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Abstract

The task of the DREAM4 (Dialogue for Reverse Engineering Assessments and Methods) ‘‘Predictive signaling network
modeling’’ challenge was to develop a method that, from single-stimulus/inhibitor data, reconstructs a cause-effect network
to be used to predict the protein activity level in multi-stimulus/inhibitor experimental conditions. The method presented in
this paper, one of the best performing in this challenge, consists of 3 steps: 1. Boolean tables are inferred from single-
stimulus/inhibitor data to classify whether a particular combination of stimulus and inhibitor is affecting the protein. 2. A
cause-effect network is reconstructed starting from these tables. 3. Training data are linearly combined according to rules
inferred from the reconstructed network. This method, although simple, permits one to achieve a good performance
providing reasonable predictions based on a reconstructed network compatible with knowledge from the literature. It can
be potentially used to predict how signaling pathways are affected by different ligands and how this response is altered by
diseases.
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Introduction

There is an increasing agreement of the scientific community

in attributing complex disease such as cancer, diabetes, heart

disease and autoimmunity to defects in signaling trasduction

pathways. For instance, in the case of cancer, it is generally

acknowledged that genetic mutations are involved in the onset of

the disease, but its manifestation is at the pathway functional

signaling level [1,2]. Thus, an important step towards a dynamic

understanding of the functions and behaviors relevant to a

particular system is modeling protein interactions, by integrating

available knowledge on signaling pathways with novel high-

throughput protein expression data. Development of new

therapies would benefit from models and methods able to predict

the alterations induced on protein expression levels by different

therapeutical agents. Recently, some pioneering efforts were

accomplished by Li et al. [3] who developed a computational

framework for a functional input-output description of the Toll-

like receptor signaling and the identification of potential targets

for its modulation, and by Mitsos et al. [4] who proposed a

computational approach based on the experimental protocol

introduced in [5] and a methodology to create cell-specific

Boolean models as presented in [6], to evaluate drug actions on

signaling pathways.

Evaluation and comparison of the performance of algorithms

for network inference and data prediction is still an open issue.

The Predictive Signaling Network Modeling challenge of

DREAM4 competition provides an important contribution to

this topic, by addressing the problem of signaling network

inference from single-stimulus/inhibitor data for prediction of

multi-stimulus/inhibitor data. The challenge arises from the

question of generating a model from a network and data as

defined in [6]: to this purpose, the organizers provided the

topology of a canonical signaling pathway, derived from the

literature, and a training set they have published in [5]

monitoring the activity of seven phosphoproteins (AKT,

ERK12, Ikb, JNK12, p38, HSP27, MEK12) at three time points

(0, 30 minutes and 3 hours) during twenty five different

perturbations consisting of combinatorial treatment with zero

or one cytokine (TNFa, IL1a, IGF1, TGFa) acting as a stimulus

and zero or one inhibitor (MEKi, p38i, PI3Ki, IKKi).

Participants were asked to a) update the network b) predict the

seven phosphoprotein levels in response to twenty pair-wise

combinations of stimuli (TGF, IL1a, IGF1, TGFa+IGF1) and

inhibitors (p38i+MEKi, PI3Ki+MEKi, p38i+IKKi, PI3-

Ki+IKKi). The corresponding measured levels were available to

participants only after the disclosure of the best performing teams

and were used by the organizers to evaluate the quality of

predictions. Network and data are a subset of those used in [5]

and in [6], all measurements were performed using Luminex

xMAP sandwich assay as described in [5] and were affected by

measurement errors due to technical noise (SD = 300), and

biological noise (CV = 8%) [7].

It was emphasized that the submitted network, specific for the

HepG2 cell line, had to include only nodes representing measured

or manipulated elements (i.e. stimuli, inhibited proteins and

measured proteins) and edges underlying predictions, and that

predictions had to be based on the reconstructed network. As

anticipated, the challenge was evaluated on the basis of quality of

predictions and sparsity of the network. Reliability of predictions
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was quantified, for each protein p, by the Normalized Squared

Error NSE(p):

NSE pð Þ~
X

measurements
of p

prediction{measurement

measurement error
ð1Þ

NSE(p) was compared with a null distribution in which predictions

were sampled at random from the measured values of each

protein, p-values obtained for each protein were then combined in

a Prediction Score: a larger score indicates greater statistical

significance of the prediction. Finally, the Overall Score, which

also considers the parsimony of the submitted network, was used

for team ranking:

Overall Score~Prediction Score{r: Edge Countð Þ ð2Þ

where r is a parameter determined empirically by the organizers of

the challenge as the minimum, over all teams, of the Prediction

Score divided by the Edge Count.

In this paper, a simple data-driven method is presented, that

was applied to this DREAM4 challenge. Network topology was

reconstructed by inferring Boolean tables from training data, to

establish cause-effect relationships characterizing the pathway in

terms of links among ligands, inhibitors and proteins. Expression

levels of the output proteins during multi-stimulus/inhibitor

perturbations were then predicted by a linear combination of

training data, in accordance with the reconstructed network.

Methods

The method consists of three steps (Figure 1) based on: 1)

inference of Boolean tables from data to classify whether a

particular combination of stimulus and inhibitor is affecting the

protein, 2) reconstruction of a cause-effect network from Boolean

tables, 3) prediction of test data by linear combination of training

data, using rules based on the reconstructed network. The three

steps are detailed in the following paragraphs by denoting, for a

generic protein p (p = 1,…,7):

N xi,j(t): protein level at time t collected after perturbation with

stimulus i (i = 0,…,4 where i = 0 represents the condition

without any stimulus) and inhibitor j (j = 0,…,4 where j = 0

represents the condition without any inhibitor);

N vi,j(t)~xi,j(t){xi,j b : protein level with respect to the basal

level (indicated by the suffix b);

N s2
xi,j

~3002z 0:08:xi,j

� �2
: variance of the measurement error

(provided by the organizers) associated to xi,j ;

N s2
vi,j

~s2
xi,j

zs2
xi,j b

: variance of the measurement error

associated to vi,j .

Figure 1. Workflow representing the 3 steps of the method. (1) Boolean inference of tables from single-stimulus/inhibitor experimental data,
(2) network inference from the tables and (3) linear combination of single-stimulus/inhibitor data to predict protein activity level in multi-stimulus/
inhibitor conditions, based on network structure.
doi:10.1371/journal.pone.0012789.g001
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1. Inference of Boolean tables
A table is built for each protein, having a column for each

stimulus and a row for each inhibitor and containing in each cell a

two-value vector Ci,j~½ai,bi,j � indicating how a particular

stimulus/inhibitor combination affects the protein. ai denotes

the action of the stimulus i and bi,j the action of stimulus i/

inhibitor j, each quantized in two levels: 1 if action is significant, 0

if not.

Significant increase in protein level in response to a stimulus and

significant decrease in response to an inhibitor are tested following

[8], based on the measurement error distribution.

More precisely, for each stimulus, in absence of inhibitors, the

increase of the protein activity (TEST1i~vi,0(t)) with respect to

the reference, i.e. the condition with no stimulus and no inhibitor

(REF1~v0,0(t)), is considered significant if it exceeds k times the

standard deviation of the measurement error, for at least one

sample:

TEST1i{REF1ð Þwk:s TEST1i{REF1ð Þ ð3Þ

where s2
TEST1i{REF1ð Þ~s2

v0,0
zs2

vi,0
and k is a parameter to be

set. As an example, Figure 2A reports the activity level of Ikb

protein in the condition no stimulus/no inhibitor and in the

condition stimulus IGF1/no inhibitor. The stimulus does not

significantly affect the protein activity level, i.e. condition (3) is not

satisfied, thus the first value of cells in the column corresponding to

the stimulus IGF1 is set to 0, i.e. ai~0. When condition (3) is not

satisfied, as in Figure 2A, the effect of inhibitors is not considered

and the second value of the cell (bi,j ) is set equal to 0 for all

inhibitors j.

As a second example, Figure 2B shows the activity level of Ikb

protein in the condition stimulus TNFa/no inhibitor. The stimulus

affects the protein level, i.e. condition (3) is satisfied, thus the first

value of cells in the column corresponding to stimulus TNFa is set

to 1, i.e. ai~1. When condition (3) is satisfied, the effect of each

inhibitor is analyzed. Denoting as reference the condition with the

stimulus and no inhibitors (REF2i~vi,0) the action of each

inhibitor (TEST2i,j~vi,j ) is considered significant if:

REF2i{TEST2i,j

� �
wk:s

TEST2i,j{REF2i

� � ð4Þ

where s2
TEST1i{REF1ð Þ~s2

v0,0
zs2

vi,0
. Figure 2B shows that if

protein Ikb is stimulated with stimulus TNFa/inhibitor MEKi,

condition (4) is not satisfied and the second value of the cell

corresponding to stimulus TNFa and inhibitor MEKi is set to 0,

i.e. bi,j~0. Whereas, with inhibitor IKKi (Figure 2C) condition (4)

is satisfied, thus bi,j is set equal to 1. It is clear from the examples

that the number of actions considered as significant is inversely

related to the k value.

2. Network reconstruction
For each protein, a subnetwork is reconstructed from its

Boolean table by adding:

N no links for stimulus/inhibitor combinations corresponding to

[0,0] cells (example shown for protein Ikb under stimulation

with stimulus IGF1 in Figure 3A);

Figure 2. Boolean inference. Three examples are shown: A. stimulus
IGF1 does not affect protein Ikb, B. stimulus TNFa affects protein Ikb but
the presence of MEK inhibitor does not change the protein level, C.
stimulus TNFa affects protein Ikb and the presence of IKK inhibitor
decreases the protein level.
doi:10.1371/journal.pone.0012789.g002

Figure 3. Network reconstruction. Three examples are shown: A.
stimulus IGF1 does not affect protein Ikb, B. stimulus IL1a affects
protein JNK12 but none of the inhibitors exerts a significant effect, C.
stimulus TNFa affects protein Ikb and its action is mediated by protein
IKK.
doi:10.1371/journal.pone.0012789.g003
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N a direct link between a cytokine and a phosphoprotein if the

column corresponding to that stimulus contained all [1,0] cells

(e.g. IL1aRJNK12 in Figure 3B);

N a link passing through and inhibitor if, for that stimulus, there

is a [1,1] cell in the row corresponding to that inhibitor (e.g.

TNFaRIKKRIkb in Figure 3C).

Subnetworks are then merged, and if, in the resulting network, a

cytokine and a protein are connected both directly and indirectly,

through an inhibitor, the direct link is pruned and not used for

prediction. The Boolean tables are updated consistently.

3. Prediction
To predict the phosphorylation level reached by a protein in

combinatorial treatments with single or multiple stimuli/multiple

inhibitors, the specific subnetwork is isolated. For example, to

obtain the prediction of the activity of protein AKT in the

condition with stimuli TGFa and IGF1 and inhibitors PI3Ki and

MEK12i, the sub network composed by nodes TGFa, IGF1,

PI3K, MEK12, AKT and links connecting them are isolated, as

shown in Figure 4.

Depending on the subnetwork configuration, single-stimulus/

inhibitor data are linearly combined according to the following

formula:

x̂x
I ,J

~
X

i[I

ai

X

j[J

bi,j vi,j{vi,0{v0,j

� �
z
X

i[I

aivi,0

z
X

j[J

b0,jv0,jzxI ,Jb

ð5Þ

where I and J denote the particular combinations of stimuli (e.g

TGFa+IGF1) and inhibitors (e.g. MEKi+PI3Ki), respectively, for

which prediction x̂x has to be made, xI ,Jb the basal level under this

condition (given by the organizers) and b0,j is assumed equal to 1 if

bi,j~1 for at least one i[I . If none of I stimuli are active on the

protein, i.e. ai~0 for all i[I , equation (5) reduces to:

x̂x
I ,J

~v0,0zxI ,Jb ð6Þ

As an example, for the subnetwork shown in Figure 4, equation

(5) predicts the activity of protein AKT with stimuli TGFa and IGF1

and inhibitors MEKi and PI3Ki as the sum of the activity level of

protein AKT in the condition stimulus TGFa/inhibitor PI3K and

in the condition stimulus IGF1/inhibitor PI3K. Since in this sum

the effect of the inhibitor is considered twice, the activity level in the

condition no stimulus/inhibitor PI3K is then subtracted. If, for a

given protein, the reconstructed network predicts that some

stimulus/inhibitor combinations do not affect its level, the reference

conditions vi,0 and v0,0 in equations (5) and (6) are evaluated by

averaging the protein level measured in absence of stimulus/

inhibitor with the protein level measured under these conditions.

Implementation
The algorithm was implemented in Matlab. It requires as input

arguments: single-stimulus/inhibitor data, the model of the

measurement error, the value of parameter k and multi-stimuli/

inhibitors combinations for which predictions are desired and

provides as outputs: the reconstructed network with link ranking

and predicted values.

Results

Network inference
The choice of parameter k, used in the inference of Boolean

tables to define the threshold of significance (equations (3) and (4)),

obviously affects the number of links, as shown in Figure 5: with a

high value of k only few links are included in the network, more are

added if k decreases. In Table 1, selected links are ranked, according

to the upper limit value of parameter k still allowing the presence of

the link, from the most reliable (high value of k) to the less confident.

A value of k equal to 2.5 was empirically chosen as threshold. It

permitted to have an high number of true positives (i.e. links that are

both in the canonical and reconstructed network) still limiting the

number of false positives (i.e. links that appear in the reconstructed

but not in the canonical network). Thus, the canonical network was

used only to set a threshold valid for links to be selected, not as a

priori information on which links are included in the network.

The cause-effect network (after graph pruning), used for

prediction, is shown in Figure 1. A direct connection between a

cytokine (represented in red) and a measured protein (in purple),

e.g. IL1aRIkb, means that the cytokine stimulation significantly

increased the activity level of the target protein. A connection

through one of the inhibited proteins (in blue), e.g. TNFaR
IKKRIkb, means that the cytokine stimulates the target protein

level, but if the halfway protein is inhibited the target protein level

Figure 4. Subnetwork isolation for prediction. Example of the
subnetwork considered when AKT value under stimulation with stimuli
IGF1 and TGFa and inhibitors MEKi and PI3Ki had to be predicted.
doi:10.1371/journal.pone.0012789.g004

Figure 5. Influence of the parameter k on the number of links.
doi:10.1371/journal.pone.0012789.g005
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decreases with respect to the previous condition. All inferred links

can be found in the canonical network but three: the one

connecting IL1a and MEK12 also found by Saez-Rodriguez et al.

[6] and the ones connecting IKK to AKT and HSP27. From

Table 1, the connection between IKK and AKT is the last link is

the ranking therefore it is the less confident. On the contrary the

connection between IKK and HSP27 seems to be quite reliable.

Prediction
The average Normalized Error (NE), i.e. the square root of NSE

for each prediction, was 1.47 corresponding to an average

deviation of prediction from measurement equal to 1.47 times

the SD of the measurement error. In Figure 6, an histogram of

single prediction NEs reveals that there were some outliers. Thus,

the median NE was lower than the average NE and its value, equal

to 0.38, indicates that the distance between the prediction and the

real value was less than the 38% of the SD of the measurement

error for the 50% of the predictions. Results for single proteins

(Table 2) show that predictions are more precise for some proteins

(e.g. p38 and HSP27), less precise for others, particularly for Akt,

but in most cases the median is lower than the mean, indicating

that outliers are distributed among proteins.

In order to evaluate the role of parameter k on the performance,

Prediction Score and Overall Score calculated from equation (2)

by using r = 0.0827, which is the value evaluated by the organizers

based on the results of all teams, were plotted for different values of

k (Figure 7). Figure 7A shows that a high Prediction Score was

obtained only for 1.4,k,2.7 indicating that a reliable network

was necessary for the quality of predictions. In fact, low values of k,

i.e. networks with many links, and high values of k, i.e. networks

with few links, worsened the performance of the method in terms

of Prediction Score. However, the Overall Score, which favored

sparse networks, indicated a good performance even with high k

values, as shown in Figure 7B.

Discussion

In this paper, we present a simple method able to reconstruct,

from single-stimulus/inhibitor protein data, cause-effect networks

representing signaling pathways and to predict protein levels

during multi-stimulus/inhibitor perturbations. This method,

developed and applied to the Predictive Signaling Network

Modeling challenge of DREAM4 competition, can be used to

discover how signaling pathways are altered by diseases and to

predict the effect of multiple agents/drugs. It uses a data driven

approach, having Boolean (discrete logic) inference and linearity

assumption as basic ingredients underlying network reconstruction

and data prediction.

Boolean inference is appropriate to reconstruct the signaling

network structured into input nodes (stimuli) intermediate nodes

(inhibitors) and output nodes (phosphoproteins), particularly in

situations like the one of the challenge, where the limited number

of available samples and the lack of information on the stimulus

format prevent the use of more sophisticated modeling approach-

es, e.g. based on differential equations and model identification. A

cause-effect network connecting stimuli, inhibited and measured

proteins, was reconstructed by a two step procedure: from single-

stimulus/inhibitor data, a table was first built to code significant

effects of stimuli and inhibitors on output proteins, which was then

translated into links among nodes of the network according to very

simple rules. Significance was defined with reference to the

measurement error, by exploiting a method used in [8] to quantize

time series expression data, e.g. a stimulus significantly affects an

output protein if it is able to increase its level of a quantity that

exceeds the uncertainty associated with the measurement of this

quantity. The method needs information about the measurement

error: in the case of the challenge a model relating the variance of

the error to the expression level was provided by the organizers, in

situations where this information is not available, it can be

estimated from replicates [9]. A factor k, which multiplies the

standard deviation of the errors, was introduced as a threshold to

distinguish between not significant (to be explained in terms of

measurement errors) and significant effects. The choice of k

Table 1. Links in the network ranked according to the upper
limit value of parameter k allowing the presence of the link.

LINK k Canonical network

‘IL1aRIKKRIkb’ 10.70 yes

‘IL1aRp38RHSP27’ 9.74 yes

‘TGFaRMEK12’ 8.71 yes

‘TGFaRPI3KRAKT’ 5.01 yes

‘IGF1RPI3KRAKT’ 4.38 yes

‘TNFaRIKKRIkb’ 4.34 yes

‘IL1aRJNK12’ 4.31 yes

‘IL1aRMEK12’ 3.91 no

‘IL1aRIKKRHSP27’ 3.17 no

‘TGFaRMEK12RERK12’ 2.76 yes

‘IL1aRp38’ 2.64 yes

‘TGFaRIKKRAKT’ 2.55 no

doi:10.1371/journal.pone.0012789.t001

Figure 6. NE histogram. Mean and median NE values were 1.47 and
0.38 respectively.
doi:10.1371/journal.pone.0012789.g006

Table 2. Mean and median NE over all predicted values for
each protein.

TOT AKT ERK12 Ikb JNK12 p38 HSP27 MEK12

mean NE 1.47 5.03 1.25 0.46 0.45 0.24 0.36 1.96

median NE0.38 3.84 0.82 0.19 0.33 0.15 0.15 2.05

doi:10.1371/journal.pone.0012789.t002
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obviously affects network density, as shown in Figure 5: low k

values favor dense networks and may lead to false positive links;

whereas high k values cause sparse networks, potentially associated

with false negative links. Thus, k was optimized using the available

knowledge built in the canonical network. A value k = 2.5 was

chosen, able to provide a network with most of the links

reproducing direct or indirect connections also present in the

canonical pathway. Therefore, a priori information built in the

canonical network was only used to set parameter k. Anyhow, the

described network reconstruction approach is strictly data-driven

and thus usable even when no information is available: to set

parameter k we are exploring different solutions, based on either

the stability of predictions or the ranking of links. For example,

active links can be selected following a method based on a

compromise between false positives and false negatives based on a

measurement error model, originally proposed to quantize gene

expression data [8].

The reconstructed network was used to predict protein levels

during multi-stimulus/inhibitor perturbations, by linear combina-

tion of single-stimulus/inhibitor data which, according to the

network, exert significant effects on the proteins. Linearity

assumption underlies the predictions, and this can be critical since

interferences among different stimuli and/or different inhibitors are

likely to occur in the real system. However, no information is

available on whether and how interferences take place, therefore

linearity is a sort of minimum working assumption, the role of which

can be assessed a posteriori, based on the performance of the method

in terms of reliability of predictions. Results indicate that the linearity

assumption is reasonable, since the median of the deviation between

true and predicted values is about 0.38 when normalized to the

standard deviation of the measurement error. Performance is

reasonably stable with respect to k values, reaching similar prediction

scores for k in the range 2–2.8. Choosing a low value, resulting in a

dense network, as well as a high value, resulting in a sparse network,

deteriorates the quality of predictions. This supports the importance

of using a realistic network to select the single-stimulus/inhibitor

components to be linearly combined for data prediction.

In conclusion, the method we proposed provides a reliable

solution to the problem proposed in the challenge. The method is

simple, its implementation in Matlab has very low computational

load but, despite of its simplicity, it is very promising and we are

currently working on some refinements. As regards the definition

of significance of the stimulus/inhibitor effect, we plan to

introduce a criterion tailored for time series data, based on the

area under the curve like in [10], instead of considering single data

points. A second aspect regards the choice of parameter k, which is

a critical issue of our method, in the situation where a priori

knowledge of network density is not available/usable.
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