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Abstract

One of the applications of Molecular Dynamics (MD) simulations is to explore the energetic barriers to mechanical unfolding
of proteins such as occurs in response to the mechanical pulling of single molecules in Atomic Force Microscopy (AFM)
experiments. Although Steered Molecular Dynamics simulations have provided microscopic details of the unfolding process
during the pulling, the simulated forces required for unfolding are typically far in excess of the measured values. To rectify
this, we have developed the Pulsed Unconstrained Fluctuating Forces (PUFF) method, which induces constant-momentum
motions by applying forces directly to the instantaneous velocity of selected atoms in a protein system. The driving forces
are applied in pulses, which allows the system to relax between pulses, resulting in more accurate unfolding force
estimations than in previous methods. In the cases of titin, ubiquitin and e2lip3, the PUFF trajectories produce force
fluctuations that agree quantitatively with AFM experiments. Another useful property of PUFF is that simulations get
trapped if the target momentum is too low, simplifying the discovery and analysis of unfolding intermediates.
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Introduction

Many crucial biological processes occur through large confor-

mational changes in proteins, such as the unfolding of titin in the

muscle sarcomere. The ability to model mechanical forces in such

processes provides an understanding of how large conformational

changes occur in microscopic detail. Although Molecular

Dynamics (MD) simulations are generally accepted to accurately

model protein dynamics [1], commonly available hardware can

only simulate systems for hundreds of nanoseconds (although a few

microsecond simulations have been reported [2,3]. Unfortunately,

many important biological processes, especially those accompa-

nied by large conformational changes, take place on timescales of

milliseconds to seconds. In order to see such large conformational

changes, various techniques have been used to augment MD with

improved sampling methods, such as replica-exchange [4], and

methods that directly induce conformational change.

There are two broad cases used in directly inducing conforma-

tion change in MD. When a reaction pathway (typically starting

and ending states) has already been determined, Targeted MD, or

umbrella sampling, uses harmonic restraints to sample pre-defined

intermediate conformations along the pathway [5]. In cases where

only a starting conformation is known, several different types of

force-inducing protocols have been used to generate pathways

from a starting conformation. RMSD potentials can be used to

generate low energy pathways away from the starting state by

using increasing RMSD as a driving force [6–8]. In processes such

as the unfolding of titin by mechanical stress, where there is an

obvious force to be applied to the starting conformation, Steered

MD can generate new trajectories by setting pre-defined moving

harmonic distance restraints to force the system away from the

starting configuration along a defined vector [9]. Steered MD has

been used to explore systems such as the rotation of the gamma-

subunit of ATPase [10–11], and the unfolding of fibronectin [12].

Recent developments in Atomic Force Microscopy (AFM) have

provided quantitative experiments that measure the response of

single molecules to pulling forces applied to defined sites within the

molecule. One very well studied system is the I27 domain of titin, an

immunoglobin domain. In the constant-velocity AFM pulling

experiments of I27, unfolding forces of 150–300 pN were measured

at a pulling velocity of 1028 Å/ps [13]. The average unfolding force

was found to be dependent on the pulling velocity over a range of

10210–1027 Å/ps [14]. In another study, force-clamp AFM

experiments found a peak unfolding force of 180 pN [15], which

provides a good single value for the unfolding force. Other

experiments have identified an unfolding intermediate that occurs

at forces of 60–150 pN, with an averaged Fintermediate = 100 pN, and

an extension of ,10 Å [16–17][15].

The AFM experiments of I27 provide a comprehensive set of data

to compare with simulation. In order to explore the mechanical

pulling of I27 on the microscopic level, Steered MD simulations

induce a constant-velocity motion by applying moving harmonic

restraints to defined atoms or groups within the protein [18,19].

However, given the practical limitations of simulation timescales,
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Steered MD studies are typically performed at pulling velocities of

,1 Å/ps which is typically 108 orders of magnitude greater than used

in the experimental AFM studies. Although such studies were useful

for revealing atomic-level details involved in the unfolding of titin, the

forces generated by the harmonic springs in Steered MD (,1000 pN)

were far in excess of the 180 pN measured in the AFM experiments.

In order to overcome the problem of generating forces with

harmonic restraints, we have developed a force-inducing protocol

that is conceptually different than Steered MD. This protocol,

which we call Pulsed Unconstrained Fluctuating Forces (PUFF),

generates force pulses that directly control the instantaneous

velocity of defined locations within the protein and then allows

them to relax. In PUFF, forces are applied directly to the

instantaneous velocities of atoms, without the need for intermediate

harmonic restraints. This results in direct control of the magnitude

of the applied forces. If the restrained groups are moving too fast,

PUFF will slow them down and vice versa, thus damping velocity

fluctuations. As the PUFF forces are applied intermittently, the

system is allowed to respond to or resist the applied forces. One

interesting consequence is that the system can get trapped, which

provides an easy way to identify unfolding intermediates and the

critical forces that are needed to induce conformational change.

The use of pulses was first developed in a protocol that generates

local perturbations in proteins using sidechain rotamers [20].

Using the PUFF protocol on the I27 domain of titin, we show

that it is possible to generate unfolding trajectories with unfolding

forces that compare well with the AFM measurements and that are

much lower than those deduced from standard simulations. We

further show that PUFF quantitatively accounts for the measured

differences in critical forces when using different pulling

geometries in both e2lip3 [21] and ubiquitin [22].

Results

Applying PUFF to the unfolding of titin
We first use PUFF to explore the mechanical unfolding of the

titin I27 domain. As in the AFM experiment (Figure 1A), the N-

and C-terminal residues are pulled apart, except here, a constant

momentum restraint is used to achieve a desired separation

velocity (Vtarget). The run is broken into 100 fs pulses and at the

beginning of each pulse, PUFF applies a force by setting the

instantaneous velocity of the atoms in the N terminal residue to

Figure 1. Trajectories of pulling the I27 domain of titin with constant-momentum. (A) Schematic of I27 for target pulling [1TIT]. The key
interactions for the unfolding intermediate are the hydrogen bonds (blue) between b-strand-A’ and b-strand-B, and between b-strand-A and b-
strand-G. In the pulling experiments and simulations, the anchor points for the pulling are the N and C terminii (red). (B) The trajectory for a target
velocity of 6.0 Å/ps shows constant velocity motion with a fitted slope of 5.9 Å/ps. (C) The pre-pulse velocities fluctuate around 4.1 Å/ps except for
the early part of the trajectory where the velocities is close to zero. (D) The applied forces derived from the change in velocities from the pre-pulse
velocities to the target velocity (dark blue). As the forces fluctuate ,150 pN, to find the general shape of the curve (light blue), a low-pass FFT filter
was used to filter out the fluctuations. The fitted curve has a maximum of 280 pN near the beginning of the trajectory before dropping down to
,20 pN. In the second column are the results for the trajectory with a target velocity of 1.00 Å/ps. (E) The system is effectively trapped as the
distance between the anchor points do not change. (F) The pre-pulse velocities are negative 20.7 Å/ps, due to the reflection against the free-energy
barrier. (G) The applied forces. The fitted curve has a maximum of 93 pN that is maintained throughout the simulation.
doi:10.1371/journal.pone.0013068.g001
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20.5 Vtarget and the atoms in the C terminal residue to +0.5

Vtarget. The exact applied force is defined by the change in velocity

needed to bring the pre-pulse velocity to the target velocity Vtarget

(see Methods). As the velocity is reset to Vtarget at the beginning of

each pulse, the momentum is effectively fixed at the beginning of

each pulse, which caps the amount of force applied. Thus the

Vtarget defines a constant momentum. In the next section, the

relationship between the target velocity Vtarget and the maximal

applied force will be derived.

Pulling with Vtarget = 6.0 Å/ps unfolds the I27 domain without any

significant barriers even in a quite short 50 ps simulation. As

measured by the distance between the center of masses of the two

anchor groups, the two terminii are observed to separate at an

approximately constant velocity (slope = 5.9 Å/ps, Figure 1B). As this

is close to the target velocity of 6.0 Å/ps, the motion does not suffer

any great impedance. At the end of the simulation at 50 ps, the

protein I27 is fully extended with an end-to-end distance of ,300 Å.

To examine how the instantaneous velocities evolve over time,

the velocities at the end of one relaxation period and just before

the application of the force at the beginning of the next pulse are

shown in Figure 1C. Pre-pulse velocities significantly lower than

the target velocity of +6.0 Å/ps indicate that the system has

resisted the application of force in the last pulse. In this case, the

system resists the force in the first 5 ps, as the pre-pulse velocities

dip to zero, but after 10 ps, there is little resistance as the pre-pulse

velocities rise to an average of ,5 Å/ps. As the force is applied at

the instant between pulses, the force is equal to the change in

momentum, which is mass times the difference between the pre-

pulse velocitiy and the target velocity (Figure 1D). There is a burst

of force with a maximum of 280 pN in the first 5 ps, after which,

much smaller forces are needed to maintain the motion defined by

the target velocity of +6.0 Å/ps.

In a second example, the I27 domain is pulled with a constant-

momentum at a target velocity of Vtarget = 1.0 Å/ps. At this target

velocity the protein is trapped in the folded state and the end-to-end

distance remains at a constant 50 Å throughout the simulation

(Figure 1E). The pre-pulse velocity has an average negative value of -

0.7 Å/ps (Figure 1F), representing a strong restoring force that evolves

counter to the applied pulse during the relaxation period. As the

velocity is set to the target velocity at the next instant, which is the

beginning of the next pulse, the pre-pulse and target velocities represent

the instantaneous velocities at the boundaries of a given pulse. During

an average pulse, the velocity fluctuates between 1.0 Å/ps and

20.70 Å/ps, and the protein moves back-and-forth over a short

distance. A simple estimate for this distance is Vmax6Tpulse = 1.0 Å/

ps6100 fs = 0.1 Å. The force-time curve (Figure 1G), shows that the

average force is ,90 pN indicating that at a target velocity of 1.0 Å/ps,

the ,90 pN generated at the beginning of a pulse, is insufficient to

break the I27 domain out of the folded minimum. Since the protein is

trapped, the maximum amount of force is generated at every pulse,

which is continually being resisted.

In the analysis of PUFF forces, it can thus be seen that an

average negative pre-pulse velocity indicates that the system is

resisting the applied force to remain in the folded state.

Comparing the two trajectories, it is apparent that the minimum

force required to break out of the folded state lies somewhere

between 90 pN and 280 pN.

The critical velocity defines a range of unfolding forces in
titin

Given that applying constant-momentum PUFF to the I27

domain produces a different response at different target velocities,

the system can be characterized by performing simulations over a

range of target velocities (Figure 2A). There are four regimes of

Figure 2. Analysis of the response of I27 to constant-
momentum pulling over a range of target velocities. (A) In the
distance response curves, the points along each column represents the
distance evolution of the trajectory for a given target velocity. If the last
point approaches the gray dotted line, the protein is unfolding at the
target velocity rate. Otherwise the protein is trapped by an unfolding
barrier. (B) In the velocity response curves the averaged pre-pulse
velocity is plotted for each trajectory. Negative values means the
protein is trapped in an intermediate or is completely extended. When
the protein is unfolding without barriers, the values approaches the
positive dotted curve. (C) In the fitted force response curves, the forces
can be compared to the theoretical maximum force (2MVtarget)
indicated by the gray line. When the system is trapped or completely
extended, the maximum force is close the the theoretical maximum.
When the system is unfolding with no barriers, the maximum force
plateaus at the unfolding force of the protein.
doi:10.1371/journal.pone.0013068.g002
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response. In the saturated velocity range Vtarget.8.0 Å/ps, the

protein I27 has completely unfolded to the fully extended state

within 50 ps. In the constant momentum range, 2.6 Å/

ps,Vtarget,8.0 Å/ps, the protein is unfolding near the target

velocity rate. In the intermittent range, 1.4 Å/ps,Vtarget,2.6 Å/

ps, the protein is just beginning to unfold, but not at the full rate,

and there is a range in which the protein fails to unfold.

We can derive a relationship between the target velocity and the

maximum force, when the unfolding is impeded, i.e. for

simulations where Vtarget,2.6 Å/ps. In these simulations, the

average pre-pulse velocities are negative, with a magnitude almost

equivalent to the target velocity (Figure 2B). This is indicative of

the system reflecting away from the edge of a potential well, where

a positive force is needed to be continuously applied to bring the

system to the target velocity (Figure 2C). To a good approximation

then, the velocities fluctuate between 6Vtarget. When the system is

at -Vtarget the change in momentum required to bring the system

back to +Vtarget, is DP = M DV = M (+Vtarget - -Vtarget) = 2 M

Vtarget . Since this an instantaneous event, the change in

momentum is equivalent to the applied force Fmax = 2 M Vtarget.

This relationship should hold for target velocities where the

unfolding is impeded such as the case of Vtarget = 1.0 Å/ps

(Figure 1E–G). The averaged pre-pulse velocities is 20.7 Å/ps,

which has a magnitude close to the target velocity of 1.0 Å/ps.

From the equation, the theoretical maximum force is Fmax = 2 M

Vtarget = 82 pN. This compares well with the Fmax = 92 pN

deduced from the force-time curve (Figure 1G). For another

comparison, the theoretical curve for maximum force F = 2 M

Vtarget is plotted against the maximum force found in the

simulations for a range of target pulling velocities (Figure 2C).

For Vtarget,2.6 Å, the simulated values lie on the theoretical

curve. At greater target velocities, the simulated values veer off the

theoretical curve, as at these velocities, the protein unfolds without

impedance. In the saturated range, Vtarget.8.0 Å, the protein is

completely unfolded and resists the pulling. Therefore the

simulated values rises back up to the theoretical curve.

The critical force required to unfold the protein without barriers

can be derived by an analysis of these simulations. This is defined

by the critical velocity between the intermittent range and

constant-velocity range, giving a critical velocity of Vcritical = 2.6

›/ps. Above this target velocity, the maximum forces applied by

PUFF are consistently capable of taking the system out of the well.

Given the pulling mass of m = 224 Da = 41 pN?ps2/Å, this gives

Funfolding = 213 pN, which is in excellent agreement with the

measured value of 180 pN [15]. Another estimate for the critical

force (218 pN) can be deduced from the point on the force-

response curve (Figure 2C) where the simulated values deviates

from the theoretical curve.

The unfolding intermediate of titin in longer simulations
In the previous section, a series of short 50 ps trajectories were

analyzed. Whilst it is clear that for constant-momentum with large

target velocities, the I27 domain unfolds without barriers, it is not

clear if the behavior in the intermittent range is a consequence of

short simulations. To investigate this further, a series of PUFF

simulations were performed with target velocities less than 2.6 Å/

ps with a much longer simulation time of 500 ps (Figure 3A). From

the distance-time trace of these simulation, it can be seen that

some simulations appear to be trapped in a somewhat expanded

intermediate state (red in Figure 3A), whilst others unfold

completely (blue and green in Figure 3A). This trapped state can

be compared to an experimentally characterized unfolding

intermediate [15].

At a very small constant-momentum of Vtarget = 0.6 Å/ps, the

end-to-end distance hardly changes over 500 ps (magenta in

Figure 3A ). The maximum force found in this simulation is

Fmax = 57 pN, which is clearly insufficient to unfold the protein. In

the last snapshot of this trajectory (Figure 3B), all key backbone

hydrogen-bonds in the structure remain intact. Unlike conven-

tional MD simulations, a PUFF force with a low target velocity

actually stabilizes the folded state. In a conventional steered MD

simulation, there is always the possibility that in a long enough

time frame, a spontaneous fluctuation may unfold the protein. In a

PUFF simulation, however, if a spontaneous fluctuation imparts a

velocity much larger than 0.6 Å/ps, this will be damped

immediately at the beginning of the next pulse, when the velocity

will be set back to 0.6 Å/ps.

In a constant-momentum simulation at a slightly higher target

velocity of Vtarget = 0.8 Å/ps, the protein is trapped in an

unfolding intermediate at an extension of 10 Å (red in

Figure 3A). The last snapshot of this simulation shows that the

hydrogen bonds between b-strands A’ and B are broken resulting

in an extension of 10 Å (Figure 3C). The stability of this state for

the last 400 ps suggests that 67 pN only provides enough force to

break these hydrogen bonds. The value of 67 pN is close to the

measured value of 100 pN for the intermediate [16].

At a constant-momentum simulation with Vtarget = 1.4 Å, the

protein unfolds at the same rate as the target velocity after ,170

ps (green in Figure 3A), but at earlier times there is a region where

the protein is only slowly unfolding (marked by D, E and F in

Figure 3A). At the beginning of this slow unfolding region at 50 ps,

snapshot D (Figure 3D) shows that the protein has already reached

the intermediate state, where the hydrogen bonds of A’ and B are

broken. Subsequently all hydrogen bonds between b-strands A

and G break (Figure 3E – F), which constitutes the kinetic barrier

from the intermediate to the unfolded state. At higher target

velocities, such as Vtarget = 1.6 Å/ps (blue in Figure 3B), there is

faster progression through the kinetic barrier.

By applying relatively low forces, it has been possible to identify

an unfolding intermediate, and characterize the key structural

transitions leading to the unfolding of this intermediate. To reach

the intermediate from the folded state requires forces in the range

of 57–67 pN to break the hydrogen-bonds between b-strands A’

and B, which leads to an extension of 10 Å. Forces greater than

67 pN will break the barrier between the unfolding intermediate

and the unfolded state due to the breaking of the hydrogen-bonds

of b-strands A and G. This provides a lower bound to the kinetic

barrier.

An upper bound to the kinetic barrier is given from the previous

section, where a force of 213 pN was found to be sufficient to

unfold the protein without impedance, where the hydrogen bonds

between b-strands A and G can all be broken simultaneously.

Below this value, in the range 67–213 pN, the forces can only

break the hydrogen bonds sequentially between b-strands A and

G. This range defines the kinetic unfolding barrier where

unfolding is velocity dependent. This range of forces compares

favorably to the experimental values of 60–150 pN derived for the

folding intermediate [15]. As well, this range of forces also matches

the range of forces 50–300 pN measured in the velocity-pulling

AFM experiments [13].

The mechanical unfolding of e2lip3
A strong test for PUFF is the ability to accurately model the

differences in the unfolding forces for the same protein with

different pulling geometries. AFM experiments were conducted on

e2lip3 [21] where the pulling forces were applied between either

the N- and C-termini (N-C pulling) (Figure 4A); or between the N-

Forces in Molecular Dynamics
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terminus and a prosthetic group attached to residue 41 (N-41

pulling) (Figure 4C) . The topology of e2lip3 places the N-terminus

adjacent to the C-terminus as part of an antiparallel b-sheet,

resulting in a negligible unfolding force in the N-C pulling

experiment. By contrast, the N-41 pulling of e2lip3 results in a

pulling geometry more like the titin experiments where the pulling

forces would be parallel to a b-sheet [13]. Consequently, N-41

pulling resulted in a sharp force-extension curve with a peak at

Funfold = 18265 pN. In contrast, N-C pulling resulted in a

negligible response curve and probably falls below the force range

that can be reliably applied by AFM (,15 pN). These differences

have been explored in Steered MD simulations, where, although

the differences were qualitatively captured, the magnitude of the

simulation forces (,400 pN for N-41 pulling, and ,200 pN for

N-C pulling) were much larger than the measured forces.

We applied PUFF with the velocity analysis for both pulling

geometries of e2lip3. In the N-C pulling of e2lip3 (Figure 4A), the

PUFF simulation was able to maintain the target velocity for all target

velocities, indicating that there was only a negligible force barrier

(an upper bound is Funfold,2 M Vsmallest = 264460.4 = 35 pN)

(Figure 4B). In comparison, in the N-41 pulling (Figure 4C), there was

a critical velocity of Vcritical = 1.8 ›/ps (Figure 4D). Given a mass of

262 Da = 44 pN?ps2/Å for the anchor residues, this gives an

unfolding force of Funfold = 2 M Vcritical = 264461.8 = 158 pN,

which is close to the measured value of 18265 pN [21].

The mechanical unfolding of ubiquitin
A similar AFM pulling experiment was conducted on ubiquitin

[22], where two different pulling geometries were applied: that

between the N- and C- termini (N-C pulling) (Figure 4E); and that

between a prosthetic group attached to residue 48 and the C-

terminal (48-C pulling) (Figure 4G). The topology of ubiquitin in

terms of N-C pulling is similar to titin, resulting in a large barrier

to unfolding with a measured unfolding force of F = 203635 pN.

In the pulling with the alternate geometry of 48-C pulling, a

smaller critical force of F = 85620 pN was measured. Simulations

with Steered MD resulted in much larger forces of ,2000 pN

[22].

We applied PUFF with the velocity analysis to ubiquitin. In the

N-C pulling (Figure 4E), there was a critical velocity of Vcritical = 2.6

›/ps (Figure 4F). Given a mass of 206 Da = 34 pN?ps2/Å for the

anchor residues, this gives an unfolding force of Funfold = 2 M

Vcritical = 263462.2 = 177 pN, which is close to the measured

unfolding force of 203635 pN [21]. In the 48-C pulling (Figure 4G),

the much lower critical velocity of Vcritical = 1.6 › (Figure 4H).

Combined with the pulling mass of 202 Da = 34 pN?ps2/Å results

in a critical unfolding force of 109 pN. This also compares favorably

with the experimental value of 85620 pN.

Figure 3. Unfolding intermediates of I27 detected in long
simulations of 500 ps. (A) The evolution of the end-to-end distance
of the trajectories from the initial state. The trajectory at Vtarget = 0.6 Å/
ps (cyan trace) is trapped in the folded state. At Vtarget = 0.8 Å/ps (red
trace), the system is trapped in an unfolding intermediate. At higher

velocities (green trace, Vtarget = 1.4 Å/ps), the system works through a
kinetic barrier before unfolding without impedance. The following
snapshots show the key backbone hydrogen bonds between b-strand-
A (green sticks), b-strand-G (purple sticks) and b-strand-B (blue sticks).
(B) The last snapshot of the trapped trajectory (cyan trace,
Vtarget = 0.6 Å/ps), with hydrogen bonds intact between b-strands-A, B
– G. (C) The last snapshot from the trajectory trapped in the unfolding
intermediate (red trace, Vtarget = 0.8 Å/ps) where the hydrogen-bonds
between b-strand-A’ and B are broken. The following snapshots are
from a trajectory that unfolds through the kinetic barrier (green trace,
Vtarget = 1.4 Å/ps): (D) three hydrogen-bonds between b-strand-A and G
are broken; (E) all hydrogen bonds between b-strand-A and G are
broken; and (F) the protein can now unfold without kinetic barriers at a
constant velocity.
doi:10.1371/journal.pone.0013068.g003
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Choosing the relaxation time between pulses
The choice of relaxation time between pulses plays a crucial part in

defining the response to PUFF pulling. To study the effect of different

relaxation times, we repeated the titin pulling at 6.0 Å/ps for 5 ps with

relaxation times of 200 fs, 100 fs and 10 fs (Figure 5). At large relaxation

times (200 fs; Figure 5A – B), the protein is effectively trapped as the

system remains trapped in a minimum that is much deeper that the

supplied force. Smaller relaxation times (4 fs; Figure 5E – F) actually

reduces the fluctuation in the system At this relaxation time, the system

has not yet relaxed sufficiently by the next pulse and PUFF only needs

to generate a small force to maintain the system at the desired velocity.

Thus, to observe natural fluctuations in PUFF, a certain amount

of relaxation time is necessary. A good amount of fluctuation

corresponds to a trajectory where the pre-pulse velocities oscillate

between positive and negative values, as the simulation explores the

full extent of a local minimum. In such a situation, the force

calculated by PUFF can characterize the extent of the energy well.

Heuristically, we have found that a value of 100 fs (Figure 5C – D)

generates trajectories where the velocities oscillate between positive

and negative values. Longer relaxation times may have to be used in

larger systems to allow this characteristic oscillation in velocities.

Discussion

Although MD simulations are beginning to breach the one

microsecond barrier, there is still a long way to go before large-

Figure 4. The constant-momentum simulations for the different pulling geometries of e2lip3 and ubiquitin. The pulling geometries are
(A,B) N-C pulling in e2lip3, (C,D) N-41 pulling in e2lip3, (E,F) N-C pulling in ubiquitin, and (G,H) 48-C pulling in ubiquitin. The left column shows the
schematic whilst the right column shows the distance-response curve as explained in the captions for Figure 2(A). By identifying where the major
drop-off in distance response occurs, we can identify the critical target velocity, from which we can derive a critical unfolding force.
doi:10.1371/journal.pone.0013068.g004
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scale conformational changes can be directly observed. In the

meantime, there remains a need for techniques that apply external

forces to explore conformational changes in a practical amount of

time. Here, the focus is on systems where proteins are

mechanically pulled to induce unfolding. Such systems have been

explored by AFM experiments, which provide detailed force

measurements that constitute a rigorous test of the accuracy of any

computational force-generating methodology.

In the previous literature, most of the focus has been on constant-

velocity AFM pulling experiments, which generate a characteristic

saw-tooth force profile over the extension of the protein [13–14].

Sufficiently slow pulling velocities (,1028 Å/ps) are used to allow

accurate closed-loop control. A linear relationship has been

observed between the maximum force and the pulling velocity

over a range of pulling velocities. More recently, force-clamp AFM

experiments have provided an alternative view of the unfolding

force profile [15]. In force-clamp AFM experiments, constant forces

are generated. For certain range of forces, the protein unfolds to a

specific end-to-end distance, corresponding to different stages of

unfolding. The force-clamp forces provide a different characteriza-

tion of the unfolding landscape of titin.

Steered MD simulations have been used to explore constant-

velocity motions where pulling velocities (1 Å/ps) 108 much faster

than the AFM experiments are used to generate sufficient motion

within a reasonable timescale (less than a nanosecond). Although

Steered MD simulations have reproduced the linear dependency

between forces and pulling velocities, the simulated force fluctua-

tions were much larger than expected from the AFM experiments.

This has been found using both implicit [21] and explicit solvent

[18]. As such the discrepancy cannot be attributed to hydrogen

bonding with explicit solvent. The most likely source is the elasticity

of the harmonic springs used to generate the forces in Steered MD.

In contrast, the PUFF methodology generates forces directly

without the need of harmonic springs. Although both PUFF and

Steered MD simulations are parameterized by a target velocity,

the target velocity in PUFF is conceptually different to the target

velocity in Steered MD. In Steered MD, once the harmonic spring

restraints are set to the target velocity, the instantaneous velocities

are allowed to fluctuate wildly, whilst the overall velocity, averaged

over a time-scale larger than the response of the harmonic spring,

is maintained to a fixed value. In contrast, in a PUFF simulation, it

is the instantaneous velocity that is fixed at the beginning of every

pulse, which constrains the instantaneous momentum. If the

applied momentum is insufficient to break out of a local minimum,

then the protein gets trapped.

In PUFF simulations, then, the forces are capped, which can

retard the overall motion, whilst in Steered MD, forces can

fluctuate wildly, but the overall motion is fixed. Conceptually

then, the PUFF simulations are closer to the force-clamp AFM

experiments, which measure a range of static forces for different

levels of unfolding. Simply by noting whether a PUFF simulation

unfolds at the target velocity or at an impeded rate or not all, we

can calculate a corresponding range of forces, where the range of

forces from PUFF agree well with the force-clamp AFM

experiments for titin. As PUFF does not model the kinetics of

unfolding at a fixed velocity, it is not expected to model the

relationship between force and pulling velocity found in

constant-velocity AFM experiments. However, for purposes of

comparison with other proteins, we assume that the force

measured in constant-velocity AFM experiments falls near the

value where the protein unfolds without impedance in the PUFF

simulations. As such, the PUFF simulations produce values that

agree well with the AFM pulling experiments of e2lip3, and

ubiquitin.

Figure 5. The effect of different relaxation times on trajectories of titin pulled at 6.0 Å/ps for 10 ps. The first row shows a trajectory with
a large relaxation time of 200 fs, with plots of (A) the pre-pulse velocities and (B) the force response. The pulses here are applied so infrequently that
the system cannot escape out of the folded state, indicated by the negative pre-pulse velocities. The second row corresponds to the default
relaxation time of 100 fs, with (C) pre-pulse velocities that oscillates around zero before rising to the target velocity of 6.0 Å/ps, and (D) forces rising
to a peak and then falling. The third row corresponds to a small relaxation time 10 fs, where (E) the target velocity is easily maintained with small
fluctuations, and the system is never allowed to relax to negative values, which corresponds to (F) a very small force response.
doi:10.1371/journal.pone.0013068.g005
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Another advantage of PUFF is that the relaxation period after

the pulse allows the protein to respond to the applied forces in

qualitatively different ways. We can use the trajectories where the

I27 domain is trapped to identify unfolding intermediates and

reproduce the range of forces that determines the unfolding

intermediate. In previous Steered MD simulations, the I27

unfolding intermediate was also identified using constant-force

pulling restraints [16]. However, such constant-force restraints in

Steered MD can only be used to study intermediates at small

extensions because for larger motions, it is difficult to rationalize

the stability of the constant-force restraints. Instead, constant-

velocity restraints must be used for large motions in Steered MD,

but they result in highly inaccurate force values [18,19]. In

contrast, with PUFF simulations, the same type of constant-

momentum simulation can be used to identify both folding

intermediates and critical unfolding forces. Given the varied

response with the same type of simulation, we can extend PUFF to

study protein deformations where there is a differential response of

the protein to the applied force. Indeed, we have already been able

to generate such differential conformational responses using local

rotational forces [20].

The tradeoff in PUFF is in the overhead of implementing the

protocol within standard MD packages. In PUFF, the simulations

are performed in pulses outside the MD simulations, which require

PYTHON scripts to make calculations between each MD run of

the pulses. However, this allows the PUFF technique to be easily

ported to other MD packages. As well, it becomes much easier to

implement other more complex forces (we are currently exploring

domain-domain interactions).

Currently, PUFF is implemented in AMBER using a GB/SA

implicit solvent potential. As the implicit potential used in PUFF is

able to derive realistic force values, this suggests that the main

component of the force barrier are the internal hydrogen bonds.

However, the derivation of the complete free-energy profile

requires the accurate modeling of kinetics, especially the role of

explicit waters. In previous Steered MD studies of the unfolding of

titin, it was that found that hydrogen bonding with explicit solvent

waters plays a key role in defining the kinetics [23–24]. In

particular a reasonable estimate of the unfolding barrier was

derived from the first mean passage times. It would thus be useful

to extend the PUFF simulations to include explicit solvent.

Nevertheless, Steered MD consistently overestimate force fluctu-

ations due to the harmonic springs. To explore other thermody-

namic parameters such as the work function, trajectories with

better force values will be needed. By removing the dependency on

harmonic springs, the adaptive forces of PUFF can generate

trajectories with less force fluctuations at faster velocities and

shorter simulation times.

Methods

The MD simulations are performed by the AMBER package.

The AMBER96 force-field was used with the GB/SA implicit

solvent. The proteins were pre-equilibrated to 300 K for 100 ps

using a Langevin thermometer with a friction coefficient of

c= 5 s21.

The pulses were carried out by performing constant energy MD

simulations of 100 fs with a time-step of 1 fs. Between each pulse,

the simulations are stopped, where the coordinates and velocities

are read from the restart files by PYTHON scripts. The velocities

in the system are first scaled to 300 K. Then modified velocities

are generated and applied to the system. The new system are

written to new restart files. The simulations are restarted for the

next 100 fs pulse. The modified velocities represents the applied

forces. One of the features of PYTHON is that it allows the use of

dynamic and functional programming techniques that makes it

quite easy to implement forces in PYTHON. The library for the

PYTHON code implementing the PUFF protocol can be

downloaded from http://boscoh.com/puff.

To generate repeats of the pulling simulations, starting

conformations were taken from different points of the 100 ps

equilibration: the 100, the 90, 80, 70 and 60 ps conformations.

The simulations are defined by a target velocity Vtarget. At the

beginning of the simulations, two sets of residues (group1 and

group2) are chosen to be the anchor points of the pulling. Between

each pulse, the axis direction between the center of mass of group1

and group2 is first calculated as N12 (vectors are in bold). Then the

velocity of the center mass of both groups are calculated as V1 and

V2. From the relative velocities of group2 from group1 V12 = V2 -

V1, the relative velocity is defined along the axis V12,axis. We can

then extract the magnitude V12,axis.

To force the system to move at a given target velocity Vtarget, the

change in velocity is DV = Vtarget - V12,axis. Since the force is

applied at an instant between pulses, time intervals are not

necessary, and the acceleration vector is set to A =DV6N12 in the

direction of the axis between the center of mass N12. Since we

want the motion to be equal and opposite we apply 0.56A to every

atom in group 2, and 20.56A to the atoms in group1. The force is

calculated as F = M6A where M is the mass of group1 and

group2.
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