscience). All analyses were performed

using the FACS Calibur and CellQuest software. Cells were gated

based on forward and side scatter.

RNA extraction and cDNA synthesis
Cells were lysed using buffer RLT + b-mercaptoethanol with

Qiagen QIA-shredder columns. RNA isolations were carried out

using Qiagen RNeasy mini kits, according to the manufacturer’s

protocol, with DNA digestion. Total cellular RNA was eluted in

RNase-free water. The concentration of RNA was determined by

UV spectrophotometry at 260 nm wavelength (Beckman). cDNAs

were synthesized using 0.5 mg RNA and oligo-dT primers and

Superscript III reverse transcriptase according to the manufactur-

er’s protocol (Invitrogen, CA).

Real-time polymerase chain reaction (RT-PCR)
Real-time PCR was carried out using a LightCyclerH (Roche) in

conjunction with LightCyclerHFastStart DNA Master SYBR

Green PLUS I Kits (Roche). Reactions were carried out in

20 mL volumes containing 4 mL Master SYBR Green PLUS buffer

at a final concentration of 1X, 5 mL of 0.1 mg/mL cDNA. 9 mL of

PCR-grade water and 1 mL of each 20 mM forward and reverse

primers. PCR reactions were carried out under the following

conditions: pre-incubation at 95uC for 10 minutes, followed by 45

amplification cycles of denaturation for 10 seconds, annealing for

5 seconds at 60uC, extension at 72uC for 10 seconds, melting curve

analysis at 65uC for 15 seconds and a continuous acquisition mode

of 95uC with a temperature transition rate of 0.1uC/s. The data

were subsequently analyzed using software RealQuant. PCRs

were carried using the following primers:

Ifnar1

(forward) 59 CACTGACTGTATATTGTGTGAAAGCCAGAG 39

(reverse) 59 CATCTATACTGGAAGAAGGTTTAAGTGATG 39

Ifnar2

(forward) 59 ATTTCCGGTCCATCTTATCAT 39

(reverse) 59ACTGAACAACGTTGTGTTCC 39

Influenza A m gene

(forward) 59 CTTCTAACCGAGGTCGAAACG 39

(reverse) 59 GGCATTTTGGACAAAGCGTCTA 39

Isg15

(forward) 59 TCCTGGTGAGGAATAACAAGGG 39

(reverse) 59 CTCAGCCAGAACAGGTCGTC 39

pkr

(forward) 59 GCCTTTTCATCCAAATGGAATTC 39

(reverse) 59 GAAATCTGTTCTGGGCTCATG 39

2959-oas

(forward) 59 AGCTTCATGGAGAGGGGCA 39

(reverse) 59 AGGCCTGGCTGAATTACCCAT 39

socs1

(forward) 59 TTGCCTGGA ACCATGTGG 39

(reverse) 59 GGTCCTGGCCTCCAGATACAG 39

socs3

(forward) 59 GGAGTTCCTGGACCAGTACG 39

(reverse) 59 TTCTTGTGCTTGTGCCATGT 39

b-actin

(forward) 59ACATGGAGAAAAATCTGGCAC 39

(reverse) 59 GTAGCACAGCTTCTCCTTAATGT 39

Electrophoretic mobility shift assay
10 mg of nuclear protein from untreated or IFN-treated cells

was extracted as described previously [20]. Extracts were

incubated with 1 mg poly(dI-dC)poly(dI-dC) for 10 minutes at

4uC in buffer containing 60 mM EGTA, and 5% Ficoll (final

volume 30 mL). 40,000 counts per minute (cpm) of radiolabeled

sis-inducible element (SIE) (59 AGCTTCATTTCCCG-

TAAATCCCT 39) were added and the reaction mixture was

incubated for an additional 20 minutes at ambient temperature.

Protein-DNA complexes were resolved on a 4.5% polyacrylamide

gel using 0.56 TBE (final concentration 45 mM Tris borate,

1 mM EDTA) as the running buffer. Gels were dried and exposed

to autoradiographic film (Kodak BioMax MS) overnight at

280uC. A supershift assay to identify specific STAT:SIE

complexes was carried out prior to EMSA by incubating nuclear

extracts with 2 mg of anti-STAT1 (C-136X (batch #s L1004,

B0403), Santa Cruz Biotechnology) or anti-STAT3 (H-190X,

Santa Cruz Biotechnology; 9132, Cell Signaling Technology)

antibodies for 30 minutes prior to addition of the radiolabeled SIE

for a further 20 minutes.

Immunohistochemistry and confocal microscopy
Cells transfected with H5N1 NS1 plasmid were stained as

described previously [21]. Various proteins were visualized using

fluorescence-conjugated secondary antibodies (Alexafluor-488:

green, Alexafluor-555: red and Alexafluor-647: blue) (Amersham

Biosciences, Cardiff, UK). Images were collected using an upright

Leica SP2 confocal laser-scanning microscope (Leica Microsys-

tems Heidelberg GmbH, Mannheim, Germany), a 1006 oil

immersion lens (1.4 numerical aperture), and a 46 digital zoom.

Laser excitations were 488 nm (Ar/Kr) and 543 nm (He/Ne),

attenuated to 10% and 50%, respectively, by way of an acoustic-

optical transmission filter. Sequential scan mode was used to

eliminate cross talk of detected signals, which were filtered

between 500 to 530 nm and 560 to 660 nm. Image resolution

was 512 dpi by 512 dpi (12 bit), and line averaging (46) was used.

Optical sections were collected at 0.5 mm intervals through the

entire cell.

To stain for influenza nucleoprotein, lung tissue explants were

fixed in 10% neutral buffered formalin and processed for paraffin

embedding and immunohistochemistry using a mouse anti-

influenza nucleoprotein antibody (HB65, EVL Laboratories, The

Netherlands).

Results

H5N1 NS1 expression inhibits IFN-inducible STAT
phosphorylation

To investigate the effects of H5N1 NS1 expression on IFN

signaling, HeLa cells were transfected with either vector alone or

plasmid containing HA-tagged H5N1 NS1. 24 hours post-

transfection, cells were treated with IFN-b (16103 U/mL) to

promote IFN-inducible signaling. In contrast to cells transfected

with vector alone, there was a notable reduction in IFN-inducible

STAT1, STAT2 and STAT3 phosphorylation in cells express-

ing H5N1 NS1 (Figure 1A). Human lung epithelial A549 cells

NS1 Interferon Signaling
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transfected with H5N1 NS1 likewise exhibit a reduction in IFN-b-

inducible STAT1 phosphorylation (data not shown).

To confirm that the inhibition of IFN-inducible STAT

phosphorylation is a consequence of NS1 expression, in an

identical series of transfection experiments, cells were fixed and

stained with both anti-phospho-STAT2 and anti-HA (NS1)

antibodies. Confocal microscopy revealed that, in contrast to cells

lacking H5N1 NS1 expression, that exhibit strong IFN-inducible

phospho-STAT2 staining in their nuclei, there is a notable

reduction in IFN-inducible phospho-STAT2 staining in H5N1

NS1-expressing cells (Figure 1B).

NS1 inhibits IFN-inducible STAT-DNA binding
STAT proteins, once activated by phosphorylation, form

functional homo- or hetero-dimeric complexes that migrate to

the nucleus and target specific promoter elements to initiate

transcriptional activation. To examine the functional consequence

of H5N1 NS1-mediated inhibition of IFN-inducible STAT

phosphorylation, we examined STAT-DNA binding, using

electrophoretic mobility shift assay (EMSA) studies. HeLa cells

were transfected with empty vector or vector containing cDNA

encoding H5N1 NS1 for 24 hours, then cells were either left

untreated or treated with IFN-b. Nuclear extracts were prepared

and incubated with a radiolabeled sis-inducible element (SIE),

then resolved by agarose gel electrophoresis to determine the

formation of IFN-inducible STAT:SIE complexes. In contrast to

cells transfected with empty vector, we observed a reduction in the

characteristic STAT1:1:SIE, STAT1:3:SIE, and STAT3:3:SIE

complexes in the presence of H5N1 NS1 protein (Figure 2). In

further support of a functional consequence of NS1-mediated

inhibition of IFN-inducible STAT phosphorylation, the effects of

NS1 on IFN-inducible STAT2 activation were evident as reduced

nuclear phospho-STAT2, described in Figure 1B.

H5N1 and H1N1 infection affect IFNAR expression
Given the effects of NS1 on IFN-inducible activation of STATs,

we next examined the influence of NS1 expression on upstream

molecules involved in IFN signaling, namely the receptors,

IFNAR1 and IFNAR2. HeLa cells were transfected with vector

expressing GFP or a plasmid that co-expresses NS1 and GFP.

GFP-positive cells were FACS sorted 24 hours post-transfection

and analyzed for surface IFNAR1 and IFNAR2 expression using

flow cytometry. Cells expressing H5N1 NS1 exhibited a reduced

level of surface IFNAR1 when compared to cells expressing vector

alone (Figure 3A). Notably, cell surface IFNAR2 expression was

not affected by the expression of NS1. In a subsequent series of

experiments we confirmed that this reduction in cell surface

IFNAR1 expression was restricted to cells expressing NS1

(Figure 3B). To determine whether the differential surface

expression of IFNAR1 and IFNAR2 in the presence of H5N1

NS1 is a consequence of regulation at the mRNA level, HeLa cells

were transfected with either vector-GFP or the NS1-GFP plasmid

as above, and GFP-positive cells were FACS sorted 24 hours

following transfection for subsequent RNA analysis. Ifnar1 and

ifnar2 gene expression were analyzed using RT-PCR. In contrast

to vector-GFP transfected cells, we observed a reduction in ifnar1

but not ifnar2 gene expression in cells transfected with H5N1 NS1

(Figure 3C).

Within the lung, both pneumocytes as well as macrophages are

targets for H5N1 and H1N1 infection. Accordingly, in the next

series of experiments we employed human monocyte-derived

macrophages to examine the effects of both H5N1 and H1N1

virus infections on IFNAR expression. We found that both ifnar1

and ifnar2 were upregulated in response to H1N1 and H5N1

viruses within 6 hours post-infection compared to mock infection

(Figure 4A, B), but that by 24 hours, there was a reduction of both

ifnar1 and ifnar2 compared to mock infection (Figure 4C),

To investigate if inhibition of either ifnar1 or ifnar2 occurs in the

context of influenza A infection in the intact lung, human lung

explant tissues were infected with either H1N1 or H5N1 influenza

A viruses. 18 hours post-infection, RNA was collected and

analyzed. Infection with both viruses led to a selective reduction

in ifnar1 gene expression when compared to mock-infected control

tissues (Figure 4D). Notably, infection with the H5N1 influenza A

strain led to a greater reduction in ifnar1 gene expression

compared to infection with H1N1 virus. The modest inhibitory

effects of H1N1 and H5N1 infection on ifnar2 gene expression

were not statistically significant.

H5N1 and H1N1 regulate SOCS expression
To determine the effect of H5N1 NS1 on negative regulators of

type I IFN signaling, namely SOCS proteins, HeLa cells were

transfected with plasmid containing the H5N1 ns1 gene and

24 hours post-transfection protein extracts were processed and

analyzed for SOCS1 and SOCS3 protein expression. In contrast

to cells transfected with vector alone, we observed an increase in

SOCS1 but not SOCS3 protein in cells expressing H5N1 ns1

(Figure 5A). Interestingly, when we examined the gene expression

profile of socs1 and socs3 in cells that co-express GFP and NS1, we

observed a two-fold increase in both socs1 and socs3 gene

expression when compared to control cells that express GFP

alone (Figure 5B). Moreover, RT-PCR analysis of infected human

lung tissue explants revealed that both socs1 and socs3 gene

expression was upregulated by H5N1 infection, whereas only socs1

gene expression was increased by H1N1 infection (Figure 5C).

IFN treatment upregulates IFN sensitive genes and
inhibits H5N1 and H1N1 influenza A replication in
primary human lung cells

In the next series of experiments, using the non-tumor human

lung explant tissues, we examined the effects of an IFN-a, namely

IFN alfacon-1, on H5N1 and H1N1 influenza A infection. Human

lung explant tissues were pretreated with IFN-alfacon-1 for

16 hours prior to infection with H5N1 or H1N1 influenza A

viruses. At different time points post infection, RNA was extracted

for cDNA synthesis. Analysis of influenza A m gene expression

revealed that IFN alfacon-1 treatment effectively inhibits H5N1

and H1N1 influenza A replication (Figure 6A). Gene expression

analysis for 2959-oas, pkr and isg15, IFN-stimulated genes (ISGs)

associated with an IFN-inducible antiviral response, revealed that

the expression levels for these ISGs were not upregulated in H5N1

or H1N1 virus infected tissues. However, their expression was

upregulated in both H5N1 and H1N1 virus infected human lung

tissue treated with IFN alfacon-1 (Figure 6B).

In a final series of experiments we examined the effects of IFN

alfacon-1 on pandemic H1N1 influenza A infection, when IFN

was added post-challenge with virus. Three different human lung

explants were infected with H1N1pdm virus, then 24 hours post-

infection treated with 1.26104 U/ml IFN alfacon-1. At 24 and

48 hours post-treatment, the effects of IFN on viral replication

were evaluated by measuring m gene expression and TCID50

values. The results in Figure 7, panels A and B, provide evidence

for the protective effects of IFN treatment, even when added

postinfection, as assessed by TCID50 and m gene expression. These

results are supported by evidence of a reduction in Influenza A

nucleoprotein expression, visualized in the IFN-treated lung

explants (Figure 7C).

NS1 Interferon Signaling
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Figure 1. H5N1 NS1 expression inhibits IFN-inducible STAT phosphorylation. A) HeLa cells transfected with vector alone ( ) or HA-tagged
NS1 plasmid (&) were left untreated (2) or treated (+) with IFN-b (16103 U/mL) for 15 mins, 24 hr post-transfection. Cells were harvested, lysates
were resolved by SDS-PAGE and immunoblotted with the indicated anti-phospho-STAT1, anti-phospho-STAT2, anti-phospho-STAT3 and anti-HA(NS1)
antibodies. Membranes were stripped and reprobed with anti-STAT1, anti-STAT2, anti-STAT3 and anti-b-tubulin antibodies as loading controls.
Relative fold induction of phosphorylated STAT proteins was calculated using signal intensity of phospho-STATs over total STATs and normalized
with untreated, vector transfected cells. The data plots are representative of three independent experiments. B) HeLa cells transfected with HA-
tagged NS1 plasmid were treated with IFN-b (16103 U/mL) for 15 mins. Cells were then fixed and stained for HA (red) and phospho-STAT2 (blue), and
analyzed by confocal microscopy as described in Materials and Methods. The white arrow identifies the nuclear predominance of NS1and the broken
line in the middle panel defines the nucleus showing reduced phospho-STAT2. Data are representative of two independent experiments.
doi:10.1371/journal.pone.0013927.g001
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Discussion

Prompted by an increase of oseltamivir-resistant influenza A

virus isolates, this study was initiated to determine the effect of

NS1 on IFN signaling, and to explore the therapeutic potential of

IFN to override any NS1-mediated inhibitory effects. Any IFN

response is augmented by a positive feedback loop; specifically,

IFN produced in response to virus infection binds to and activates

IFNAR, leading to gene induction, which includes IFN. Thus IFN

exerts both direct and paracrine effects on producer and adjacent

cells. Previous studies indicate that H5N1 is able to overcome this

feedback loop and the NS1 of H5N1 has been implicated in the

development of this resistance [22].

Herein we report novel strategies by which the H5N1 influenza

virus NS1 alters IFN-a/b signaling, mediated by the inhibition of

IFNAR and SOCS protein expression. The inhibitory effects of

NS1 on IFNs-a/b have largely been attributed to its ability to

inhibit IFN induction. A number of viruses have evolved to target

STAT proteins and block the antiviral activity of IFNs:

Paramyxoviruses such as SV5 and type II human parainfluenza

viruses (HPIV2) block IFN signaling through their V proteins,

which induce proteasomal degradation of STAT1 and STAT2 by

polyubiquitation [23]. HCV core proteins block STAT1 activation

and subsequent function, mediated by STAT1-core protein

interactions and suppression of STAT1 gene expression [24].

We provide evidence that expression of the H5N1 influenza virus

NS1 in HeLa cells leads to a reduction of IFN-inducible STAT

phosphorylation (Figure 1).

The phosphorylation-dependent activation of STAT1 and

STAT2 is critical for mediating IFN-inducible antiviral responses

[25]. Activated STAT proteins form various complexes that

subsequently translocate into the nucleus to initiate gene

expression via binding to specific elements in the promoter regions

of ISGs. In the absence of these transcriptional effector proteins,

cells are unresponsive to IFNs and are highly susceptible to viral

infection [26,27]. The inhibition of IFN-inducible phosphorylation

of STATs in the presence of H5N1 NS1 resulted in a reduction in

the formation of the characteristic STAT1:1:SIE, STAT1:3:SIE

and STAT3:3:SIE complexes (Figure 2).

These results prompted us to evaluate whether NS1 might affect

upstream effectors of the STATs, thereby limiting their IFN-

inducible phosphorylation and activation. FACS and confocal

microscopy analysis of surface IFNAR1 and IFNAR2 expression

revealed a reduction in cell surface IFNAR1 in the presence of

H5N1 NS1, yet IFNAR2 surface expression remained unaltered

(Figure 3). Based on the ability of NS1 to inhibit host mRNA

generation, we examined NS1 effects on ifnar1 and ifnar2 gene

expression, and showed that after an initial, early increase in ifnar1

and ifnar2 expression, likely reflective of an innate cellular

response, there was a reduction in both ifnar1 and ifnar2 expression

in monocyte-derived macrophages by 24 hours, but a more

selective reduction in expression of ifnar1 in ex vivo lung tissues by

16 hours, once viral replication became fully established (Figure 4).

This NS1-dependent reduction in ifnar1 gene expression is likely

responsible for the decrease in IFN-inducible STAT phosphory-

lation and DNA binding. The basal level of expression of distinct

signaling effectors, including IFNAR1, JAK1, TYK2, IRF9 and

STAT2, has been shown to correlate directly with the intensity of

an IFN response [28]. IFNAR1 null cells are completely non-

responsive to IFN treatment and mice null for IFNAR1 are,

likewise, unresponsive to IFNs-a/b and highly susceptible to

microbial infections [29]. Clinical studies of HCV patients whom

are either non-responders or exhibit a reduced sensitivity to IFN

therapy, identified a reduction in either ifnar1 or ifnar2 gene

expression when compared to IFN responders [30]. Polymor-

phisms in the promoter region of ifnar1 and ifnar2 have been

Figure 2. H5N1 NS1 expression inhibits IFN-inducible STAT:SIE complex formation. A) HeLa cells transfected with either vector alone or
HA-tagged NS1 plasmid were left untreated (2) or treated (+) with IFN-b (16103 U/mL) for 15 mins, 24 hr post-transfection. Nuclear extracts were
isolated and equal amounts of protein were incubated with 32P-labeled SIE probe. Complexes were resolved by native gel electrophoresis and
visualized by autoradiography. Data are representative of two independent experiments. HeLa cells were treated with IFN-b (16103 U/mL) for
15 mins. Nuclear extracts were isolated and equal amount of protein were incubated with 32P-labeled SIE probe in the presence or absence of 2 mg of
anti-STAT1 and anti-STAT3 antibodies, as indicated. Complexes were resolved by native gel electrophoresis and visualized by autoradiography.
doi:10.1371/journal.pone.0013927.g002
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closely linked with susceptibility to a number of diseases including

malaria, multiple sclerosis, trypanosomaiasis, HCV and HIV

[31,32,33,34]. In contrast, over-expression of IFNAR1 and

IFNAR2, as is the case in Down’s Syndrome patients, where

chromosome 21 is trisomic, results in an enhanced sensitivity to

IFN [35].

While the specific mechanism by which H5N1 NS1 downreg-

ulates IFNAR1 expression requires further investigation, NS1 will

inhibit pre-mRNA splicing, polyadenylation and nuclear export.

NS1 interacts with components of the splicing machinery, U6

snRNA, which complex with other constituents of the spliceosome

to mediate pre-mRNA splicing [11]. An association between NS1

and U6 snRNA hinders its ability to complex with other catalytic

subunits of the spliceosome, thereby leading to the accumulation

of pre-mRNAs in the nucleus of the host cell. Additionally, NS1

affects polyadenylation of host mRNA through targeting of

CPSF30 and PABII [36,37]. 39 cleavage and polyadenylation of

mRNAs promotes their export into the cytoplasm, whereas

mRNAs that have undergone 39 cleavage alone are retained in

the nucleus [38]. Viewed together, the inhibitory effect of

influenza virus H5N1 NS1 on ifnar1 gene expression is an effective

mechanism to render target cells insensitive to IFN and overrides

the initial non-specific antiviral effect of IFNAR upregulation seen

in the monocyte derived macrophages.

IFNs-a/b are not only critical components of the innate

immune response, but also play a prominent role in modulating an

adaptive immune response. IFNs-a promote the differentiation

and maturation of dendritic cells (DCs), which subsequently

present viral peptide in the context of the major histocompatibility

complex (MHC) to activate T cells. Additionally, IFNs-a/b can

modulate co-stimulatory molecule expression, to further stimulate

or prime virus-specific CD4+ and CD8+ T cells. During influenza

A virus infection, expression of NS1 in DCs blocks their

maturation and subsequently results in ineffective T cell activation

[39]. NS1 expression in DCs alters the expression of numerous

genes that are required for both maturation and migration,

including ifnar1 [39].

Notably, infection with the H5N1 influenza A strain led to a

greater reduction in ifnar1 gene expression compared to infection

with H1N1 virus (Figure 4C, D) in the ex vivo lung tissue model.

Figure 3. H5N1 NS1 reduces surface IFNAR1 but not IFNAR2 expression. A) HeLa cells were transfected with either GFP vector alone (green)
or GFP vector containing HA-tagged NS1 (red), then 24 hr post-transfection, GFP-positive cells were FACS sorted and stained for IFNAR1 or IFNAR2
and analyzed by FACS. Data are representative of three independent experiments. B) HeLa cells were transfected with HA-tagged NS1 plasmid and
24 hr post-transfection were fixed and stained for HA (green) and either IFNAR1 (red; upper panel) or IFNAR2 (red; lower panel), and analyzed by
confocal microscopy. Data are representative of two independent experiments. C) HeLa cells were transfected with either GFP vector alone ( ) or GFP
vector containing HA-tagged NS1 (&). 24 hr post-transfection, GFP positive cells were FACS sorted, RNA extracted and cDNA synthesized. Ifnar1,
ifnar2 and b-actin gene expression were analyzed by RT-PCR. Gene expression was calculated relative to b-actin gene expression and normalized to
cells transfected with GFP vector alone. Data are representative of two independent experiments. Significant differences (asterisk) were determined
by Student’s t-test (p,0.05).
doi:10.1371/journal.pone.0013927.g003
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X-ray crystallographic studies suggest that NS1 from highly

pathogenic H5N1 influenza A virus exhibits structural differences

in both the RNA-binding and effector domains when compared to

NS1 from other influenza strains. H5N1 NS1 can associate with

itself to form a novel tubular oligomeric structure, whereas NS1

from other strains adopt a dimeric conformation [40,41]. These

conformational differences may contribute to the different degrees

of inhibition of ifnar1 gene expression observed between H5N1

and H1N1.

SOCS proteins are potent inhibitors of JAK/STAT signaling.

There is accumulating evidence that influenza virus infection will

also inhibit an IFN response in part through up-regulation of

SOCS1 and/or SOCS3 expression [42,43]. SOCS1 inhibits IFN

signaling through direct physical interactions with JAK1, whereas

SOC3 and CIS interact with the phosphorylated receptor to

hinder the recruitment and phosphorylation of downstream

effectors such as STATs [44,45]. Over-expression of SOCS1

and/or SOCS3 will effectively reduce IFN responses through the

inhibition of STAT phosphorylation and induction of ISGs [46].

Many viruses, including respiratory syncytial virus, herpesviruses

and hepatitis C virus, modulate SOCS1 expression to inhibit

STAT activation as a way to suppress an IFN response [47,48,49].

Our data revealed that both socs1 and socs3 gene expression

increased in HeLa cells expressing H5N1 NS1, yet we were only

able to detect an increase in SOCS1 protein expression (Figure 5).

SOCS1 expression can be induced by various cytokines in a tissue-

specific manner [50,51]. STAT proteins including STAT1 and

STAT5 have been suggested to play a role in mediating the

transcriptional activation of socs gene expression upon cytokine

stimulation [50,51]. Studies in breast cancer cells suggest that

MAP kinase (MAPK) p38 activation, an intermediate effector in

MAPK signaling, may also play a role in upregulating SOCS1

expression. The hyperinduction of proinflammatory cytokines in

H5N1 but not H1N1 influenza A-infected primary human

macrophages was strongly associated with p38 activation,

suggesting a possible mechanism for the induction of SOCS1

expression [52,53,54]. Notably, SOCS1 expression is regulated at

the translational level in a cap-dependent manner by the

eukaryotic initiation factor 4E-binding proteins [55]. NS1 affects

cellular translation by interacting with eIF4G and activating the

PI3K pathway [12,13,56,57]. Activation of PI3K can lead to

translational activation through mTOR and subsequent phos-

Figure 4. Influenza virus infection reduces ifnar1 and ifnar2 expression at 24 hours post-infection in human monocyte-derived
macrophages and ex vivo lung tissues. Human monocyte-derived macrophages were infected with A/HK/483/97 H5N1 or A/HK/54/98 H1N1
virus (Multiplicity of Infection (MOI) = 2). RNA was extracted from the cells at A) 3 hr, B) 6 hr, and C) 24 hr post-infection. Following cDNA synthesis,
ifnar1 (&) and ifnar2 ( ) expression was assayed by real-time PCR. Data shown are fold induction of gene expression relative to mock-infected control
after normalizing to b-actin in each sample. Representative data of duplicate experiments with means of triplicate assays are shown; D) Human lung
explant tissue was either mock-infected (PBS) or infected with A/HK/483/97 H5N1 or A/HK/54/98 H1N1 influenza A viruses, as described in Materials &
Methods. 18 hr post-infection tissue was processed to extract RNA. cDNA was synthesized and expression of ifnar1, ifnar2 and b-actin gene
expression was measured by RT-PCR analysis. Gene expression was calculated relative to b-actin gene expression and normalized to mock infected
tissues. Data are representative of two independent experiments. Significant differences (asterisk) were determined by Student’s t-test (p,0.05).
doi:10.1371/journal.pone.0013927.g004
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phorylation of 4E-BP1, ultimately leading to an increase in cap-

dependent mRNA translation [58].

The adamantine derivatives, amantadine and rimantadine, as

M2 ion channel-blockers were the first antivirals licensed for use

against influenza A viruses [59], yet all isolates of the pandemic

H1N1 2009 are resistant to both amantadine and rimantadine

[60]. There are two other drugs licensed globally for specific

treatment and prevention of influenza. Relenza (zanamavir) was

Figure 5. NS1 regulates SOCS1 and SOCS3 expression. A) HeLa cells were transfected with vector alone or HA-tagged NS1 plasmid, then 24 hr
post-transfection cells were harvested and lysates were resolved by SDS-PAGE and immunoblotted with the indicated anti-SOCS1 and anti-SOCS3
antibodies. Membranes were probed with anti-HA antibody to confirm expression of NS1, and anti-tubulin antibody was applied as a loading control.
Relative fold induction of proteins was calculated using signal intensity over loading and normalized against vector transfected cells (SOCS1 , SOCS3
&). Data are representative of two independent experiments. B) HeLa cells were transfected with either GFP vector alone ( ) or GFP vector containing
HA-tagged NS1 (&). 24 hr post-transfection, GFP+ cells were sorted, RNA extracted and cDNA synthesized. Gene expression of socs1 ( ), socs3 (&) and b-
actin gene expression were analyzed by RT-PCR. Gene expression was calculated relative to b-actin gene expression and normalized to cells transfected
with GFP vector alone. Data are representative of two independent experiments. C) RNA from human lung tissue either mock-infected (PBS) or infected
with A/HK/54/98 H1N1 or H5N1 influenza A viruses was collected 18 hr post-infection. cDNA was synthesized and expression of socs1(&), socs3(&) and
b-actin gene expression was measured by RT-PCR analysis. Gene expression was calculated relative to b-actin gene expression and normalized to mock
infected cells. Data are representative of two independent experiments. Significant differences (asterisk) were determined by Student’s t-test (p,0.05).
doi:10.1371/journal.pone.0013927.g005
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Figure 6. Treatment with IFN alfacon-1 inhibits H5N1 and H1N1 replication in primary human lung cells and upregulates ISG
expression. Different human surgical lung tissue explants (1–6) were either left untreated (¤) or treated with IFN alfacon-1 (1.26104 U/mL) (#) for
16 hr. Tissues were then infected with H5N1 (1–4) or H1N1 influenza A viruses (5, 6), as indicated. At different time points post infection, RNA from
cells was collected and cDNA synthesized. Gene expression for A) influenza A m gene, was measured by RT-PCR. Gene expression for B) pkr ( ), isg15
(&), 2959-oas ( ), and b-actin, was measured by RT-PCR analysis at 18 hr post-infection with H5N1 or A/HK/54/98 H1N1 for explant 5. Data are
representative of two independent experiments and normalized to mock infected controls.
doi:10.1371/journal.pone.0013927.g006
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Figure 7. Treatment with IFN alfacon-1 inhibits pandemic H1N1 2009 virus replication in human lung tissue. Three different human
surgical lung tissue explants were infected with pandemic H1N1 2009 virus for 24 hr, then either left untreated (&) or treated with IFN alfacon-1
(1.26104 U/mL) ( ) for a further 48 hr. At the indicated times A) Viral titers (TCID50) and B) Influenza A m gene expression were measured; Significant
differences were determined by Student t-test: * , p,0.05; ** , p,0.01. C) Thin sections of infected human lung explants, either untreated (i) or
IFN-treated (ii) were stained for influenza A nucleoprotein (pink).
doi:10.1371/journal.pone.0013927.g007
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developed based on knowledge of the 3-dimensional structure of

the influenza virus NA complexed with its substrate, sialic acid

[61]. Tamiflu (oseltamivir) was subsequently developed, based on

the structure of Relenza [62]. Relenza has poor bioavailability, it

must be delivered topically and is administered by means of an

inhaler, which delivers drug to the upper respiratory tract, the

primary site of virus replication. Substitution of the glycerol side

chain with a hydrophobic side chain enables Tamiflu to be orally

available. Tamiflu is taken in an encapsulated form as a prodrug,

which is activated by liver esterases to form the active drug [63].

Although the pandemic H1N1 2009 virus is sensitive to

oseltamivir, resistance has been detected in isolated clinical cases

in Hong Kong, Denmark, Japan and Canada [64]. For H5N1

virus, reports of drug resistance in approximately 2% of adult

patients and 18% of pediatric patients infected, raises concerns

[65].

In both guinea pig and ferret models, IFN-a treatment

effectively inhibits both H1N1 and H5N1 viral replication

[22,66], though multiple doses appear necessary in the guinea

pig model. Viewed together with the evidence we provide for

the antiviral effects of IFN against H1N1 and H5N1 in the human

lung explant tissue model, we infer that despite the inhibitory

mechanisms employed by NS1 to target an IFN response, IFN

treatment can override these effects (Figure 6). Notably, IFN

treatment was inhibitory against both H5N1 and H1N1 influ-

enza A strains, including the pandemic H1N1 influenza 2009.

Moreover, we provide evidence that IFN treatment post-challenge

with virus is effective at limiting viral replication: human lung

explants when infected with H1N1pdm exhibited IFN-inducible

reduction in viral titer, M gene and influenza nucleoprotein

expression. Given the broad spectrum antiviral activities of IFNs,

that are not pathogen-specific, development of resistance is

avoided. Accordingly, in ongoing studies we are evaluating the

safety profile and therapeutic potential of IFN alfacon-1 treatment

in individuals infected with influenza-like illness, specifically

pandemic H1N1pdm.
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