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Abstract

Background: Cancer invasion and metastasis are closely associated with activities within the degradome; however, little is
known about whether these activities can be detected in the blood of cancer patients.

Methodology and Principal Findings: The peptidome-degradome profiles of pooled blood plasma sampled from 15 breast
cancer patients (BCP) and age, race, and menopausal status matched control healthy persons (HP) were globally
characterized using advanced comprehensive separations combined with tandem Fourier transform mass spectrometry and
new data analysis approaches that facilitated top-down peptidomic analysis. The BCP pool displayed 71 degradome protein
substrates that encompassed 839 distinct peptidome peptides. In contrast, the HP 50 degradome substrates found
encompassed 425 peptides. We find that the ratios of the peptidome peptide relative abundances can vary as much as
.4000 fold between BCP and HP. The experimental results also show differential degradation of substrates in the BCP
sample in their functional domains, including the proteolytic and inhibitory sites of the plasmin-antiplasmin and thrombin-
antithrombin systems, the main chains of the extracellular matrix protection proteins, the excessive degradation of innate
immune system key convertases and membrane attack complex components, as well as several other cancer suppressor
proteins.

Conclusions: Degradomics-peptidomics profiling of blood plasma is highly sensitive to changes not evidenced by
conventional bottom-up proteomics and potentially provides unique signatures of possible diagnostic utility.
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Introduction

Breast cancer is the most common malignancy in Western

women; in 2009, more than 192,000 women were estimated to be

diagnosed and ,40,000 died of this disease in the United States

alone [1]. Breast cancer is a heterogeneous disease, and prognosis

is determined largely by tumor size, shape, location, and metastasis

in addition to molecular characteristics, such as whether the tumor

is hormone receptor-positive or -negative, genetic factors, and the

rate of cell division [2]. Tumor markers, such as the estrogen

receptor, progesterone receptor, and the human epidermal growth

factor receptor 2, are routinely employed to assess invasive breast

cancers, and in cases of advanced disease, circulating tumor

markers CA15-3/BR27-29 or carcinoembryonic antigen may be

used to monitor response to therapies [3]. However, there are

presently no tumor markers for early detection of the disease in

otherwise healthy women [4]. Impeding the development of such

markers using proteomics approaches is the expectation that

protein targets in blood reflective of cancers, if present, are most

likely present at extremely low levels [5].

Cancer progression, invasion, and metastasis require and/or

bring about changes to tumor microenvironments that involve

protein degradation by cancer degradome proteases [6]. In

addition to proteases, the degradome includes protease activators

and inhibitors, and degradation substrates [7], [8]. Protease

inhibitors account for 5–10% of all cancer-related drugs [9], while

protein substrate degradation products afford a potentially rich

pool for cancer biomarker discovery [10], [11]. As protein

degradation products, intracellular and/or intercellular peptides

that constitute the peptidome have been explored for their

potential as biomarkers [12]; however, the small pieces of peptide

sequences detected and identified are difficult to correlate to

available cancer degradomic information, possibly because such

small sequences are likely the terminal products of the multi-stage

degradation of protein substrates.

Herein, we report on degradomic behaviors based upon the

analysis of the peptidomes of pooled breast cancer patients and

control healthy persons. Our strategy involved comprehensive

separations combined with tandem Fourier transform mass

spectrometry and new data analysis approaches that facilitated

top-down, global peptidomic analysis [13]. The results obtained

herein demonstrate remarkable variations between the pooled

samples that far exceed those evident using conventional bottom-
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up proteomics approaches. The present results obtained for the

samples carefully selected suggest that the breast cancer patients

have increased degradation of functional domains of cancer-

relevant proteins, including proteases and inhibitors, extracellular

matrix (ECM)-relevant proteins, innate immune system key

components, and other protein molecules functioning to suppress

cancers. Overall, the present results support the view that the

peptidome/degradome is a potentially rich source of makers,

support the use of the present top-down proteomic analytical

strategies for obtain of the relevant unique information, and

highlight the need for more extensive degradomic-peptidomic

studies of individual samples, as is enabled by the present work.

Results

Blood plasma samples for this work were collected under the

identical lab protocol from15 breast cancer patients (BCP) (ER

positive, Her2 negative; invasive ductal carcinoma; 5 are stage I, 7

are stage II and 3 are stage III) and 15 control healthy persons

(HP) of matched age, race, and menopausal status. The blood

plasma peptidomes of these samples were isolated without

observable discrimination and analyzed in parallel under well-

controlled conditions (see Methods below).

The BCP and the control HP have very similar sets of plasma

proteins (Table S1) identified using a conventional bottom-up

proteomics method (i.e., analysis of peptides originating from

tryptic digestions of proteome proteins), but show strikingly

different degradation patterns (Figure 1) of these proteins that

are revealed from analysis of the peptidome peptides. The BCP

degradome encompasses 71 protein substrates that generate 839

distinct peptidome peptides, while the HP degradome encompass-

es 50 substrates that generate 425 peptides (Table S2), suggesting

that the BCP have a more active degradome than the HP. The

ratios of the peptidome peptide relative abundances can vary by

.4000 fold between the BCP and the HP samples tested (Table

S2). The striking degradome differences observed for the BCP also

includes selective changes of major high abundance peptidome

peptides (Figure 2). Moreover, the degradation observed for the

BCP is selective in the degradome substrates. For example, inter-a
trypsin inhibitor heavy chain 1 (ITI HC1) produces 22 peptidome

peptides in the BCP, but none in the HP; whereas ITI HC4

displays similar selectivity (53 peptides in the BCP, and 48 in the

HP).

Figure 3 shows that the overall cleavage specificities of

degradome proteases active in the BCP and HP are similar,

which suggests that the BCP degradome has no proteases that

aberrantly cleave protein substrates. However, the cleavage

specificity for individual substrates, as illustrated in Figure 4 for

ApoA-IV, can vary significantly, which suggests differences in the

substrate proteolytic activity between the BCP and the HP

examined.

Plasmin (Plm) is an extracellular protease that physiologically

and pathologically participates in the remolding of tissues and

female reproductive organs [14]. The Plm proenzyme plasmino-

gen (Plg) is secreted to the extracellular space where it is converted

to Plm by removal of the preactivation peptide domain (Glu20-

Lys97) through cleavage of Lys97-Val98 (catalyzed by Plm) [15],

while the Plm proteolytic activity is controlled by a2-antiplasmin

(a2-AP) where Arg403-Met404 and Met404-Ser405 inhibit Plm

(and other serine proteases) through formation of stable complexes

(e.g., Plm/a2-AP) [16]. The activated Plm has been found to

degrade the ECM and its adhesive proteins [17], [18], a required

step for cancer invasion and metastasis. Figure 5A shows

observations of the differential degradation for Plm-a2-AP system

of the BCP tested. The differential degradation (7:1) for the BCP

and control HP occurs for the Plg preactivation peptide (Table

S2), which would accelerate conversion of Plg to Plm; while the

proteolysis function domain Plm light chain remains unchanged.

Degradation of a2-AP is observed at its inhibitory bonds only for

the BCP (8:0 for BCP:HP). The implication of Plm in cancer

invasion and metastasis has focused on the Plm activation by

urokinase-type Plg activator (uPA) through cleaving Lys580-

Val581 and releasing the serine protease, i.e., Plm light chain

[19]. Our degradomic study demonstrates that the Plm-a2-AP

system proteolytic activity for the BCP could also be enhanced by

selective degradation of Plg and a2-AP sequence functional

domains.

The prothrombin (FII)-antithrombin (AT) system is involved in

angiogenesis, as well as in cancer invasion and metastasis [20],

[21]. This system displays selective and differential degradations

(Figure 5B) similar to the Plm-a2-AP system in the BCP

(Figure 5A). The increased proteolytic activity of the FII-AT

system is in agreement with observations of .100 fold more

fibrinopeptide A in the BCP than in the control HP (Table S2).

The matrix metalloproteinases (MMPs) [22], a major type of

proteases that degrade ECM, are found to have no differences

between the BCP and the control HP samples examined from

either degradomic or proteomic measurements (Table S3). This is

not in contradiction with the hypothesis that the MMPs signature

is a poor marker for prognosis of patients with primary breast

cancer [23].

Tissue remodeling for cancer invasion and metastasis requires

degradation of the ECM [24] that binds surface proximal proteins

(Figure S1). It has been found that mediated by TSG-6 [25], the

ECM hyaluronan (HA) binds ITI heavy chains (HCs), which make

up the complexes IaI [HC1/HC3/LC (LC: ITI light chain)], PaI

(HC3/LC), and IaIL (HC2/LC) [26], [27] to inhibit plasmin and

other proteases and then protect and stabilize the ECM.

Figures 6A–C shows that HC1, HC2, and HC3 are differentially

degraded in the BCP tested. The differential degradation occurs to

the HC1-3 main chains, preventing them from functioning to form

the protein complexes. It is noted that the differential degradation

occurs only in HC1-3 that function to protect and stabilize the

ECM, but not HC4-5 (Table S2) that have other functions. In

addition, only a few peptidome peptides are observed in the BCP

for the ECM components, suggesting that these proteins

themselves have not undergone broad degradation yet in the

ECP examined (Table S2).

The complement system is an essential part of the innate

immune system [28] and has multiple roles in inhibiting or

promoting tumor growth [29]. Figures 7A–C show the differential

degradations for complement system key convertases in the BCP.

Convertases C3, which occupies a central position in the system,

displays differential degradation in the BCP (5-fold more peptides

than in the HP, Table S2). The differential degradation occurs to

C3b (Figure 7A), but not to the anaphylatoxin C3a released, which

could reduce the activation of C5 to C5b that initiates assembly of

MAC. The degradation of C3b further occurs to iC3b (C3a, C3b,

and C3dg) that contains the TED domain for C3b to attach the

target (e.g., tumor cell) surface and enhances antibody-dependent

cellular cytotoxicity rather than C3f released during C3b

conformation changes [30]. The peptidome peptides observed

show that C3dg links to C3a’1, C3c (C3a+C3b) is disrupted, and

C3b exists separately during iC3b degradation. These results

suggest that iC3b degradation occurs prior to the conformational

changes from iC3b to C3dg [30]. Except for MG6a and CUBf, all

iC3b domains [30], [31] contribute peptidome peptides, and the

peptides generated encompass sequences across C3b multiple ($2)

Breast Cancer Degradomic View
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domains. MG4 and MG5 release the greatest numbers of peptides,

while MG7 and helix domains release peptides only in the BCP.

Convertases C4b and factor B (fB) that activate C3 to C3b in the

lectin, classical, and alternative pathways are differentially

degraded in the BCP (Figures 7B and 7C) with releasing ,3-

fold more peptidome peptides than in HP (Table S2). The

differential degradation of C4b and fB occur to C4a, C4b, fBa,

and fBb domains. In addition to the complement system

convertases, the complement system membrane attack complex

(MAC) key components C8 and C9 are also differentially

degraded in the BCP (Figures 8A and 8B). The differential

degradation occurs to the a chains of C8 and C9. These

peptidomic-degradomic evidences show that the BCP examined

have excessive proteolysis destruction of the convertases and MAC

components, which could hinder initiating and/or result in

dysfunction of the immune complement system (Figure S2).

Consistent with previous report that C3, C4, C8, and C9 are

deposited on the breast cancer cell surface [32], the selective and

differential degradation observed for the tested BCP are at the

surface attachment domains of these convertases and components.

The BCP degradome active substrates also encompass proteins

that have been previously investigated individually for cancer

therapy, although the roles of some of these proteins in tumor

biology have not been well elucidated. Figures 9A–C shows

Figure 1. The proteome and degradome profiles for the 15 BCP and control HP samples. The degradome is a sub-proteome that
participates in the proteolytic activities and produces peptidome (top). The proteomic and degradomic measurements are represented by tryptic
peptides and peptidome peptides, respectively (middle). The BCP degradome is compared to the HP degradome using the peptidome peptide
abundances (bottom). Details for each degradome substrate, peptidome peptide and its quantification, proteome protein, and tryptic peptide are
given in Tables S1 and S2.
doi:10.1371/journal.pone.0013133.g001
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examples of the differential degradation in the BCP for tumor

suppressors, e.g., ceruloplasmin [33], pigment epithelium-derived

factor [34], and gelsolin [35], involved in angiogenesis, apoptosis,

differentiation, Rac signaling, and mobility, etc. ApoA-IV, which

has been reported having decreased blood concentration in cancer

patients [36], is also high differentially degraded in the BCP

examined (Figure 9D).

Discussion

The bottom-up proteomics results obtained in this study,

generally with a detection limit of ,ng/mL [37], show that the

blood proteome is not sensitive to the differences between the BCP

and HP (Figure 1), and perhaps much more sensitive analytical

technologies (e.g., with the detection limits of low level pg/mL)

need to be explored for direct comparative blood proteomic

studies, which is consistent with earlier insights [5]. In contrast,

major changes in blood plasma degradome-peptidome are readily

apparent for the BCP (see results shown in Figures 1, 2, 3, 4, 5, 6,

7, 8, 9). The degradomic information obtained in this work is also

in agreement with characteristics known for breast cancer,

suggesting that the broad top-down degradomic-peptidomic

analysis has the potential to serve as an alternative strategy for

discovery of the diagnostic and therapeutic targets for early

detection of breast cancer.

However, it is recognized that this work was limited to 15 BCP

and the matched control HP samples. The observations at the

present time does not allow statistical evaluation of the differential

degradomic-peptidomic signatures, and extensive investigations of

the degradomes-peptidomes of a much larger BCP population

need to be explored to validate whether every BCP displays all or

part of the degradomic features described in this work. The BCP

tested in this work are for stages I, II and III (maybe spread to

nearby lymph nodes but not distant parts of the body), but not for

late (advanced) stage IV breast cancer; the differences between the

different stages of breast cancer were not studied in this work.

Figure 2. The comparative base peak chromatograms of the BCP and HP peptidome components. Differences exist between the base
peaks of the BCP and HP peptidome major components.
doi:10.1371/journal.pone.0013133.g002
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Analysis of degradomic profiles for different stages of breast

cancer, breast benign tumors and different molecular subgroups of

breast cancers, and other types of cancers (e.g., uterine, liver, lung

cancers, etc) and diseases (e.g., inflammation) are needed for

statistical validation of which aberrances of the degradomic profile

and/or which substrate sequence domains generating the

peptidome peptides are specific to or unique for BCP before the

BCP degradomic profile and/or individual peptidomic peptides

Figure 3. The net cleavage specificity of BCP and HP proteases for the degradome-wide substrates. The cleavage positions P and P9

defined by Schechter I. and Berger A. (Papain Biochem Biophys Res Commun 1967, 27: 157–162) are adopted herein to present the specificity
measured from ,1000 peptidome peptides listed in Table S2.
doi:10.1371/journal.pone.0013133.g003
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reported in this work can be directly applied for the diagnostic

purpose. We are now developing high-through measurement

capabilities based on the accurate mass and time tags approach

[38], [39] to support such extensive degradomic-peptidomic

investigations, and the work reported herein is the impetus driving

these efforts.

We also note that degradomic-peptidomic analysis of blood

plasma is highly sensitive to a variety of conditions such as

specimen collection and storage, peptidomic sample processing,

sample analysis processes etc. For extensive comparative studies,

standard operation procedures need to be established and

executed to minimize the unnecessary variation that could affect

the analytical results. The present study, albeit with the relatively

small cohort size, used carefully selected patient and healthy

control samples that were collected using the same laboratory

protocol and processed in parallel. The data generated with our

global peptidomic strategy are highly suggestive and provide a

foundation for future efforts in this area.

Methods

Human blood plasma samples and collection procedure
Human blood plasma samples were collected from the BCP and

HP at the University of Texas M. D. Anderson Cancer Center

(Houston, TX), following the same strict laboratory protocol for

each sample. Approval for conducting this study was obtained

from the Institutional Review Boards of the University of Texas

M. D. Anderson Cancer Center and the Pacific Northwest

National Laboratory in accordance with federal regulations.

The 15 breast cancer subjects selected for this study are patients

with ER/PR positive and Her2 negative invasive ductal

carcinoma; 5 are stages I, 7 are stage II and 3 are stage III; 11

Figure 4. The net cleavage specificity of BCP and HP proteases for the degradome individual substrate. Protein substrate apoA-IV is
used for this examination. The counts and frequencies (percentages) for amino acids at P1 in the BCP and HP are used to present the specificity. The
BCP degradome proteases are more active than the HP ones to cleave more sites at P1-Ala, Lys, Leu, Arg, and Tyr. For the BCP, the P1-Leu, Tyr, and
Ala are relatively preferred for cleavage in comparison with other P1-amino acids.
doi:10.1371/journal.pone.0013133.g004
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Caucasians, 3 Hispanics and 1 Asian/Pacific Islander; 8

premenopausal and 7 postmenopausal; aged from 30–78 years

old (median age is 48 years old). The 15 control healthy subjects

were carefully selected to have matched age, race, and menopausal

status as the BCP. Blood samples collected in EDTA tubes were

first centrifuged at 1,500–1,600 g for 15 min at 4uC, and plasma

(upper phase) was transferred to another EDTA tube and

centrifuged at 14,000 g for 15 min at 4uC to remove any

remaining cellular material. The top 90% of plasma was then

transferred into cryovials with approximately 0.5 ml plasma in

each and stored frozen at 280uC until further use.

Degradomic-peptidomic analysis
The method reported [13] was used for peptidomic analysis.

Briefly, prior to analysis, 10 mL of Halt Protease Inhibitor Cocktail

(Pierce Biotechnology, Inc., Rockford, IL) was added into every

1 mL of the plasma samples. The two pooled blood plasma

samples of the BCP and the control HP from the matched BCP

and HP were depleted of its 12 high-abundance proteins using a

12.7679.0 mm IgY12 LC10 affinity chromatography (AC)

column (Beckman Coulter, Fullerton, CA). The AC-depleted

plasma samples were separated using a size exclusion chromatog-

raphy (SEC) column (Superdex 200 10/300 GL, GE Healthcare,

Piscataway, NJ), and species ,20 kDa were collected (based on

the calibration with various sizes of standard proteins) and

denatured (1 h at 37uC with 8 M urea). The resulting solution

was buffer exchanged to 50 mM NH4HCO3 (pH 8.0) in Amicon

Ultra-15 filter (3 kDa nominal MW limit, Millipore, Billerica,

MA). The plasma peptidomes of these samples were isolated

without observable discrimination (Figure S3). The AC/SEC-

isolated peptidome components (50 mg of each sample) were

separated using the high-resolution liquid chromatography

(HRLC). The HRLC was performed on a 1000 mm60.100 mm

i.d. fused silica capillary column containing 3-mm porous (300 Å

size) C4-bonded silica particles (Sepax Technologies, Inc. Newark,

DE) with the mobile phase gradient from A (acetonitrile/H2O/

acetic acid, 10:90:0.2, v/v/v) to B (acetonitrile/isopropyl alcohol/

H2O/acetic acid/trifluoroacetic acid, 60:30:10:0.2:0.1, v/v/v/v/

v). Two HRLC separation runs were for each sample with

gradients of 14,000 and 16000 min, respectively. The HRLC-

separated components were detected using an LTQ-Orbitrap

mass spectrometer (Thermo Fisher Scientific, San Jose, CA) under

the conditions as follows: AGC targets of 16106 and 36105,

respectively, for the Fourier transform mass spectrometry (FT MS)

and FT tandem MS (MS/MS), 60K resolution for acquirement of

the spectra, 400#m/z#2000 for a survey scan followed by FT

MS/MS of the 5 most intense ions from the survey scan, 35%

normalized collision energy employed for CID-FT MS/MS, a

duration cycle of 30 s for the dynamic exclusion, 3 micro scans

selected for FT MS and MS/MS measurements of the two

HRLC-FT MS/MS analyses of each sample. The unique

sequence tags (UStags) method [13] was used to process the FT

MS/MS data using the ICR2LS developed in-house (http://ncrr.

pnl.gov/software/), and only unique sequences from the IPI

human sequence database (ipi.HUMAN.v3.39 downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/IPI/) were used for identifica-

tion of the peptidome peptides. The identification false rate was

estimated using a decoy dataset that was constructed by reversing

each protein sequence in the human sequence database; no

random hits were obtained using the UStags as the identification

criteria. The identification of disulfide bond-containing peptides

was completed with the method reported elsewhere [40]. The

protein annotations and information from EBI (http://www.ebi.

ac.uk/) and Swiss-Prot (http://ca.expasy.org) were used to

describe the proteins (substrates) identified in this work.

Quantitation of peptidome peptides was achieved through

extraction of the FT- measured precursors of the FT-MS/MS

Spectra. ICR2LS was used to deisotope high-resolution spectra

and produce lists of neutral masses for both precursor MS and

MS/MS spectra. Functions were built specifically for this study to

isolate MS spectra only and merge re-enumerated spectra to form

a single continuous dataset. ICR2LS was also used to assign

absolute intensity (abundance) values for the deisotoped masses

Figure 5. Selective degradation of function domains of
protease systems observed for the tested BCP. (A) For Plm-a2-
AP system, Plg degrades on its preactivation peptide; while a2-AP on
the inhibitory function bonds. (B) For FII-AT system, FII degrades on its
heavy chain, not on its proteolytic function domain; while AT degrades
on its inhibitory function bonds to prevent formation of thrombin-
antithrombin (TAT) complex. The red lines along the sequences
represent the peptidome peptides solely observed from the BCP; the
differential degradation is represented by the numbers (red for the BCP
and blue for the HP) of different peptides observed.
doi:10.1371/journal.pone.0013133.g005
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using the area under the curve (peak area) as a measurement. To

compile quantitative measurement of the identified peptides, the

datasets for the two samples were processed for finding features

(unique mass classes) based on the algorithm described previously

[41]. Abundance of a feature is defined as sum of the individual

spectrum abundances and log10 of this value is used as the

abundance value without any further processing or normalization.

Several heuristics principles were used for reducing quantitation

information to unique peptide forms for presentation. In many

reported cases multiple charge states for the detected features were

observed, and the abundant, identical charge states were reported

for those having the same abundance ratio between the various

charge state distributions. In a few cases where the abundance

ratio was not preserved for the different charge state distributions,

manual inspection and correction of abundance value were

applied and indicated in the data list (Table S2). The quantitative

data include following two categories: 1) peptides were identified

by the FT MS/MS-UStags for both the BCP and HP samples and

2) peptides were identified for either the BCP or HP sample. For

situation 2, the unique mass classes between the two samples were

matched according to the FT MS measured masses (5 ppm error

tolerance) and the HRLC elution time (10% variance tolerance).

When the peptides identified from one sample were not matched

to species from the other sample, the species were declared not

found in the other sample. The not-found species were assigned to

have the abundance values of the background intensity scaled for

summing over the features based on the same condition as the

identified peptides correspondingly.

Figure 6. Selective degradation of ITI HC1-3 observed for the tested BCP. (A) The peptidome peptides were observed solely from the HC1
main chain, not from the two propeptides (blank-filled ovals). (B) The peptidome peptides were observed dominantly from the HC2 main chain,
except for one (not labeled) from the propeptide (black color-filled oval). (C) The peptidome peptides were observed solely from the HC3 main chain,
not from the two propeptides (blank-filled ovals).
doi:10.1371/journal.pone.0013133.g006

Breast Cancer Degradomic View
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Figure 7. Degradation of complement system convertases observed for the tested BCP. (A) For C3, the degradation was solely on the C3d,
C3g, C3a91 and C3b (black color-filled ovals), not on the other fragments (blank-filled ovals); the C3 sequence domains are colored for comparison of
the domains observed with degradation. (B) For C4, the degradation was solely on the C4b and C4b (black color-filled ovals), not on the other
fragments (blank-filled ovals); the degradation of the front portion of the C4b fragment was observed solely for the tested BCP. (C) For complement
factor B, the degradation was solely on the complement factor Ba and Bb (black color-filled ovals), not on the other fragments (blank-filled ovals). The
red, blue, and black lines along the amino acid sequences represent the peptidome peptides identified solely from the tested BCP, HP, and both the
BCP and HP, respectively.
doi:10.1371/journal.pone.0013133.g007

Breast Cancer Degradomic View
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Proteomic analysis
Conventional bottom-up approach was used for proteomic

analysis of the BCP and HP plasma samples. The samples were

depleted using the same procedure as used for preparation of the

peptidomic samples. The IgY12 flow-through proteins were

denatured and reduced in 50 mM ammonium bicarbonate buffer

(pH 8.2), 8 M urea, 10 mM dithiothreitol for 1 h at 37uC,

followed by alkylation in 40 mM iodoacetamide for 1 h at room

temperature in the dark. The resultant protein mixtures were

diluted 10 fold with 50 mM ammonium bicarbonate buffer

(pH 8.2), and then sequencing grade modified porcine trypsin

(Promega, Madison, WI) was added at a trypsin:protein ratio of

1:50 (w/w). The samples were incubated overnight at 37uC for

digestion. The tryptic digest samples were loaded on a 1-mL SPE

C18 column (Sigma, St. Louis, MO) and cleaned with 4 mL of

0.1% trifluoroacetic acid/5% acetonitrile. The peptides were

eluted from the SPE column with 1 mL of 0.1% trifluoroacetic

acid/80% acetonitrile and lyophilized. The peptide samples were

stored at 280uC for analysis.

The 300 mg of the prepared two tryptic digestion samples were

individually reconstituted with 300 mL of 10 mM ammonium

formate (pH 3.0)/25% acetonitrile and fractionated by strong

cation exchange (SCX) chromatography on a Polysulfoethyl A

200 mm62.1 mm column (PolyLC, Columbia, MD) that was

preceded by a 10 mm62.1 mm guard column. The separations

were performed on an Agilent 1100 series HPLC system (Agilent,

Palo Alto, CA) at a flow rate of 200 mL/min, and with mobile

phases that consisted of 10 mM ammonium formate (pH 3.0)/

25% acetonitrile (A) and 500 mM ammonium formate (pH 6.8)/

25% acetonitrile (B). After loading 300 mL of each sample

separately onto the column, the gradient was maintained at

100% A for 10 min. The peptides were separated using a gradient

from 0 to 50% B over 40 min, 50–100% B over 10 min, and then

held at 100% B for 10 min. A total of 30 fractions were collected

for each sample, and each fraction was dried under vacuum. The

fractions for each sample were dissolved in 30 mL of 25 mM

NH4HCO3, and 5 mL was used for the capillary LC-MS/MS

analyses.

Peptides LC-MS/MS analyses were carried out using a custom-

built automated capillary LC system coupled online to an LTQ

mass spectrometer (Thermo Scientific) via a nanoelectrospray

ionization interface manufactured in-house. The LC separations

were performed on 650 mm60.075 mm capillary columns

containing 3-mm Jupiter C18 bonded particles (Phenomenex,

Terrence, CA). The 5 mL of each SCX fraction was loaded onto

the column, and the mobile phase was held at 100% A (0.1%

formic acid) for 20 min, followed by a gradient from 0 to 70%

buffer B (0.1% formic acid in 90% acetonitrile) over 85 min with a

flow rate ,500 nL/min. Each full MS scan (m/z 400–2000) was

followed by collision-induced MS/MS scans (normalized collision

energy setting of 35%) for the 10 most abundant ions. The

dynamic exclusion duration was set to 1 min, the heated capillary

was maintained at 200uC, and the ESI voltage was held at 2.2 kV.

The LC-MS/MS raw data were converted into .dta files using

Extract_MSn (version 3.0) in Bioworks Cluster 3.2 (Thermo

Scientific), and the SEQUEST algorithm (version 27, revision 12)

was used to independently search all the MS/MS spectra against

the IPI database (version 3.39, released February 2008) with

dynamic oxidation on methionine residues and static alkylation on

cysteine residues. The false discovery rate (FDR) was estimated

based on the reported decoy-database searching methodology

[42], and filtering criteria were applied to limit the FDR at the

peptide level to ,1% as follows: for charge state +1 peptides,

Xcorr .1.5 and DCn.0.05 for fully tryptic peptides and Xcorr

.2.5 and DCn .0.16, or Xcorr .3.0 and DCn .0.10, or Xcorr

.3.3 and DCn .0.05 for partially tryptic peptides; for charge

state +2 peptides, Xcorr .1.5 and DCn .0.16, or Xcorr .1.7

and DCn .0.10, or Xcorr .2.2 and DCn .0.05 for fully tryptic

Figure 8. Degradation of complement system MAC key components observed for the tested BCP. (A) For C8, the degradation was solely
on the C8a (black color-filled ovals), not on the other fragments (blank-filled ovals). (B) For C9, the degradation was solely on the C9a (black color-
filled ovals), not on the other fragments (blank-filled ovals). The red, blue, and black lines along the amino acid sequences have the same significances
as for Figure 7.
doi:10.1371/journal.pone.0013133.g008
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peptides and Xcorr .4.1 and DCn .0.16 or Xcorr .4.3 and

DCn .0.05 for partially tryptic peptides; for charge state +3

peptides, Xcorr .1.5 and DCn .0.16, or Xcorr .1.8 and DCn

.0.10, or Xcorr .2.9 and DCn .0.05 for fully tryptic peptides

and Xcorr .4.8 and DCn .0.16 or Xcorr .5.1 and DCn .0.05

for partially tryptic peptides. Identified proteins were grouped to a

nonredundant protein list using ProteinProphet [43] software,

after which one protein IPI number was randomly selected to

represent each corresponding protein group that consisted of a

number of database entries.

The identification details for each proteomic and peptidomic

peptides were given in Data S1, and all spectra collected for the

degradomic and proteomic analyses are accessible at http://www.

ebi.ac.uk/pride/init.do.

Supplementary materials are included with this manuscript.
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Supporting Information

Table S1 The proteome tryptic peptides identified from the

pooled breast cancer patients (BCP) and control healthy persons

(HP) blood plasma samples.

Found at: doi:10.1371/journal.pone.0013133.s001 (9.08 MB

DOC)

Figure 9. The differential degradation of other protein substrates observed for the tested BCP. (A) Pigment epithelium-derived factor;
specific truncates from the N-terminal direction exist solely to produce the multiple BCP peptidome peptides. (B) Gelsolin; the sequence zone in the
middle of the substrate sequences specifically produce the multiple BCP peptidome peptides. (C) Ceruloplasmin; the sequence zone toward the
substrate C terminus specifically generated the multiple BCP peptidome peptides. (D) ApoA-IV; the cleavage P1-Leu, P1-Tyr, and Lys (labeled in the
figure) specifically for the BCP exist to produce the multiple BCP peptidome peptides. The red, blue, and black lines along the amino acid sequences
have the same significances as for Figure 7.
doi:10.1371/journal.pone.0013133.g009
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Table S2 The peptidome peptides identified from the pooled

breast cancer patients (BCP) and control healthy persons (HP)

blood plasma samples.

Found at: doi:10.1371/journal.pone.0013133.s002 (0.95 MB

DOC)

Table S3 The MMPs identified from the pooled breast cancer

patients (BCP) and control healthy persons (HP) blood plasma

proteomic samples.

Found at: doi:10.1371/journal.pone.0013133.s003 (0.06 MB

DOC)

Figure S1 The HC1-3 composed of protein complexes IaI, PaI

and IaIL that function to stabilize the ECM. The red and blue

numbers represent the different peptidome peptides observed for

the BCP and the control HP, respectively.

Found at: doi:10.1371/journal.pone.0013133.s004 (0.06 MB

DOC)

Figure S2 The selective degradation of the BCP complement

system convertases and MAC components would lead to the

system dysfunction. The key convertases C3b, C4b, and factor B

and MAC components C8 and C9 in the complement system that

limits tumor growth are differentially degraded on their function

domains for the BCP; the grey arrows represent the activation

routes to be limited due to the excessive degradation [1]. The red

and blue numbers represent the different peptides observed for the

BCP and the control HP, respectively. 1 Markiewski MM,

Lambris JD (2009) Is complement good or bad for cancer

patients? A new perspective on an old dilemma. Trends Immun

30: 286–292.

Found at: doi:10.1371/journal.pone.0013133.s005 (0.23 MB

DOC)

Figure S3 The BCP and the control HP peptidome peptide

molecular weight distributions. The BCP and HP peptidomes

were isolated with use of size exclusion chromatography.

Found at: doi:10.1371/journal.pone.0013133.s006 (0.08 MB

DOC)

Data S1

Found at: doi:10.1371/journal.pone.0013133.s007 (1.36 MB

XLSX)
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