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Abstract

The Set2-Rpd3S pathway is important for the control of transcription memory. Mutation of components of this pathway
results in cryptic transcription initiation within the coding region of approximately 30% of yeast genes. Specifically, deletion
of the Set2 histone methyltransferase or Rco1, a component of the Rpd3S histone deacetylase complex leads to
hyperacetylation of certain open reading frames (ORFs). We used this mutant as a system to study the role of histone
modifications and co-activator recruitment in preinitiation complex (PIC) formation. Specifically, we looked at the
dependence of promoters on the bromodomain-containing RSC complex and the Bdf1 protein. We found that the
dependence of cryptic promoters for these proteins varied. Overall, our data indicate that cryptic promoters are
independently regulated, and their activation is dependent on factors that govern gene activation at canonical promoters.
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Introduction

Transcription by RNA polymerase II (Pol II) is a complex

process that requires co-ordination of many factors, including

chromatin modifying and remodeling enzymes, in order to

elongate through the nucleosome barrier (reviewed in [1,2,3,4]).

Following transcription elongation, nucleosome deacetylation is

important to prevent spurious transcription initiation within the

open reading frame (ORF) [5,6,7]. The Set2-Rpd3S pathway

mediates this process. The Set2 histone methyltransferase is

associated with elongating Pol II [8,9,10]. It is responsible for the

deposition of histone H3 lysine 36 trimethylation (H3 K36me3), a

histone mark then recognized by the Rpd3S histone deacetylase

complex, which subsequently erases histone acetylation in the

ORF. This system is important for maintenance of genome

integrity since mutations in components of the Set2-Rpd3S

pathway lead to hyperacetylation and the production of cryptic

transcripts within the ORFs of approximately 30% of yeast genes

[11,12].

While it is well known that mutation of components of the Set2-

Rpd3S pathway produce cryptic transcripts, co-activators that

affect transcription from cryptic promoters have not been well

characterized. Cryptic transcripts initiate from the same position

within the gene, but their levels vary depending on the mutant

strain or growth conditions [13], which suggests that there are

multiple mechanisms involved in cryptic promoter initiation. It

remains largely unknown, however, if transcription is initiated

from cryptic promoters in a manner similar to transcription

initiation from the full length, or canonical gene promoter.

Bromodomain-containing proteins interact with acetylated

histone tails and therefore are associated with initiation of

transcription from active, acetylated promoters (Reviewed in

[1,2,14]). Since the ORFs of genes that produce cryptic transcripts

contain hyperacetylated histones [5,6,7,11], bromodomain-con-

taining proteins may be required for early transcription initiation

from cryptic promoters.

Remodels Structure of Chromatin (RSC), is an essential ATP-

dependent chromatin remodeling complex [15,16,17] that plays

an important role in cellular processes such as chromosomal

segregation, DNA repair, and transcription activation

[18,19,20,21,22,23,24,25,26,27,28]. Subunits of the Saccharomyces

cerevisiae RSC complex contain multiple bromodomains, which

recognize acetyl lysine residues on histones and other proteins. For

instance, the N-terminus of the Rsc4 subunit contains tandem

bromodomains, one of which participates in binding acetylated

Histone H3 lysine 14 (H3 K14Ac) [24]. RSC activity has been

implicated in nucleosome repositioning and maintenance of the

nucleosome free region (NFR) at RNA polymerase II (Pol II)-

transcribed promoters [27,28]. In vitro, purified RSC complex was

shown to stimulate Pol II transcription through a nucleosome

template; an event that was enhanced by NuA4 or SAGA-

mediated histone acetylation [29]. Since RSC activity is linked to

both nucleosome repositioning at promoters and the passage of Pol

II through chromatin during transcription elongation, the RSC

complex was a good candidate co-transcriptional activator for

cryptic promoters.

Another bromodomain-containing protein that is important for

the early recruitment of general transcription factors is Bdf1. This

tandem bromodomain-containing protein has been shown to

interact with the TFIID general transcription factor [30,31,32],

the SWR1 complex, which is responsible for deposition of the

H2A.Z histone variant [33,34,35], and with acetylated histone tails

[36,37,38,39,40]. In S. cerevisiae, Taf1 does not have bromodo-

mains; rather it pairs with Bdf1 as part of the TFIID complex
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[30,31,32]. Bdf1 is important for TFIID recruitment to about 90%

of yeast genes [41]. These are mainly housekeeping genes that

tend to be SAGA-independent and have TATA-less promoters

[42,43]. Due to its role in early transcription with the recruitment

of TFIID to acetylated histones, Bdf1 is also an excellent candidate

for regulation of cryptic promoters.

To investigate the role of the Rsc and Bdf1 bromodomain-

containing proteins in activation of cryptic internal transcription,

we exploited a mutant of the Rpd3S histone deacetylase complex,

rco1D, which has an ORF hyperacetylation phenotype. This

mutant was ideal for our studies because it could be used to

determine the affect of histone acetylation on recruitment and

activity of bromodomain-containing proteins and the role that

these proteins play in cryptic promoter-formation.

Results

Mutation of the Rpd3S complex results in the
appearance of promoter-associated histone
modifications across the STE11 gene ORF

In addition to the full-length transcript, mutants in components

of the Set2-Rpd3S pathway have cryptic internally initiated

transcripts [5,6,7]. While cryptic transcripts originate from the

same sites, they show different levels of transcript between different

mutants or under different growth conditions (Figure 1, [13]).

These data suggest that cryptic promoters are regulated indepen-

dently of the full-length promoter, and that the factors involved in

transcription activation differ from one cryptic promoter to the

next.

The location of histone modifications associated with gene

promoters is tightly regulated. Specifically, acetylated histone H3

(AcH3) and H4 (AcH4), and tri-methylated histone H3, lysine four

(H3K4me3), are associated with the promoter and 59 ORF region

of actively transcribed genes (Reviewed in [4]). We wanted to

determine what defines a cryptic promoter. Do these promoters

show characteristics similar to canonical promoters? In order to

address this question, we used a mutant of a subunit unique to the

Rpd3S histone deacetylase complex, rco1D, which does not have

HDAC function [5,11]. Previous studies have shown that about

30% of genes in rco1D mutants have hyperacetylated ORFs

[11,12]. We chose one of these genes, STE11, which has two

cryptic transcripts (Figure 1, top panel, lane 2). The location of the

start site for each cryptic transcript was mapped by 59-RACE (data

not shown). We performed chromatin immunoprecipitation

(ChIP), to determine which promoter-associated modifications

were present in the gene ORF in rco1D mutants using primers

tiling the STE11 locus (Figure 2B–F). Not only was acetylated H4

increased across the ORF as previously described [11,12], but

Acetylated H3, lysine 14 (H3AcK14), dimethylated H3 lysine 4

(H3K4me2), and trimethylated H3 lysine 4 (H3K4me3) were also

increased in rco1D mutants when compared to the wild type strain

(Figure 1B–E). There was no change in trimethylated H3 lysine 36

(H3K36me3), which was expected since Rpd3S HDAC activity is

downstream of co-transcriptional methylation activity by the Set2

histone methyltransferase [5,6,7,11]. Thus, loss of functional

Rpd3S results in the appearance of promoter-associated histone

modifications in the ORF of the STE11 gene. These data show

that the region surrounding the transcription start site for each

cryptic transcript resembles that of a canonical promoter.

Deletion of the bromodomain-containing protein, Rsc1,
partially suppresses the small STE11 cryptic transcript

Bromodomain-containing proteins are important for recruit-

ment of chromatin remodeling complexes to acetylated histones

(reviewed in [1,2,14]). Subunits of the RSC complex contain

multiple bromodomains, which recognize acetyl lysine residues on

histones and other proteins. In vitro, purified RSC complex was

shown to stimulate Pol II transcription through a nucleosome

template; an event that was enhanced by NuA4 or SAGA-

mediated histone acetylation [29]. In vivo, RSC activity has been

implicated in nucleosome repositioning and maintenance of the

nucleosome free region (NFR) at Pol II-transcribed promoters

[27,28]. We wanted to determine if RSC activity was important

for the formation of cryptic promoters in gene ORFs that showed

the hyperacetylation phenotype in Rpd3S mutants. We deleted

Rsc1 and Rsc2, which are present in two distinct RSC

subcomplexes [44], and show a very similar genome-wide

occupancy profile [45]. Both proteins contain tandem bromodo-

mains that are essential for RSC function, but not complex

assembly [44]. Deletion of these proteins in combination is lethal,

but deleting RSC1 or RSC2 individually results in cells that are

viable, but show growth defects due to the loss of transcription at

sporulation-specific genes [44,46,47].

We first examined the genome-wide effect of deleting RSC1 or

RSC2 on acetylated H4 at genes that show hyperacetylation in

rco1D mutants (Figure 3). ChIP samples were amplified using a

double T7 linear amplification protocol [48,49,50], followed by

hybridization to yeast high-resolution tiling microarrays. The log2

ratios of immunoprecipitated (IP) AcH4 versus input were

Figure 1. Variable transcript levels in mutants of proteins
involved in the Set2-Rpd3S pathway. (A) Northern blot of RNA
extracted from wild type or indicated mutant strains was probed for the
39 regions of STE11, PCA1 or for SCR1 (loading control). Solid arrows
denote full-length transcript, while dashed arrows indicate cryptic
transcripts. Blot shown is representative of three biological repeats.
doi:10.1371/journal.pone.0012927.g001
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subjected to a modified average gene analysis [51], which allowed

us to examine the average AcH4 signal genome-wide at any given

gene and surrounding intergenic region (Figure 3A). Using the

dataset comparing enrichment of AcH4 in rco1D mutants versus

wild type, we identified genes that grouped into three clusters

based on their enrichment patterns (Figure 3B).

Earlier work from our group showed that the cluster of

hyperacetylated ORFs (Cluster 2) was composed mainly of longer,

less frequently transcribed genes [12]. These genes do not

completely overlap with those that receive the highest levels of

H3K36me3, nor do they all produce cryptic transcripts, although

all genes that produce cryptic transcripts fall within Cluster 2 (data

not shown) [12,51]. Since we were specifically interested in cryptic

internal initiation of transcription, we focused on Cluster 2 and

filtered the dataset for genes with an ORF that was represented by

two or more probes. As previously demonstrated, rco1D mutants

showed an increase in acetylated H4 across a gene ORF when

compared to the wild type strain (Figure 3C, [11,12]). When the

RSC complex mutants were compared to wild type, rsc2D showed

no change, while the rsc1D strain showed an increase in AcH4 at

the promoter region. Therefore, the RSC1 complex suppresses

histone acetylation at yeast promoters. Neither the rsc1D nor the

rsc2D strain had cryptic transcripts at STE11 or PCA1 (Figure 3D),

which was consistent with the lack of ORF hyperacetylation in

either of these mutants.

We wanted to know if the occupancy profiles of either Rsc1 or

Rsc2 changed in rco1D mutants. Specifically, ChIP was performed

using myc-tagged Rsc1 and Rsc2 in wild type [45] and rco1D

Figure 2. Mutants of the Rpd3S subunit, Rco1, show an increase in promoter-associated histone modifications in the ORF of the
STE11 gene. (A) Amplicons used for quantitative PCR are indicated to scale below a map of the STE11 ORF. Numbers indicate the distance of the
mid-point of each amplicon from the start site for translation of the full-length transcript (solid arrows). Cryptic promoters were mapped by 59-RACE
(dashed arrows). (B–F) ChIP using antibodies for various histone modifications was followed by quantitative PCR. All graphs represent the percent
change in occupancy of the histone modification in rco1D versus wild type (BY4741) strains. Error bars represent standard deviation of three
biological repeats, except (E), which is two biological repeats. Antibodies used for ChIP assays were: (B) Pan-acetylated histone H4; (C) Acetylated
histone H3, lysine 14; (D) di-methylated histone H3, lysine 4; (E) tri-methylated histone H3, lysine 4; (F) tri-methylated histone H3, lysine 36.
doi:10.1371/journal.pone.0012927.g002
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strains, followed by PCR with primers spanning the STE11 ORF

(Figure 3E). There was no significant change in Rsc2 occupancy;

however, Rsc1 occupancy was decreased by approximately forty

percent in the rco1D mutant compared to the wild type strain. We do

not see a direct association of the Rpd3S and RSC1 complexes by

mass spectrometry (data not shown). Therefore, given that Rsc1

played a role in repression of acetylation at promoter regions in a

subset of genes (Figure 3C), it is possible that retention of the RSC1

complex at certain ORFs is related to the histone deacetylation

activity of Rpd3S. We attempted to examine this possibility through

determination of genome-wide occupancy of Rsc1 and Rsc2 in

rco1D mutants, but the data was inconclusive due to inconsistent

results between biological replicates (data not shown).

If the RSC complex is involved in nucleosome remodeling at

cryptic promoters, then disruption of RSC subunits in an rco1D
background should suppress cryptic transcription. Due to

difficulties with making either rsc1Drco1D, or rsc2Drco1D double

mutants, we created an Rco1-degron strain (Rco1-deg), using the

system described in Kanemaki et al. [52]. The C-terminus of the

Rco1 protein was tagged with a FLAG tag for detection by

western blot (see materials and methods section). RNA and protein

samples were extracted at 0, 40, 80, and 160 minutes following

induction of Rco1 protein degradation (Figure 4A, B). Cryptic

transcription was visualized by northern blot at the STE11 gene

beginning at 40 minutes post-induction (Figure 4A, Lanes 1–4).

Rco1 protein levels did not change in a control with FLAG-tagged

Figure 3. Genome-wide occupancy of acetylated H4 in rco1D, rsc1D, and rsc2D mutant strains. Indicated mutants were subjected to ChIP
with an antibody directed against acetylated H4 followed by microarray analysis (n = 3) using the Agilent yeast 4x44K platform (Agilent Technologies,
Santa Clara, CA). (A) Average gene analysis of log2 ratio for the enrichment of AcH4 in mutant versus the wild type strain (Y-axis). X-axis indicates the
number of bins used for average gene analysis. The shaded grey area represents any given gene ORF. (B) ORFs from the dataset comparing
enrichment of AcH4 in rco1D mutants versus wild type were divided into 6 bins [51], followed by K-means clustering using MeV [57]. The ORFs
represented by Cluster 2 show an increase in AcH4 across the ORF in rco1D mutants. The scale at the bottom of the figure represents the log2 ratio for
the enrichment of AcH4 in rco1D mutant versus the wild type ranging from 23 to 3. (C) Average gene analysis of log2 ratio for the enrichment of
AcH4 in mutant versus the wild type strain for gene cluster 2 (genes with enrichment of AcH4 in the ORF). (D) Northern blot of RNA extracted from
wild type (BY4741) or indicated mutant strains was probed for the 39 regions of STE11, PCA1 or for SCR1 (loading control). Solid arrows denote full-
length transcript, while dashed arrows indicate cryptic transcripts. Blot shown is representative of three biological repeats. (E) ChIP followed by qPCR
using primers corresponding to the STE11 ORF was performed with antibodies against c-myc-tagged Rsc1 or Rsc2. The X-axis indicates the mid-
position of each probe set used in the PCR (base pairs). The Y-axis represents percent change of c-myc IP/input for rco1D mutants compared to IP/
input for the wild type strain. Error bars represent standard deviation of three biological repeats.
doi:10.1371/journal.pone.0012927.g003
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Figure 4. Deletion of RSC1 in an Rco1-degron background results in a partial suppression of the small STE11 cryptic transcript. (A)
Northern blot of RNA extracted from indicated degron strains at 0, 40, 80, and 160 minutes post-degron induction. Blots were probed with amplicons
from the 39 region of STE11 or from SCR1 (loading control). Cryptic transcripts are indicated with dashed arrow and full-length transcripts by solid
arrow. Blots are representative of 3 biological repeats. (B) Densitometry analysis of bands from northern blots in (A). Data is shown as percent change
in band volume at the 160 minute time point compared to time zero (Y-axis) for each transcript in each strain (X-axis). Image Quant (GE Biosciences)
was used to quantitate band density on the northern blot. All STE11 transcripts were normalized to the loading control, SCR1. Error bars represent the
average deviation of three biological repeats. (C) Western blot of protein extracted from degron strains at indicated time post degron induction.
Tagged Rco1 protein was detected with anti-FLAG antibody. The same blots were also probed with anti-Pgk1 as a loading control. Blots are
representative of 3 biological repeats. (D–F) ChIP followed by qPCR using primers corresponding to the STE11 ORF was performed with antibodies
against acetylated H4. The X-axis indicates the mid-position of each probe set used in the PCR (base pairs). The Y-axis represents percent maximum
change of the ChIP product at 40 minutes (D), 80 minutes (E), or 160 minutes (F) versus 0 minutes post degron induction for each strain. Error bars
represent standard deviation of three biological repeats, except (D), which is two biological repeats.
doi:10.1371/journal.pone.0012927.g004
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Rco1 protein that lacked the degron tag in the degron strain

background (Figure 4C, upper panel, lanes 1–4). The Rco1-deg

strain had no visible Rco1 protein after 80 minutes (Figure 4C,

upper panel, lanes 5–8), which was consistent with the appearance

of cryptic transcripts (Figure 4A, lanes 1–4).

We examined the effects of RSC on cryptic transcript formation

by deleting either Rsc1 or Rsc2 in the Rco1-degron background.

In both of these deletion strains, Rco1 protein was no longer

visible after 80 minutes (Figure 4C, bottom panel, lanes 1–8).

When STE11 transcript levels were evaluated by northern blot,

however, formation of the small cryptic transcript was delayed in

the rsc1D Rco1-deg strain compared to either Rco1-deg, or rsc2D
Rco1-deg strains (Figure 4A, compare lanes 5–8 to lanes 1–4 and

9–12). Densitometry of northern blots from three biological

repeats of this experiment showed that formation of the small

cryptic transcript was suppressed by approximately 50% in the

rsc1D Rco1-deg strain, compared to Rco1-deg alone (Figure 4B).

Formation of the large cryptic transcript in the rsc1D Rco1-deg

strain was comparable to Rco1-degron alone (Figure 4B).

Therefore the RSC1 complex, and not the RSC2 complex

suppresses formation of the small cryptic transcript at the STE11

gene in Rpd3S mutants. This finding also indicates that there is

differential regulation of each cryptic promoter as the large cryptic

promoter was not sensitive to RSC1 deletion.

We next used ChIP to assess the status of acetylated H4

occupancy at the STE11 locus at 40, 80, and 160 minutes

compared to 0 minutes post-degron induction (Figure 4D–F).

Maximum acetylated H4 occupancy occurred in the ORF, rather

than the promoter region in all three strains at all three time points

examined (Figure 4D), despite the fact that there was a difference

in the intensity of the small cryptic transcript in the rsc1D Rco1-

deg strain at 40 minutes (Figure 1A). Therefore differential

regulation of cryptic promoters at STE11 by the RSC1 complex is

determined by events downstream of ORF acetylation.

Deletion of the bromodomain-containing protein, Bdf1,
completely suppresses the small STE11 cryptic transcript

Bdf1, like Rsc1, is a tandem bromodomain-containing protein

that is important for recruitment and retention of TFIID at

TATA-less promoters [32,38,41,43]. In yeast, Bdf1 serves as the

bromodomain-containing portion of Taf1 [30,31,32], and is

important for recruitment of TFIID to TATA-less promoters

[43]. Since Bdf1-dependent recruitment of TFIID plays an early

role in transcription activation, we examined the role of this

bromodomain-containing protein in cryptic transcript formation.

We deleted Bdf1 from the Rco1-degron strain and determined

the formation of cryptic transcripts over time at the STE11 ORF

(Figure 5A, top panel). Western blots showed that Rco1

degradation in the bdf1D Rco1-deg strain was comparable to that

in Rco1-deg alone (Figure 5C, compare lanes 1–4 and 5–8). When

we examined transcript formation by northern blot, however, we

were surprised to find that the small cryptic transcript was

completely suppressed in the bdf1D Rco1-deg strain (Figure 5A,

top panel, compare lanes 4 and 8). Also interesting, was the fact

that both the large cryptic transcript and the full-length transcript

increased in intensity. These results indicate that dependence on

co-activators for transcription activation varies from one cryptic

promoter to the next. We also looked at cryptic transcript

formation at the FLO8 locus, which has a single cryptic transcript.

Compared to the Rco1-deg strain alone, the bdf1D Rco1-deg

strain showed a dramatic increase in both the full-length and

cryptic transcript at the FLO8 gene (Figure 5A, middle panel).

When AcH4 occupancy at the STE11 locus was determined by

ChIP, both Rco1-deg and the bdf1D Rco1-deg strain had

maximum occupancy of this modification in the gene ORF

(Figure 5B). Therefore, like RSC, Bdf1 affects cryptic promoter

activity downstream of histone acetylation.

Bdf1 also interacts with the SWR1 complex, which is

responsible for deposition of the H2A.Z histone variant

[33,34,35]. We wanted to determine if the suppression of the

small cryptic transcript in the bdf1D Rco1-deg strain was related to

Bdf1 recruitment of SWR1. Deletion of the catalytic subunit,

Swr1, from the Rco1-degron strain had no effect on the formation

of cryptic transcripts at the STE11 ORF (Figure 5D, Lanes 2–4).

Thus, the function of Bdf1 at cryptic promoters is probably

independent of its role in the recruitment of the SWR1 complex.

An interesting future experiment would be to compare the

genome-wide occupancy of Bdf1 and other components of the

TFIID complex to the locations of cryptic transcription in rco1D
mutants.

Genes that rely on Bdf1 for TFIID recruitment are generally

not associated with SAGA [41,43]. In fact, Bdf1 has been linked to

repression of SAGA-dependent genes [32,39,40,41]. Since there

was a loss of the small cryptic transcript at STE11, but an increase

in the intensity of the large cryptic and full-length transcripts

(Figure 5A), we compared SAGA occupancy at this gene between

the Rco1-degron and bdf1D Rco1-degron strains. ChIP was

performed with an antibody directed against the Ada2 subunit of

SAGA, followed by qPCR with primers directed against the

STE11 locus (Figure 5E). In the Rco1-degron strain (black bars),

maximal Ada2 occupancy occurs at the full-length STE11

promoter region. Occupancy at the large (+790) and small

(+1790) cryptic promoter regions was comparable to that of a

probe located in a region that does not contain a cryptic promoter

(+390). This high baseline of Ada2 occupancy is likely to

contribute to the increased levels of acetylation across the ORF

as shown in Figure 4. In the absence of Bdf1, however (grey bars),

maximal occupancy at the large promoter (+790) increased to a

level comparable to the full-length promoter (211). There was no

significant change at the small cryptic promoter in the presence or

absence of Bdf1 (+1790). These results, along with the northern

blot data (Figure 5A), suggest that both the full-length and large

cryptic promoters are SAGA-dependent, while the small cryptic

promoter is SAGA-independent for expression.

Overall, cryptic promoters are independently regulated by a

variety of co-activators. In this sense, they resemble canonical gene

promoters, which may explain why the location of these cryptic

transcription start sites does not vary like the levels of expression.

Discussion

Histone modifications alone do not dictate the location
of cryptic transcription initiation in strains lacking
functional Rpd3S

Disruption of Rpd3S function resulted in hyperacetylation at

about 30% of yeast genes genome-wide. Locally, we showed that

several promoter-associated histone modifications increased across

the STE11 ORF, including AcH4, AcH3K14, and H3K4me3.

These histone modifications gave the entire STE11 ORF

promoter-like characteristics. Yet, cryptic transcript initiation did

not randomly occur throughout the ORF; instead it initiated from

two distinct positions that could be mapped by 59-RACE (data not

shown). Thus, histone modifications alone do not dictate the

position of the cryptic transcription start site. Specific locations for

cryptic initiation could be due to a number of additional factors

that affect transcription from canonical promoters including the

availability of binding sites for co-transcriptional activators, and

Features of Cryptic Promoters
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Figure 5. Deletion of BDF1 in an Rco1-degron strain suppresses the small STE11 cryptic transcript. (A) Northern blot of RNA extracted
from indicated degron strains at 0, 40, 80, and 160 minutes post-degron induction. Blots were probed with amplicons from the 39 region of STE11,
FLO8 or SCR1 (loading control). Cryptic transcripts are indicated with dashed arrow and full-length transcripts by solid arrow. (B) Western blot of
protein extracted from degron strains at indicated time post degron induction. Rco1 protein was detected with anti-FLAG antibody. The same blots
were also probed with anti-Pgk1 as a loading control. (C) ChIP followed by qPCR using primers corresponding to the STE11 ORF was performed with

Features of Cryptic Promoters
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the presence or absence of an exposed DNA element such as a

TATA box.

RSC1 and RSC2 complexes affect cryptic transcription
differently in a mutant Rpd3S background

Rsc1 and Rsc2 are present in two distinct complexes [44] with a

similar genome-wide profile [45]. Genetic evidence suggests that

these two complexes function differently during sporulation

[46,47]. One study demonstrated that rsc1D mutants produce

aberrant asci which could not be rescued by RSC2 overexpression

[47].

Our genome-wide data shows that deletion of RSC1 alone

results in an increase in 59 histone H4 acetylation compared to

wild type that is not seen in RSC2 mutants. At the STE11 locus,

deletion of RSC1 in an Rco1-degron background resulted in a

partial suppression of the small cryptic transcript. When RSC2 was

deleted in the Rco1-degron strain, the intensity of the small cryptic

transcript actually increased. These data provide further evidence

that the RSC1 and RSC2 complexes have different functions. It

also shows that the cryptic and full-length promoters are

differentially regulated.

At Pol II promoters, RSC activity generally involves single

nucleosome events that help to form and maintain the NFR

[27,28]. These data were generated from studies using a

temperature sensitive mutant of the Sth1 catalytic subunit, which

is common to both the RSC1 and RSC2 complexes [44]. We

found that only the RSC1 complex affects genome-wide 59

acetylated H4 levels, and that the small STE11 cryptic transcript is

sensitive to RSC1 deletion. It is possible that in the absence of the

RSC1 complex, certain promoters are not able to maintain an

NFR and therefore have greater histone density at the promoter

region. Future studies could examine the role of RSC1 complex

versus RSC2 complex in the establishment and maintenance of

Pol II promoter NFRs.

The differential effect of Bdf1 on cryptic promoter
formation suggests that underlying DNA sequence
elements are important for cryptic promoter formation

The differential role that the RSC1 and RSC2 complexes play

in transcription from cryptic promoters indicates that co-activator

dependence varies just as it does with canonical promoters. Our

data showing that deletion of BDF1 in the Rco1-degron

background completely suppresses only the small cryptic transcript

further confirms this finding. It also suggests that DNA elements

are important for initiation of cryptic transcription since Bdf1 is

known to affect a very specific subset of promoters. At the PHO5

promoter, when the TATA box was obstructed by a re-positioned

nucleosome, gene expression became entirely dependent on the

presence of Bdf1 [43]. TFIID dependence on Bdf1 for promoter

recruitment is common at housekeeping genes that generally have

TATA-less promoters. While there are no TATA boxes fitting the

criteria TATA(A/T)A(A/T)(A/G) [42] upstream of STE11 full-

length or cryptic promoters, we did note the same increase of the

FLO8 full-length and cryptic transcripts, both of which are known

have TATA boxes [13]. Therefore, the dependence of the small

cryptic transcript on Bdf1 could stem from the fact that it is a

TATA-less promoter, or that a degenerate TATA box is

obstructed by a repositioned nucleosome. An interesting future

experiment would be to compare the genome-wide occupancy of

Bdf1 and other components of the TFIID complex to the locations

of cryptic transcription and known TATA-containing promoters

in rco1D mutants.

In contrast to the housekeeping genes, stress-induced genes

characteristically have promoters that do not require Bdf1, have a

TATA box, and show a strong correlation with SAGA activity

[32,39,40,41]. We know from northern blots that prior to degron

induction, the bdf1D Rco1-deg strain has full-length STE11

transcript, so the full-length promoter is not dependent on Bdf1

for TFIID recruitment. Expression of STE11 is inhibited 2.2 fold

compared to wild type cells when the catalytic histone acetyl-

transferase subunit of SAGA, Gcn5, is deleted [53], suggesting that

STE11 expression is SAGA-dependent. Also, the full-length and

large cryptic transcripts increase in intensity following deletion of

Bdf1, which is thought to inhibit SAGA-dominated promoters

[41]. Finally, Ada2 ChIP data indicated that SAGA was present at

the full-length STE11 promoter, and that its maximum occupancy

increased at the large cryptic promoter when Bdf1 was deleted in

the Rco1-degron background. Taken together, these findings are

consistent with a role for SAGA at the full-length and large cryptic

STE11 promoters. In contrast, the small cryptic promoter lacked

SAGA occupancy and was completely dependent on the presence

of Bdf1 for transcription activation.

Overall, cryptic transcription in yeast mutant Rpd3S strains

provides an excellent system in which to study the role of various

regulatory factors in preinitiation complex formation. We showed

that bromodomain-containing proteins are important for tran-

scription activation at acetylated promoters, and that cryptic

promoters are regulated as independent units that follow a process

of activation similar to canonical promoters.

Methods

Yeast Strains
See Table S1 for a list of strains used in this study.

Antibodies
ChIP assays were performed using the following antibodies:

Anti-hyperacetylated Histone H4 (Penta), Upstate #06-866; Anti-

c-myc, Roche Applied Science #11667149001; Histone H3 (tri

methyl K36), Abcam #ab9050; Anti-dimethyl-Histone H3 (lys4),

Millipore #07-030; Anti-acetyl-Histone H3 (lys14), Millipore

#07-353; Anti-Ada2 [54]; and Histone H3 antibody, Abcam

#ab1791. Western blots were performed with Anti-FLAG M2

monoclonal antibody, Sigma #A8592; and Phosphoglycerate

Kinase Monoclonal Antibody, Invitrogen #459250.

Chromatin Immunoprecipitation Assays
Chromatin immunoprecipitation (ChIP) assays were performed

as previously described [12], except 50 uL of protein G

antibody against acetylated H4. The X-axis indicates the mid-position of each probe used in the PCR (base pairs). The Y-axis represents percent
maximum change of the ChIP product at 160 minutes versus 0 minutes post degron induction for each strain. Error bars indicate standard deviation
(n = 3). (D) Northern blot of RNA extracted from swr1D, Rco1 degron strain at 0, 40, 80, and 160 minutes post degron induction. Blots were probed
with amplicons from the 39 region of STE11 or SCR1 (loading control). Cryptic transcripts are indicated with dashed arrow and full-length transcripts
by solid arrow. (E) ChIP followed by qPCR using primers corresponding to the STE11 ORF was performed with antibody against the SAGA subunit,
Ada2. The X-axis indicates the mid-position of each probe used in the PCR (base pairs). The Y-axis represents percent maximum change of the ChIP
product at 160 minutes versus 0 minutes post degron induction for each strain. Error bars represent average deviation (n = 3). The P-value of the
points at 790 bp equals 0.05 as determined by a T-test (*).
doi:10.1371/journal.pone.0012927.g005
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Dynabeads (Invitrogen) were used for the immunoprecipitation.

Yeast strains were grown in YPD except for strains containing the

degron-tagged Rco1. Degron strains were grown as described in

[52].

Northern Blot Analysis
Total RNA was extracted as described in [12]. Northern

blotting and hybridization was performed as described in [5].

Probes against STE11, PCA1, FLO8 and SCR1 were generated

using primers described in Table S2. Densitometry analysis was

performed using ImageQuant TL v2003.02 software for the

Typhoon phosphorimager (GE Healthcare).

Quantitative PCR
DNA from ChIP assays was amplified with primers covering the

STE11 ORF (Table S2). Real time PCR was performed on a

Biorad iCycler using FastStart SYBR Green Master Mix (Roche).

Total nanograms of input and immunoprecipitated samples were

determined by comparison to a standard yeast genomic DNA

curve amplified with the same primer sets. Unless otherwise

indicated, all experiments represent the average of three separate

biological repeats with two technical replicates each.

T7 Linear Amplification
The double T7 linear amplification protocol was adapted from

[48,49,50]. For the first round reaction, up to 500 ng of ChIP or

input DNA was treated with 2.5 U CIP enzyme (NEB) for 1 hour

at 37uC, followed by phenol:chloroform extraction. Fifty ng of

CIP-treated template was incubated with 20 U TdT (NEB) for 20

minutes at 37uC, and the reaction product was isolated using a

MinElute Reaction Cleanup Kit (Qiagen). The fill reaction was

then performed using an anchored T7-(dA)18 oligo (T7-(dA)18,

Table S2) and 5 U Exo- Klenow (NEB) for 4 hours at 37uC,

followed by phenol:chloroform extraction. In vitro transcription was

then performed using the Ampliscribe T7 kit (Epicentre

Biotechnologies). Amplified RNA (aRNA) was purified using the

RNeasy Mini Kit (Qiagen) and quantified on a Nanodrop 2000

Spectrophotometer (Thermo Scientific). For the second round

amplification, 50–150 ng of aRNA was reverse transcribed using

Superscript III reverse transcriptase (Invitrogen), followed by

reaction cleanup with the MinElute Reaction Cleanup Kit

(Qiagen). A fill reaction followed by in vitro transcription was

performed as described above, except amino allyl-UTP (Ambion)

was added to the reaction. Final reaction cleanup was performed

with the RNeasy Mini Kit (Qiagen). For the labeling reactions, 4–

6 ug amino allyl-incorporated aRNA in a 5 uL volume of 0.1 M

Carbonate Buffer, pH 8.7, was mixed with 5 uL (0.01 nmol)

monofunctional NHS-ester Cy3 or Cy5 dye in DMSO (Sigma)

and incubated at 22uC for 2 hours. Reactions were quenched with

5 uL 4 M hydroxylamine at 22uC for 15 minutes, cleaned with an

RNeasy MinElute Cleanup Kit (Qiagen), and the efficiency of dye

incorporation measured using the Nanodrop 2000 spectropho-

tometer (Thermo Scientific). Samples with a label incorporation

efficiency of 2–4% were used for microarray hybridization.

Microarray Analysis
Input was labeled with Cy3 dye, while immunoprecipitated

samples were labeled with Cy5 dye. Samples were combined 1:1

based on quantity (ng). Before hybridization, labeled aRNA

samples were fragmented (Fragmentation Reagent Kit, Ambion)

according to manufacturer’s instructions. The hybridization

mixture was set up for the Agilent yeast 4x44K platform (Agilent

Technologies) according to manufacturer’s instructions with the

addition of 20 ug of T7 blocking oligo (Table S2). Microarray

hybridization and washing was conducted according to manufac-

turer’s instructions. Scanning was performed on the Agilent DNA

Microarray Scanner (Agilent Technologies, Model#G2505B), and

features extracted using Feature Extraction software (Agilent

Technologies). All samples are representative of three biological

repeats. Microarray data are MIAME compliant. Raw data has

been deposited in a MIAME compliant database accessible

through NCBI GEO [55] (GSE17521).

Averaged Gene and Cluster Analyses
Final datasets from ChIP-chip experiments were pipelined into

a modified average gene analysis based on the frame work

originated by the Young laboratory [51], as described in [11].

Agilent Feature Extraction Software (v 10.5.1.1) was used to

quantify images. Data was read into R and normalized within

arrays using median normalization and between arrays using

Aquantile normalization from the Limma package [56]. Clustering

was performed as follows: ORFs from the dataset comparing

enrichment of AcH4 in rco1D mutants versus wild type were

divided into 6 bins [51], followed by K-means clustering using

MeV [57], which is part of the Tm4 Microarray Software Suite

[58].

Supporting Information

Table S1 List of yeast strains used in this study.

Found at: doi:10.1371/journal.pone.0012927.s001 (0.14 MB

DOCX)

Table S2 List of primers used in this study.

Found at: doi:10.1371/journal.pone.0012927.s002 (0.15 MB

DOCX)
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