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Abstract

Ling and hake are tertiary consumers, and as a result both may have an important structuring role in marine communities.
The diets of 2064 ling and 913 hake from Chatham Rise, New Zealand, were determined from examination of stomach
contents. Ling was a benthic generalist, and hake a demersal piscivore. The diet of ling was characterised by benthic
crustaceans, mainly Munida gracilis and Metanephrops challengeri, and demersal fishes, mainly Macrourids and scavenged
offal from fishing vessels. The diet of hake was characterised by teleost fishes, mainly macrourids and merlucciids.
Multivariate analyses using distance-based linear models found the most important predictors of diet variability were depth,
fish length, and vessel type (whether the sample was collected from a commercial or research vessel) for ling, and fish
length and vessel type for hake. There was no interspecific predation between ling and hake, and resource competition was
largely restricted to macrourid prey, although the dominant macrourid species predated by ling and hake were different.
Cluster analysis of average diet of intraspecific groups of ling and hake confirmed the persistent diet separation. Although
size is a central factor in determining ecological processes, similar sized ling and hake had distinctly different foraging
ecology, and therefore could influence the ecosystem in different ways, and be unequally affected by ecosystem
fluctuations.
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Introduction

Ling Genypterus blacodes (Forster 1801), and hake Merluccius

australis (Hutton 1872), are the largest teleosts commonly found in

deep water (400–1000 m) fish assemblages around New Zealand,

where they are only surpassed in size by a few species of sharks and

skates. Both ling and hake support important commercial fisheries,

and are caught both as an occasional target species, and a valuable

bycatch [1].

Ling and hake are tertiary consumers, occupying the upper

trophic levels [2,3], and as a result both may influence marine

communities through top-down (consumer control) interactions

[4]. Around New Zealand, the abundance of both ling and hake

has declined since the 1980s following increased commercial

exploitation [5,6]. Understanding the trophic interactions of ling

and hake is central to understanding their biology, population

dynamics, and how changes in their relative abundance or

population structure may influence the ecosystem. Research on

trophic relationships is an important component in the move

towards an ecosystem approach to fisheries management [7].

Ling occur in the southeast and southwest Pacific and the

southwest Atlantic, between depths of 100–800 m [2,8,9]. On

Chatham Rise, there was a substantial longline fishery for ling

during the mid-1970s and the mid-1990s, but since the 1980s most

ling have been taken in trawl fisheries targeting other species,

particularly hoki (Macruronus novaezelandiae) [5]. On Chatham Rise,

ling reach maximum sizes of about 160 cm (23 kg) [10]. Little is

known about the distribution of juvenile ling until they are about

40 cm long, when they begin to appear over most of the adult

range [11]. The Chatham Rise ling stock is believed to have

declined markedly in the mid-1970s and throughout the 1990s,

but has been recovering since about 2000, and stock biomass in

2007–08 was estimated to be about 50% of virgin levels [5]. Ling

are the fourth most abundant species by weight in research trawl

surveys at depths of 200–800 m on Chatham Rise, accounting for

an average of 4% of the total fish catch [12].

Hake occur in the southwest and southeast Pacific and

southwest Atlantic, with the Patagonian population often reported

as a subspecies Merluccius australis polylepis [13,14]. Hake are widely

distributed around New Zealand [15], with juveniles mainly found

in inshore regions shallower than 250 m, and adults in depths of

250–1000 m but occasionally as deep as 1400 m. Hake are taken

almost exclusively by trawl, usually as bycatch in fisheries targeting

hoki or southern blue whiting (Micromesistius australis), although

target fisheries exist [16]. Hake reach maximum sizes of about

130 cm (18 kg) [14]. The Chatham Rise hake stock was fished

down through the 1990s, but stock biomass in 2009–10 was

estimated to be about 50% of virgin levels, following strong

recruitment in 2002 [6]. Hake are generally in the top fifteen most

abundant species by weight in research trawl surveys at depths of
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200–800 m on Chatham Rise, accounting for an average of 1% of

the total fish catch [12].

Chatham Rise is a submarine ridge which runs eastwards for

about 1000 km from the northeast coast of the South Island of

New Zealand, rising up from depths of about 3000 m to 50 m at

the western end, and sea level at the eastern end. The subtropical

front forms over Chatham Rise throughout the year, where

warmer subtropical surface water from the north meets colder

subantarctic surface water from the south [17,18]. The subtropical

front extends along the length of Chatham Rise and over a wide

latitudinal range (,100 km) [19], with the strongest surface

temperature gradients on the southern flank west of about 177uW,

then tending northwards between 177uW–180u, and then

becoming diffuse and tending southwards past the Chatham

Islands [18]. The subtropical front is a region of heightened

primary productivity [20], supporting abundant mesopelagic

biomass [21], and also acts as an area of pelagic [22,23], demersal

[24], and benthic [25–27] ecosystem discontinuity. The demersal

fish assemblage on Chatham Rise has the highest species richness

found in New Zealand waters, with species richness higher on the

northern slope and increasing with depth to a peak at about

1000 m [28]. Because of the influence of the subtropical front,

Chatham Rise is expected to provide a variety of environmental

conditions and foraging opportunities for ling and hake, which

could lead to significant variability in feeding ecology [29,30].

The primary objective of this research was to determine the

degree of predation or resource competition between ling and

hake, and thereby consider to what degree the population

dynamics of the two species are likely to be independent. A

second objective was to examine the influence of species biology

and environmental variability on diet.

Materials and Methods

Ethics
This study was exempt from ethical approval by the NIWA

Animal Ethics Committee.

Sampling from research surveys
Biological samples of ling and hake were obtained from stratified-

random research bottom trawl surveys on Chatham Rise during

December 2004-January 2005, December 2005-January 2006, and

December 2006-January 2007 [31]. The sampling area consisted of

26 strata defined by location and depth covering 146 855 km2 and

depths between 200 and 1000 m. The trawl used was a full-wing

bottom trawl, which was towed only during daylight hours [31].

Ling and hake were sampled from all tows where they were caught.

Any tow catching more than 15 ling was sub-sampled, consisting of

a random sample of 10 fish, and then a non-random sample (5 fish)

selected to ensure sampling of the full size range. This allowed

stomach sampling to be efficiently integrated with existing random

biological sampling, but also provided some non-random samples to

focus on identifying ontogenetic shifts in diet. All hake caught were

sampled. Selected fish were measured (total length (TL) to the

nearest mm), weighed (to the nearest 5 g), and sexed. Fish with

obviously regurgitated or everted stomachs were not sampled. At

sea, stomachs were sealed by fixing a cable-tie around the

oesophagus, then the oesophagus was cut in front of the tie, the

intestines cut below the pyloric sphincter, and the stomach

removed, labelled, frozen at 220uC and returned to the laboratory.

Sampling from commercial fishing vessels
In order to increase temporal coverage, biological samples of

hake and ling were collected by New Zealand Ministry of Fisheries

observers aboard commercial fishing vessels, during November

2005, February-July 2006, and April-May and July 2007. All

vessels used bottom trawls, at depths of 264–839 m (median

533 m), for 24 hours a day. The location fished was predomi-

nantly the north and west Chatham Rise. Fish catches were

sampled opportunistically, depending upon other observer duties.

If a tow was sampled, then stomach samples were collected

(alongside normal biological samples) from up to 20 ling or hake

randomly selected from the catch. Selected fish were measured for

total length (to the nearest full cm below), weighed (to the nearest

100 g) where facilities allowed, and sexed. Stomachs were

removed and returned to the laboratory following the above

protocol.

Laboratory analyses
Each stomach was thawed, the wet weight of the entire stomach

and contents recorded to the nearest 0.1 g, the stomach contents

removed and rinsed with water using a 500 mm steel sieve, a

qualitative assessment made of digestion state (Fresh; Slightly

digested (outer/exposed tissues starting to digest); Partially

digested (soft tissues breaking down but hard parts complete);

Well digested (fragmented hard parts, soft tissues fully digested)),

and the wet weight of the empty stomach recorded to the nearest

0.1 g. Recognisable prey items were then identified to the lowest

possible taxonomic level, using reference guides and a reference

collection of preserved specimens and hard parts held in NIWA,

Wellington. For each prey category, the number of prey

individuals was estimated, and wet-weight recorded to the nearest

0.01 g after removal of surface water by blotting paper. A

fragmented prey count was based on the number of eyes, heads,

tails/telsons, or other anatomical parts traceable to a single

specimen. Fish prey were recorded as potentially eaten in the trawl

net if they appeared very fresh, with no signs of digestion. Fish

prey were recorded as potentially scavenged discarded offal if they

consisted of only cleanly severed fish heads and/or tails, or filleted

fish frames.

Statistical analyses
To complete analyses of diet variability the prey items were

aggregated into taxonomic categories. The taxonomic prey

categories were chosen to achieve maximum prey resolution,

whilst maintaining sample size. The taxonomic level of each prey

category varied with the ability to identify different prey taxa. The

unidentifiable prey (including unidentifiable crustaceans, fish or

cephalopod remains), sand, rocks, human waste, shell fragments

presumably from Mollusca, nematode and trematode parasites

found in the stomachs, and prey classified as well digested, were

excluded from detailed analyses. A taxonomic categorisation was

used because the knowledge of prey ecology was generally poor,

and insufficient to allow a convincing ecological grouping of prey.

To assess the adequacy of the samples for the analyses of diet

variability, the cumulative number of prey types identified, and

cumulative diversity of the categorised stomach contents measured

using the Brillouin index of diversity (H), were plotted against the

cumulative number of non-empty stomachs [32]. The mean and

95% confidence intervals were calculated from 1000 curves based

upon different random orders of the stomachs. The asymptotic

diversity of categorised prey (HA) was estimated from a fitted curve

of the form H = aN/(1+bN), where a and b are constants, N is the

number of stomachs sampled, and the asymptote is given by a/b

[33]. The sample was considered adequate if the mean sample

diversity (H) was more than 95% of the asymptotic diversity (HA).

The contribution of different prey items to the diet was

determined by the numerical importance (%N), frequency of
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occurrence (%F), and mass (%W) [34]. The index of relative

importance (IRI), was calculated as IRI = %F (%N+%W), and

expressed as a percentage (%IRI) [35]. Bootstrap methods,

consisting of 1000 replicates of random samples, with replacement,

of stomachs from the original data set (i.e., both empty and non-

empty stomachs) stratified by vessel type, trip, and tow, were used

to estimate 95% confidence intervals around the dietary statistics

[36].

Distance-based linear model (DistLM) analysis was used to

identify which of the potential predictors explained most of the

variability in diet [29,37]. Data were standardised by expressing

the weight of each prey item as a proportion of the total weight in

each stomach, then square-root transformed, and a dissimilarity

matrix calculated using Bray-Curtis distances [38]. The potential

predictors were vessel type (research or commercial), year, month,

time of day, fish length (TL), sex, position of the tow in longitude,

latitude, and depth (average of tow start and end positions), and

two categorical location predictors derived from tow location and

prior knowledge of environmental and faunal gradients; west-east

and subtropical front (STF). The west-east predictor consisted of

west and east strata, split at the 180u longitude [29]. The STF

predictor consisted of the categories bank (200–349 m), crest (350–

499 m), northern slope (500–800 m), and southern slope (500–

800 m) [29]. More detailed information on prey distributions were

not available, and more detailed environmental data were not

collected by commercial vessels. The results of the DistLM analysis

were a marginal test, fitting each predictor individually, and a

conditional test, fitting each predictor conditional on the

predictor(s) already in the model [37]. The most significant

predictors in the conditional tests were selected using the ‘‘best’’

selection method, using the Akaike Information Criterion and

Bayesian Information Criterion [37]. Significant and relevant

correlations between predictors varied between species samples,

and are reported in the results.

To further investigate the effects of the predictors identified

from the DistLM analysis, the continuous predictors were binned.

Bin limits were chosen so that the number of observations in each

bin was approximately equal [33]. This was considered objective

given that there were no a priori known biologically meaningful

boundaries for these predictors, and it prevented bins containing

small, and so potentially biased, samples. The target number of

samples in each bin was sufficiently large to describe .85% of the

estimated diversity of the overall diet. The binned data were

averaged (mean of normalised proportions of prey species), square-

root transformed, and then analysed using non-parametric

multidimensional scaling (MDS), followed by SIMPER (similarity

percentages), using PRIMER v6 [39]. Similarity levels were

indicated on MDS plots following a cluster analysis using the

average linkage method [40,41]. The SIMPER was used to

identify, based on the contribution to the overall Bray-Curtis

dissimilarity, which prey species were characteristic of the diet

within each bin. The mean percentage contribution of the prey

groups identified by SIMPER were plotted to show the main

differences in dietary composition between bins.

Dietary overlap was estimated using hierarchical agglomerative

clustering [29,41], and intraspecific groups, to determine whether

intraspecific similarities were greater than interspecific similarities.

The intraspecific groups were defined from the previous analyses,

therefore within each group the diets were similar. To avoid any

intraspecific groups containing small, and so potentially biased

samples, the groups were determined using only the most

important 1 or 2 predictors of diet variability in each species.

The data were standardised prey weight averaged within groups,

square root transformed, a dissimilarity matrix calculated using

Bray-Curtis distances, and cluster analysis performed using the

average linkage method [40].

Results

Genypterus blacodes
Ling were sampled over a wide spatial area and depths of 255–

791 m (Fig. 1). Of 2064 specimens examined, 1540 (74%)

contained prey. A total of 5273 individual prey of 111 prey

groups were identified, having a total weight of 36.8 kg (Appendix

S1). The number of prey items per stomach varied between 1 and

37, with 85% of stomachs containing less than 5 prey items, and

50% containing only a single prey item. Prey remains were all

unidentifiable or well digested in 614 stomachs, leaving 926 (45%)

for detailed analyses of diet (Appendix S1). These specimens had a

median length of 80 cm TL (range 33–150 cm TL), and a length

(cm) weight (g) relationship of W = 0.00136TL3.287 (n = 859;

r2 = 0.99). The mean length of ling sampled from commercial

vessels was significantly larger than that from research vessels

(mean lengths 87.6 cm and 76.3 cm TL respectively; t-test,

t = 1.97, P#0.001), although the proportions of large fish

(.100 cm TL) were similar at 7% and 6% respectively. New

types of prey continued to be identified with increasing sample

size, however, the diversity of prey categories reached 95% of the

estimated asymptote after 206 stomachs (Fig. 2), indicating that the

sample was large enough to describe the diversity of the diet when

using the assumed prey categorisation.

The diet of ling was diverse, but characterised by benthic

crustaceans and demersal fishes (Appendix S1). Galatheids (mainly

Munida gracilis) occurred in 50% of stomachs but were relatively

small and so contributed only 7% of prey weight. Metanephrops

challengeri were a relatively large crustacean prey, and contributed a

similar weight to galatheids despite occurring in only 9% of

stomachs. The fish prey included benthic species, such as eels and

flatfish, demersal species such as hoki, mesopelagic species such as

myctophids, and 3 instances of cannibalism, but the most

important fish prey by %IRI were demersal macrourids, which

were found in 17% of stomachs, contributed 16% of prey weight,

and consisted of at least 7 species. The greatest %W was from

discarded fish remains (30%), which were predominantly severed

heads and/or tails of the pelagic jack mackerel Trachurus spp., or

heads of other fishes with no other accompanying remains, e.g.,

one stomach contained only 4 hoki heads. The presence of human

waste (a lamb chop) reaffirmed opportunistic scavenging behav-

iour. One stomach contained numerous teleost eggs, but as these

occurred along with other fish internal organs it is likely they were

from an ingested ovary (possible fish discards) rather than direct

predation on teleost eggs. In two stomachs the fish prey were

suspected to have been eaten in the net.

The DistLM analysis indicated significant relationships between

diet and several of the predictors, with the most parsimonious

conditional model having the predictors depth, fish length, and

vessel type (Table 1). This model explained 11.7% of the deviance,

indicating most of the variability in diet could not be explained by

the predictors. There was only a weak correlation between fish

length and depth (r2 = 0.20).

The MDS plot for depth indicated similar diets at depths 255–

381 m, 382–428 m, and 429–791 m but with 515–559 m an

outlier (Fig. 3). By prey weight, Galatheidae, Pandalidae, and

Goneplacidae were most important in the diet at depths of 255–

381 m; Galatheidae and Nephropidae were most important at

depths of 382–428 m; Galatheidae, Nephropidae, Macrouridae,

Mysidae, and discarded fishes were most important at depths of

Diet of Ling and Hake
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Figure 2. Cumulative prey richness and diversity with increasing ling sample size. Ling number of non-empty stomachs sampled (n = 926)
and A, the mean cumulative number of prey types identified, and B, mean cumulative diversity of prey categories (measured using the Brillouin index
of diversity, H). Broken lines indicate the 95% confidence intervals. Dotted line in B is a fitted curve from which asymptotic diversity was estimated.
Stomachs containing all unidentifiable or well-digested prey were excluded.
doi:10.1371/journal.pone.0013647.g002

Figure 1. Study area and location of samples. Location of A, ling, and B, hake, stomach samples (circles) on Chatham Rise, New Zealand. Circle
area is proportional to sample size (ling max. 15; hake max. 16). Grey lines indicate the 200 m, 350 m, 500 m, and 800 m isobaths. CI, Chatham
Islands.
doi:10.1371/journal.pone.0013647.g001
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429–791 m, with fish prey dominant (mean %W.50%) at 562–

791 m (Fig. 4).

The MDS plot for fish length indicated similar diets at 32.7–

58.8 cm, 58.9–82.9 cm, 83.0–103.6 cm, and 103.8–149.7 cm

(Fig. 5). By prey weight, Galatheidae and Pandalidae were most

important in the diet of smaller ling of 32.7–58.8 cm; Galatheidae,

Pandalidae, Goneplacidae, and Macrouridae were most important

in intermediate sized ling of 58.9–82.9 cm; Galatheidae, Ne-

phropidae, Macrouridae, and discarded fish were most important

in the larger ling of 83.0–149.7 cm, with Anguilliformes also

important at 103.8–149.7 cm (Fig. 6).

Crustacean prey were more important in the diet of ling

sampled from research vessels; in research vessel samples

Galatheidae and Nephropidae had a mean %W of 47% and 7%

respectively (combined contribution to SIMPER within-group

similarity of 91%), compared to 18% and 6% in samples from

commercial vessels (combined contribution to SIMPER within-

group similarity of 23%). Fish prey, in particular Macrouridae,

were more important in diet sampled from commercial vessels

(mean %W = 33%; contributing 68% to the SIMPER within-

group similarity) compared with research vessel samples (mean

%W = 10%; contributing 4% to the SIMPER within-group

similarity). Vessel type was strongly correlated with tow duration

(r2 = 0.94), and weakly correlated with longitude (r2 = 0.39) and

STF (r2 = 0.36).

Merluccius australis
Hake were sampled over a wide spatial area and depths of 344–

864 m (Fig. 1). Of 913 specimens examined, 677 (74%) contained

prey. A total of 1211 individual prey in 71 prey groups were

identified, having a total weight of 42.7 kg (Appendix S2). The

number of prey items per stomach varied between 1 and 6, with

72% of stomachs containing only a single prey item and only 4%

containing more than 3 items. Prey remains were all unidentifiable

or well digested in 376 stomachs, leaving 301 (33%) for detailed

analyses of diet (Appendix S2). These specimens had a median

length of 72 cm TL (range 39–131 cm TL), and a length (cm)

weight (g) relationship of W = 0.00216TL3.283 (n = 275 r2 = 0.99).

The mean length of hake sampled from commercial vessels was

significantly larger than that from research vessels (mean lengths

79.7 cm and 72.0 cm TL respectively; t-test, t = 1.97, p#0.001),

although the proportions of large fish (.100 cm TL) were similar

at 12% and 10% respectively. New types of prey continued to be

identified with increasing sample size, however, the diversity of

prey categories reached 95% of the estimated asymptote after 231

stomachs (Fig. 7), indicating that the sample was large enough to

describe the diversity of the diet when using the assumed prey

categorisation.

The diet of hake was dominated by teleost fishes, in particular

Macrouridae (Appendix S2). Macrouridae accounted for 44% of

the prey weight and consisted of at least six species, of which

javelinfish, Lepidorhynchus denticulatus, was most frequently identi-

fied. Merlucciidae, which were entirely hoki, were less frequent

prey, but being relatively large accounted for 37% of prey weight.

Many of the fish prey were classified as potentially eaten in the net,

but for most species some digested individuals were also found; the

only species where all individuals were classified as eaten in the net

were Coryphaenoides serrulatus, Halargyreus johnsonii, and Epigonus

lenimen. Various squids (Teuthoidea) were found in 7% of the

stomachs, and accounted for 5% of the prey weight. Crustacean

prey were predominantly natant decapods, and of these pasiphaeid

prawns were most frequently found, occurring in 19% of the

stomachs, although natant decapods accounted for ,1% of the

prey weight.

The DistLM analysis indicated significant relationships between

diet and several of the predictors, with the most parsimonious

conditional model having the predictors vessel type and fish

length, and explaining 8.3% of the deviance (Table 2).

In the samples from commercial vessels, Macrouridae, Merluc-

ciidae and Pasiphaeidae contributed .90% to the within-group

SIMPER, and the average percentage prey by weight was 66%

Macrouridae, 17% Merlucciidae and 4% Pasiphaeidae, compared

to 32%, 8% and 21% respectively in the research vessels. Vessel

type was strongly correlated with tow duration (r2 = 0.94), and

weakly correlated with latitude (r2 = 0.31).

Table 1. Ling results of the DistLM analysis marginal models,
and the most parsimonious conditional model chosen using
the ‘‘best’’ selection method.

Predictor d.f. P r2

Marginal model

Vessel type 2 0.001 0.034

Year 4 0.001 0.016

Month 5 0.001 0.025

Longitude 2 0.001 0.011

Latitude 2 0.002 0.004

Depth 2 0.001 0.069

Duration 2 0.001 0.030

Time of day 2 0.218 0.001

Fish length 2 0.001 0.056

Sex 2 0.006 0.005

STF 4 0.001 0.064

West-east 2 0.001 0.009

Conditional (sequential) model

Depth 2 0.001 0.069

+ Fish length 3 0.001 0.109

+ Vessel type 4 0.001 0.117

doi:10.1371/journal.pone.0013647.t001

Figure 3. Ling diet, non-parametric multi-dimensional scaling
ordination for depth groups. Based on percentage by weight (%W)
of diet, for depth groups: 1, 255–353 m (n = 99); 2, 354–381 m (n = 102);
3, 382–410 m (n = 102); 4, 411–428 m (n = 102); 5, 429–452 m (n = 100);
6, 453–483 m (n = 103); 7, 484–514 m (n = 109); 8, 515–559 m (n = 104);
9, 562–791 m (n = 105). Outer line indicates 40% similarity, inner line
60% similarity.
doi:10.1371/journal.pone.0013647.g003
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The MDS plot for fish length indicated a similar diet at 60.7–

85.5 cm, which had greater similarity to 85.7–131.0 cm, than to

38.5–60.3 cm (Fig. 8). By prey weight, Pasiphaeidae, Sergestidae,

Macrouridae, and Myctophidae were most important in the diet of

smaller hake of 38.5–60.3 cm; Macrouridae, Merlucciidae and

Teuthoidea were more important, and Pasiphaeidae and Mycto-

phidae less important, in the diet of intermediate sized hake of

60.7–85.5 cm; Merlucciidae were most important in the diet of

large hake of 85.7–131.0 cm, with Macrouridae also important

(Fig. 9).

Dietary overlap
Ling were split into 9 groups; the permutations of the depth

groups shallow (255–381 m), intermediate (382–428 m) and deep

(429–791 m), and fish length groups small (32.7–58.8 cm),

medium (58.9–82.9 cm) and large (83.0–149.7 cm). Hake were

split into 3 groups, the fish length groups small (38.5–60.3 cm),

medium (60.7–85.5 cm) and large (85.7–131.0 cm). The first split

in the cluster analysis was by species, at 22% similarity (Fig. 10).

The greatest similarity was between medium and large sized hake

(79%). Large ling, and medium sized ling in deep water, clustered

together at 48% similarity. The remaining groups of small and

medium ling clustered together at 45% similarity.

Discussion

Size is undoubtedly a central factor in determining ecological

processes, but similar sized ling and hake on Chatham Rise were

found to have distinctly different foraging ecology. The cluster

analysis showed that intraspecific diet similarities were greater

than interspecific diet similarities. Neither species appeared to

predate on the other. Resource competition was largely restricted

to macrourid prey, but the dominant macrourid prey species were

different in ling and hake. Ling was a benthic generalist, with a

wide range of potential prey, including scavenging; the broad diet

makes ling a potential keystone species. Hake was a demersal

piscivore, with an apparent preference for smaller silver fish prey

such as hoki, L. denticulatus, and Micromesistius australis [3,42]. There

appears to be intraguild predation between hake and hoki, the

dominant fish species on Chatham Rise, because hake competes

with hoki for mesopelagic crustaceans and fishes as a juvenile, and

then predates hoki as an adult [43,44]. Because of the different

diets, changes in the abundance of ling and hake, brought about

by exploitation for example, could have quite different effects on

the ecosystem. Ling and hake may also be unequally affected by

ecosystem fluctuations or modification, in particular, the benthic

Figure 4. Ling diet by depth group. Contribution of the characteristic prey types to the diet (mean of individual stomach %W) in the depth
groups: 1, 255–353 m; 2, 354–381 m; 3, 382–410 m; 4, 411–428 m; 5, 429–452 m; 6, 453–483 m; 7, 484–514 m; 8, 515–559 m; 9, 562–791 m. Prey
types shown are those indicated by SIMPER to be characteristic of the diet, having explained at least 90% of the SIMPER within each group.
doi:10.1371/journal.pone.0013647.g004

Figure 5. Ling diet, non-parametric multi-dimensional scaling
ordination for fish length groups. Based on percentage by weight
(%W) of diet, for fish length (TL) groups: 1, 32.7–48.5 cm (n = 103); 2,
48.6–58.8 cm (n = 104); 3, 58.9–66.9 cm (n = 103); 4, 67.0–75.6 cm
(n = 103); 5, 75.8–82.9 cm (n = 101); 6, 83.0–89.0 cm (n = 101); 7, 89.3–
94.9 cm (n = 102); 8, 95.0–103.6 cm (n = 104); 9, 103.8–149.7 cm
(n = 105). Outer line indicates 40% similarity, inner line 60% similarity.
doi:10.1371/journal.pone.0013647.g005
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foraging of ling makes it potentially vulnerable to any negative

impacts of bottom trawling on benthic fauna. Ling are benthic

generalists however, and their ability to switch prey, for example to

include scavenged material, may help to mitigate this potential

effect. The biomass of both ling and hake stocks on Chatham Rise

were depleted to about half of the pre-fishing biomass levels by the

mid-2000s, following reasonably similar exploitation histories

[5,6]. In recent years ling and hake stocks on Chatham Rise have

shown signs of recovery [5,6], suggesting that the food resources

necessary to support them have not, as yet, been substantially

degraded as a consequence of fishing disturbance.

We used the DistLM analysis method to efficiently determine

the potential importance of a relatively wide range of predictors of

diet variability, and avoid making a priori judgements about which

Figure 6. Ling diet by fish length group. Contribution of the characteristic prey types to the diet (mean of individual stomach %W) in the fish
length (TL) groups: 1, 32.7–48.5 cm; 2, 48.6–58.8 cm; 3, 58.9–66.9 cm; 4, 67.0–75.6 cm; 5, 75.8–82.9 cm; 6, 83.0–89.0 cm; 7, 89.3–94.9 cm; 8, 95.0–
103.6 cm; 9, 103.8–149.7 cm. Prey types shown are those indicated by SIMPER to be characteristic of the diet, having explained at least 90% of the
SIMPER within each group.
doi:10.1371/journal.pone.0013647.g006

Figure 7. Cumulative prey richness and diversity with increasing hake sample size. Hake number of non-empty stomachs sampled
(n = 301) and the A, mean cumulative number of prey types identified, and B, mean cumulative diversity of prey categories (measured using the
Brillouin index of diversity, H). Broken lines indicate the 95% confidence intervals. Dotted line in B is a fitted curve from which asymptotic diversity
was estimated. Stomachs containing all unidentifiable or well-digested prey were excluded.
doi:10.1371/journal.pone.0013647.g007
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predictors would have the greatest influence on diet. The choice of

prey categorisation used in the analyses was a pragmatic one, and

a compromise between achieving sufficient prey resolution to

identify diet changes, and maintaining sample sizes. As taxonomic

prey resolution increases (i.e., towards genus or species level), any

prey that cannot be identified to that level are excluded from

analyses and, where these are the only prey in the stomach, this

removes the entire stomach from the sample. Had we used a

coarse prey classification (e.g., phylum or order level), then more

of the stomach samples would have been used, but some diet shifts

would not have been identified, for example the transition from

Galatheidae to Nephropidae with increasing ling size. Conversely,

the failure to classify and analyse other prey at a more detailed

taxonomic level might have concealed some changes in diet. Prey

were not always identified to a high level simply because digestion

had eroded the key characteristics necessary for visual identifica-

tion. In studies where sample sizes will be small and visual

identification a problem, alternative prey identification methods,

such as DNA barcoding, might be beneficial [45]. Although the

sample sizes in this study were not large enough for us to have

encountered sufficient identifiable prey to confidently complete

analyses of prey at a genus or species level, and thereby identify the

full extent of diet overlap and shifts, we believe our study

nevertheless identified the most important aspects of diet content

and variability.

Although many environmental predictors were tested, only

depth was selected in the final sequential DistLM for ling, with no

environmental predictors selected for hake. For ling, both fish size

and depth were important predictors of dietary variation: the

DistLM indicated depth was the best predictor, although the

cluster analysis suggested that ling size was more important.

Published information on the depth distribution of many ling prey

species are poor or absent. Galatheidae were most important in

the diet of ling at depths of 255–428 m, and M. gracilis has been

found predominantly on the crest and shallower flanks of

Chatham Rise at depths of 237–602 m [25]. The scampi, M.

challengeri, was most important in the diet of ling at 382–514 m,

which is similar to the depths at which the commercial fishery

targets scampi (300–500 m [1]). Macrourids increased in impor-

tance in the diet of ling with increasing depth from 453 m, and the

most frequent prey species, Coelorinchus oliverianus and L. denticulatus,

increase in abundance below about 400 m [24]. The changes in

ling diet with depth seem reasonable, and appear likely to be a

direct response to changes in prey availability.

Changes in diet with ontogeny are ubiquitous in fishes [46]. In

ling, the overall diet and ontogenetic shift in diet was similar to that

reported in previous studies around New Zealand [8,47], Tasmania

[48], and the Falkland Islands [9]. In hake, the predominance of

merlucciid and macrourid prey and the ontogenetic shift in diet was

similar to that reported for M. a. polylepis around South America [3],

and to qualitative descriptions of hake diet in New Zealand waters

[42]. Cannibalism has often been reported in other hake species (e.g.,

[49]), including M. a. polylepis off South America [50], but was not

found in this study. The key feature of the ontogenetic diet shift in

ling and hake was an increase in piscivory with increasing fish size.

The size of fish eaten by hake also increased with increasing hake

size, as it included myctophids in small hake, macrourids in

intermediate sized hake, and hoki in large hake. Similarly, the

relatively large Anguilliform fishes were only important in the diet of

large ling. The ontogenetic diet shifts in ling and hake were therefore

consistent with gape-size limited predation [51]. Scavenging was

most pronounced in intermediate sized ling. Scavenging may be less

frequent in smaller individuals because they are less able to forage

widely, and cannot as easily ingest animal remains such as discarded

offal [52–55]. Scavenging by ling has only previously been suspected

around the Falkland Islands [9], which suggests ling are facultative

scavengers. The presence of only severed heads or tails of pelagic

mackerel (Trachurus spp.), a prey species that would not normally be

available to demersal ling, seems convincing evidence of scavenging.

For some ling prey, such as hoki, both scavenging and direct

predation were recorded. Discarded fish were less important in the

largest ling, and Macrouridae and Anguilliformes more important;

however both Macrouridae and Anguilliformes would be an

unwanted by-catch of commercial fishing, so it is possible they

could have been live prey and/or scavenged discards. Scavenging of

discarded offal could provide a substantial positive feedback from the

commercial fishery to the ling population [56]. Predation of

wounded crustacean and fish escapees from trawl nets could provide

a further positive feedback [57], for ling and also potentially for hake.

Table 2. Hake results of the DistLM analysis marginal models,
and the most parsimonious conditional model chosen using
the ‘‘best’’ selection method.

Predictor d.f. P r2

Marginal model

Vessel type 2 0.001 0.055

Year 4 0.001 0.046

Month 3 0.004 0.021

Longitude 2 0.010 0.012

Latitude 2 0.001 0.019

Depth 2 0.010 0.011

Duration 2 0.001 0.047

Time of day 2 0.004 0.015

Fish length 2 0.001 0.039

Sex 2 0.001 0.023

STF 3 0.001 0.031

West-east 2 0.113 0.006

Conditional (sequential) model

Vessel type 2 0.001 0.055

+ Fish length 3 0.001 0.083

doi:10.1371/journal.pone.0013647.t002

Figure 8. Hake diet, non-parametric multi-dimensional scaling
ordination for fish length groups. Based on percentage by weight
(%W) of diet, for fish length (TL) groups: 1, 38.5–60.3 cm (n = 76); 2,
60.7–71.5 cm (n = 76); 3, 71.6–85.5 cm (n = 75); 4, 85.7–131.0 cm
(n = 74). Outer line indicates 60% similarity, inner line 80% similarity.
doi:10.1371/journal.pone.0013647.g008
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The rarity of discarded prey in hake suggested hake had a preference

for live prey, or that discarded offal sinks to the bottom where hake to

not forage, or where benthic scavengers are more effective. This

distinction is reflected in the fisheries on Chatham Rise, where ling

are caught on baited long lines but hake seldom are [5,6,16].

However, M. a. polylepis has been caught on artisanal longlines

around South America [58], suggesting this preference is not

exclusive.

Stomachs sampled from commercial vessel catches contained

more fish prey, which were predominantly macrourids in ling, and

macrourids and hoki in hake. The predictor vessel type was

correlated with tow length (commercial tows were longer), but this

should not have increased the importance of fish prey unless both

ling and hake were capable of feeding on fish prey in the net for

extended periods (i.e., longer than 50 minutes; the standard

duration of a research tow). This seems unlikely and, in addition,

fish identified as potentially eaten in the net were relatively

infrequent in hake, and rare in ling. Although the ling and hake

sampled from commercial vessels were larger, the difference in

mean length between vessel types was relatively small (differed by

11.3 cm and 7.7 cm respectively), and the proportion of large fish

(.100 cm TL) was similar (differed by 1% and 2% respectively),

compared to the difference in %W of fish prey (commercial vessels

more than double research vessels). This suggests the difference in

length was not sufficient to explain the difference in piscivory.

Alternatively, vessel type may have been aliasing for location. Most

of the commercial vessels were targeting hoki. Hoki feed

predominantly on mesopelagic decapods and fishes, including

Figure 9. Hake diet by fish length group. Contribution of the characteristic prey types to the diet (mean of individual stomach %W) in the fish
length (TL) groups: 1, 38.5–60.3 cm; 2, 60.7–71.5 cm; 3, 71.6–85.5 cm; 4, 85.7–131.0 cm. Prey types shown are those indicated by SIMPER to be
characteristic of the diet, having explained at least 90% of the SIMPER within each group.
doi:10.1371/journal.pone.0013647.g009

Figure 10. Dendrogram showing the similarity in diet between ling and hake subgroups. Dendrogram of group-averaged cluster analysis
of Bray-Curtis dissimilarities based on square root transformed diet %W by subgroup. Shallow, 255–381 m; intermediate depth, 382–428 m; deep,
429–791 m. Ling: small, 32.7–58.8 cm; medium, 58.9–82.9 cm; large, 83.0–149.7 cm. Hake: small, 38.5–60.3 cm; medium, 6.7–85.5 cm; large, 85.7–
131.0 cm.
doi:10.1371/journal.pone.0013647.g010
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macrourids [43]. Most macrourids are demersal or benthic

feeders, but the most important macrourid prey for ling and

hake, C. oliverianus and L. denticulatus, feed predominantly on

mesopelagic prey [30]. A greater importance of fish prey,

specifically hoki, C. oliverianus and L. denticulatus, suggests that

commercial vessels may have been focusing their fishing effort in

areas where mesopelagic biomass was concentrated, presumably

because these were areas where the main target species, hoki, was

also concentrated. The vessel type predictor was correlated with

spatial predictors (latitude, longitude, or STF), supporting the

hypothesis that vessel type might be aliasing for a spatial effect.

However, the model preference for the predictor vessel type

suggested that the spatial patterns were more complex than

individual latitudinal, longitudinal, or STF gradients. Although the

reason for the difference between samples from research and

commercial vessels remains somewhat obscure, it is important to

recognise that substantial differences in diet descriptions may arise

from samples collected from different fishing methods.
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