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Abstract

Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate
that linear control theory can provide valuable insight and practical tools for the characterization of complex biological
networks. We provide the foundation for such analyses through the study of several case studies including cascade and
parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the
observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space
(time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and
point to specific design strategies for synthetic networks.
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Introduction

Cells comprise of multiple, heterogeneous subunits that operate

in a well-orchestrated manner [1,2]. Although extremely complex,

phenotypes such as cell division and environmental adaptation are

the outcome of discrete changes that lead to a deterministic

sequence of information transfer and processing within the cell.

This information is encoded and transferred via multiple

pathways, in different time-scales, and is typically processed in

parallel by multi-component networks. Such networks comprise of

genes, gene products and small molecules that mutually affect each

other or interconvert through biochemical reactions. The number

of possible network topologies for a given set of elements is large

and it grows exponentially with the number of elements.

Systems biology is an interdisciplinary field that aims at

understanding such complex interactions in cells, via the use of

a wide spectrum of theoretical and experimental techniques [3].

One of the main thrusts of systems biology is the study of gene

networks [4–7], via top-down and bottom-up approaches [8]. A

top-down approach aims at unraveling the complexity of network

dynamics without or with little prior knowledge of the network

components and the relationships between them [9–12]. On the

other hand, a bottom-up approach (closely related to synthetic

biology) aims at constructing and studying small-scale biological

networks from modular components [13–17]. Gene networks are

inherently stochastic [18,19], which renders any modeling effort

nontrivial. Furthermore, as the size of a network increases, it

becomes increasingly difficult to predict its dynamic behavior.

Another characteristic feature is the existence of nonlinearities in

biological networks, which further complicates any modeling

effort.

Towards analyzing the dynamic behavior of gene networks, a

range of mathematical and computational modeling methods have

been developed, including Boolean networks, Petri nets, state-

charts, ordinary differential equations, and stochastic simulation

algorithms [4,20–30]. These approaches can be further organized

into two larger categories: logical and continuous models. Logical

models deal with the logical sequence of events while continuous

models describe the dynamics that depend on molecular

concentrations and time.

In this paper, we develop and use linear models [31–34], which

are shown to capture the dynamics of gene networks in an intuitive

and efficient way. We argue that tools of linear control theory,

including transfer function (frequency domain) and linear state-

space (time domain) methods can be exceptionally practical for

systems and synthetic biologists towards unraveling the properties

of gene networks and engineering novel systems. We provide

several examples of the application of the transfer function method

for the analysis of gene networks, starting with network motifs [5],

the basic building blocks of gene networks. The transfer function

method is sometimes regarded as ‘‘classical’’ in control theory. The

state-space or ‘‘modern’’ approach describes a system as a set of

input, output, and state variables related by first-order differential

or difference equations. One of the advantages of using the state-

space method is that it can be used to model multiple-input

multiple-output (MIMO) gene networks in a compact manner,

utilizing vectors and matrices. Furthermore, we show that the

linear state-space approach enables us to utilize a spectrum of tools

available for optimal/robust estimation/control for gene network

modeling [35–37]. As an example, we illustrate that the Kalman

filter, one of the well-established optimal estimation tools, can be

applied for stochastic modeling of a simple two-gene network.

Finally, using a six-node gene network, we demonstrate that our

linear approaches can reduce the modeling complexity and

provide rapid insight about its dynamic behavior, as compared

to conventional non-linear modeling approaches.

The manuscript is organized as follows. We commence our

analysis with modeling a simple gene regulation case and

subsequently provide the details behind the proposed linearization

scheme. Using these results we present the transfer function
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method for gene network modeling and exemplify the methodol-

ogy for collapsing cascade and parallel forms to transfer functions.

We then provide six case studies that cover a wide range of systems

and synthetic biology problems including: cascaded simple

regulations, synthetic gene oscillators, effect of the basal produc-

tion rate, four cascaded simple regulation loops, and finally

interconnected feedforward loops. Subsequently, we present the

linear state-space method for gene network modeling and we

outline its use for the analysis of cascaded simple regulations.

Using the linear state-space formulation, we conclude this

manuscript with two additional case studies: the use of optimal

estimation in gene network measurements and the analysis of the

six-node gene network.

A. Modeling simple gene regulation
A two-gene network (or simple regulation) can be regarded as a

fundamental unit that serves as a basic building block for

constructing elaborate networks. In simple regulation, one gene

(Ygene) can be activated by another gene (Xgene), as indicated by the

notation XRY in Figure 1. This notation, however, involves in

reality multiple steps. First, Xgene is transcribed into a messenger

RNA, XmRNA, which is then translated into a protein (Xprotein). In the

presence of a signal Sx, Xprotein shifts to its active form X*protein (also

called a transcription factor of Ygene) and binds the promoter of

Ygene, transcribing Ygene into YmRNA. Finally, as YmRNA is translated,

Yprotein is produced. The signal Sx acts like a switch, by determining

the amount of active form Xprotein or X*protein. The production rate

of Yprotein can be expressed as a function of time F(t) (units of

concentration per unit time). The production is balanced by

processes that decrease Yprotein, namely degradation (protein

destruction) and dilution (concentration reduction due to the

increase of cell volume) [13]. Degradation and dilution can be

collectively denoted as a time-dependent function d(t). The change

in the concentration of Yprotein depends on both F(t) and d(t), and its

dynamics can be described as an ordinary differential equation:

dy(t)

dt
~F (t){d(t)y(t) ð1Þ

where y(t) stands for the concentration of Yprotein. If we assume that

d(t) depends only on dilution (for example, in growing bacteria,

many proteins are stable and they are not actively degraded), d(t)

can be expressed as a constant D, based on following equation

[13]:

d(t)~D~
ln 2

T1=2

ð2Þ

where T1/2 is the response time, the time to reach one half of the

steady-state Yprotein concentration. The response times of bacteria

are approximately 30 min to a few hours, while those of eukaryotic

cells can be longer [13]. Equation 1 can now be restated by

substituting d(t) by the constant D:

dy(t)

dt
~F (t){Dy(t) ð3Þ

For the analysis of the function F(t), we need to consider a

number of additional factors. As stated earlier, Xprotein must be

converted to X*protein by the signal Sx in order to initiate the Yprotein

production. The concentration of X*protein can be expressed as a

function of Sx, which is an activating switch. This switch-like

relationship can be described using the non-linear Hill function

[13], and the relationship between X*protein (we use x*(t)) and Sx (we

use sx(t)) can be expressed as:

x � (t)~
x(t):sx

l(t)

K1A
lzsx

l(t)
ð4Þ

where x(t) stands for the concentration of total Xprotein that includes

both inactive and active forms. It is the maximal level of X*protein or

x*(t) (in units of concentration) that is reached when sx(t)&K1A. K1A

is the concentration of sx(t), at which half-maximal concentration

of x*(t) is reached. The Hill coefficient l determines the steepness

of the function. Note that K1A and l are determined by a number of

factors, such as enzymatic activity, pH, and temperature, and can

be estimated from experimental data. When sx(t) acts as a

repressor, the corresponding Hill function is :

x � (t)~
x(t)

1z
sx(t)

K1B

� �m ð5Þ

where x(t) is the maximal level of the x*(t) production that is

reached when sx(t) = 0. In other words, x(t) is reached (x*(t) = x(t))

when there is no signal causing repression. K1B is the concentration

Figure 1. A schematic illustration of simple gene regulation.
doi:10.1371/journal.pone.0012785.g001
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of sx(t), at which half-maximal repression of the x*(t) production is

reached. Again, m is the Hill coefficient and determines the

steepness of the function.

As a generalization, we can assume that F(t) is the sum of a basal

promoter production rate F0 and the Hill function:

F (t)~F0z
Fmax

: x � (t)½ �n

K2A
nz x � (t)½ �n ð6Þ

Fmax is the maximal level of the Yprotein production (in units of

concentration per unit time) that is reached when x*(t)&K2A. K2A is

the concentration of x*(t) at which half-maximal production of

Yprotein is reached. n is the Hill coefficient, and K2A and n are

determined by a number of factors such as the translation rate,

pH, and temperature. Similarly, when x*(t) acts as a repressor, the

corresponding Hill function is:

F (t)~F0z
Fmax

1z
x � (t)

K2B

� �o ð7Þ

where Fmax is the maximal level of the Yprotein production that is

reached when x*(t) = 0. Fmax is reached when there is no

transcription factor causing repression. K2B is the concentration

of x*(t) at which half-maximal repression of the Yprotein production

is reached. o is the Hill coefficient.

B. Linearization
A non-linear model can be linearized around an equilibrium

point using a Jacobian matrix, providing insight about the network

behavior near that point [38]. For systems that involve Hill

functions, there have been various linearization approaches that

can be used to study the dynamics outside of the equilibrium

[13,39–41]. These methods enable us to convert a non-linear

model into a linear model and use linear tools for studying network

dynamics over a wide range of parameter and variable values.

Two such approaches widely discussed in the literature [13,39–41]

are the two-section piecewise linearization (step function or logic

approximation) and the three-section piecewise linearization

(Figure 2). In the figure, Fx(t) represents the production rate of

Yprotein due to Xprotein. In this section we introduce an alternative

linearization approach and in later sections we will illustrate how

the particular approach enables us to capture the dynamics of gene

networks in an intuitive and efficient way.

Our method is a variation of a two-section piecewise

linearization. In the step function approach (yellow in Figure 2),

Fx(t) is zero for all the values of x*(t) between 0 and a threshold

point (TP) and takes its maximum rate when x*(t) is above TP.

Therefore, the step function is inherently less accurate than the

Hill Function and results to loss of information. When using the

three-section piecewise linearization approach (green in Figure 2)

one has to identify the two threshold values. As shown in Figure 2,

using our approach we are required to identify one threshold.

Furthermore, we may set our threshold higher than 2K2A, the x*(t)

value required for reaching Fmax, thus eliminating the need for

explicitly incorporating the threshold into our model.

The first step towards applying linear control theory tools is to

reduce (3) to a linear equation, in other words express dy(t)/dt as a

linear combination of x(t) and y(t). The concentration x*(t) of (4)

can be expressed as the product of x(t) and a function F1(t) that

depends only on sx(t) as shown in (8). Note that l and K1A are

constant values determined experimentally, and F1(t) is a scaling

factor that always lies between 0 and 1, depending on the value of

sx(t). When sx(t) is zero, F1(t) is also zero, and if sx(t) is very large,

then F1(t) approaches one.

x � (t)~
x(t):sx

l(t)

K1A
lzsx

l(t)
~x(t):F1(t) F1(t)~

sx
l(t)

K1A
lzsx

l(t)

� �
ð8Þ

The Hill function relationship between Fx(t) and x*(t) in (6) can

be plotted as shown in Figure 2 (red line). As described earlier,

Figure 2. Linearization of the relationship between F(t) and x*(t). The red line represents the Hill function. The linear approximation is
represented by a blue line in two distinct regions separated by a dotted line. The logic approximation (step function) is shown in yellow and the
three-section piecewise linearization is shown in green.
doi:10.1371/journal.pone.0012785.g002
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Fmax is the maximal level of the Yprotein production that is reached

when x*(t)&K2A, and K2A is the concentration of x*(t) at which

half-maximal production of Yprotein is reached.

For linearization, we will consider two cases: a case when x*(t) is

smaller than 2K2A and another when it is greater than 2K2A

(Figure 2). For the first case, we will assume that a line that passes

through the origin (0,0) and (2K2A, Fmax) represents the linear

approximation of the Hill function, and the slope of the line is:

slope~
Fmax{0

2K2A{0
~

Fmax

2K2A

ð9Þ

Now, denoting the slope as F2, (6) can be expressed as:

F (t)~F0z
Fmax

: x � (t)½ �n

Kn
2Az x � (t)½ �n ~F0zFx(t)

~F0z
Fmax

2K2A

:x � (t)~F0zF2
:x � (t)

ð10Þ

Substituting x*(t) in (10) by x(t)?F1(t) from (8), (10) becomes:

F(t)~F0zF2x � (t)~F0zF2x(t)F1(t) ð11Þ

Denoting F2?F1(t) as f(t), (11) becomes:

F (t)~F0zf (t)x(t) ð12Þ

Substituting F(t) by f(t)x(t), (1) can now be expressed as:

dy(t)

dt
~F0zf (t)x(t){d(t)y(t) ð13Þ

where dy(t)/dt is shown as a linear combination of x(t) and y(t).

For the x*(t) values greater than 2K2A, F(t) is equal to the

constant Fmax (Figure 2). Therefore, (1) can be expressed as:

dy(t)

dt
~F0zFmax{d(t)y(t) ð14Þ

which again shows that dy(t)/dt is a linear combination of Fmax and

y(t). (13) and (14) can be shown together as:

dy(t)

dt
~

F0zf (t)x(t){d(t)y(t) (0ƒx � (t)ƒ2K2A)

F0zFmax{d(t)y(t) (x � (t)w2K2A)

�
ð15Þ

Similarly, for the case when sx(t) acts as a repressor as shown in (5),

x*(t) can be expressed as :

x � (t)~
x(t)

1z
sx(t)

K1B

� �m ~x(t):F1(t) F1(t)~
1

1z
sx(t)

K1B

� �m

0
BB@

1
CCA ð16Þ

When x*(t) acts as a repressor, based on the linearization scheme

shown in (9–12), the corresponding Hill function (7) can be

expressed as:

F (t)~F0z
Fmax

1z
x � (t)

K2B

� �o~
F0{f (t)x(t) (0ƒx � (t)ƒ2K2B)

F0 (x � (t)w2K2B)

�
ð17Þ

From now on, we will consider only the non-trivial cases when

x*(t) is between zero and 2K2A.

Results and Discussion

A. Transfer function method for gene network modeling
A transfer function can be derived from a linear, time-invariant

differential equation using Laplace transform [42]. It is a

mathematical representation of the relationship between the input

and output in the frequency domain. Towards analyzing a gene

network, the transfer function method can provide useful

information about the behavior and stability of a system.

Furthermore, using block diagrams, the transfer function method

can represent large complex structures in a simple and intuitive

way. Notably, the stochastic nature of gene networks has also been

analyzed in the frequency domain [43–45].

1. Simple regulation. Starting from equation (8), if we

assume that the concentration of the signal sx(t) is constant or time-

invariant (for example, being at saturation), then we can assume

F1(t) is also a constant value, F1. Now (3) can be rewritten as:

dy(t)

dt
~F (t){Dy(t)~F0zFx(t){Dy(t) ð18Þ

This time-invariance is required for the application of the transfer

function method [42]. Using the Laplace transform, (18) can be

expressed as:

sY (s){y(0)~F (s){Dy(s)~
F0

s
zFX (s){DY (s) ð19Þ

where F(s), X(s), and Y(s) represent the Laplace transform of F(t),

x(t), and y(t). Once the Laplace transform is evaluated, computing

in Laplace domain is algebraic and the complexity of solving

differential equation is eliminated [42][41][41][42][43][48].

Assuming the initial concentration of Yprotein, y(0), is zero, the

transfer function G(s), which relates the input F(s) and output Y(s) in

the frequency domain, can be expressed as:

G(s)~
Y (s)

F (s)
~

Y (s)

F0

s
zFX (s)

~
1

szD
ð20Þ

Note that the constant D plays a critical role in G(s). It implies that

the critical factor that characterizes this system is the dilution/

degradation constant. Also in this case the transfer function G(s) is

not affected by the input F0. However, as the network becomes

more complicated (e.g., with positive and negative feedbacks), F0/s

is incorporated into the transfer function. The block diagram

representation of the input, output, and transfer function of simple

regulation is shown in Figure 3. Using the inverse Laplace

transform, the output in the time domain, y(t), can be calculated as

following :

y(t)~
F0zFx(t)

D
1{e{Dt
� �

ð21Þ

In case x(t) is not changing (has reached its steady state) and set as a

constant value X, F?x(t) becomes FX and the resulting step response is:

Figure 3. Block diagram representation of simple regulation.
doi:10.1371/journal.pone.0012785.g003
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y(t)~
F0zFX

D
1{e{Dt
� �

ð22Þ

where y(t) will approach the steady state value as time t goes to

infinity, and the constant D in e2Dt determines how fast the steady

state is reached. The step response in Laplace domain can be

expressed as:

Y (s)~
F0zFX

s(szD)
ð23Þ

Solving a differential equation or evaluating the inverse Laplace

transform enables us to evaluate the output response of a system.

However, these techniques can be laborious and time-consuming.

The use of poles and zeros, fundamental to the analysis and design

of control systems, is a technique that can simplify the evaluation.

Given the first-order transfer function G(s) in (20), a pole, the value

for s which makes the denominator of the transfer function equal

to zero, exists at s = 2D. Since D (the degradation/dilution factor)

is greater than zero in a real biological system, 2D can be assumed

to be a negative number. This indicates that the system is stable

because stable systems do not have any positive poles [42]. For a

system to be stable, its natural response must decay to zero, as time

approaches infinity, or oscillate. There are various specifications

(time constant, rise time, and settling time, etc) that may reveal

useful information about the network behavior (the reader is

referred to [42]). 1/D, called the time constant of the response, is

the time for the step response to rise 63% of its final or steady state

value. Rise time, defined as the time for the system response to go

from 0.1 to 0.9 of its steady state value, is equal to 2.2/D. Settling

time is the time for the response to reach and stay within 2% of its

final value and it is equivalent to 4/D.

2. Cascade and parallel forms. Based on the block diagram

representation of simple regulation shown in Figure 3, we can

now decompose any complex gene network using four

interconnection topologies: cascade forms, parallel forms,

feedback loops, and feedforward loops. These topologies are

often intermingled with one another as shown in later examples. In

this section, we describe the cascade and parallel forms.

Figure 4(a) shows an example of cascaded simple regulation

blocks. The first output is the product of F(s) and GY(s). It is also

the input for the second simple regulation. The second or final

output is the sum of F(s)GY(s) and the basal production rate F0/s

multiplied by F(s) and GZ(s). This cascade form can be simplified

using an equivalent transfer function G(s) as shown at the bottom

of the Figure 4(a). Figure 4(b) shows an example of parallel

simple regulations. In this case, the equivalent transfer function

G(s) is the algebraic sum of GY(s) and GZ(s). Using these

simplification methods, any large complex block diagram can be

reduced into a single transfer function.

3. Feedback loops. Figure 5(a) shows the block diagram of

a feedback loop. Compared to Figure 3, there is an additional

feedback element H(s). The block diagram can be expressed in the

Laplace domain as:

Y (s)~F (s)
G(s)

1+G(s)H(s)
~F (s)G(s)

0
G(s)

0
~

G(s)

1+G(s)H(s)

� �
ð24Þ

where G(s)9 is the simplified equivalent transfer function.

4. Case Study I: Autoregulations. Autoregulation is the

simplest form of feedback loops and consists of one simple

regulation and one feedback loop (Figure 5(b)). In simple

regulation, x*(t) is the only transcription factor that determines the

production of y(t). On the other hand, in autoregulation, both x*(t)

and y*(t), the active form of y(t), can affect the y(t) production. The

y(t) production function due to y*(t) or fy(t) requires two Hill

functions as in the case of y(t) production function due to x*(t).

Assuming that the signal sy that controls the y*(t) formation is an

activator:

y � (t)~
y(t):sy

l(t)

K1A
lzsy

l(t)
ð25Þ

The production function Fy(t) with respect to y*(t) can be expressed

as:

Fy(t)~
Fmax

: y � (t)½ �n

K2A
nz y � (t)½ �n ð26Þ

Applying the linearization scheme used in (9–12), we can rewrite

(26) as:

Fy(t)~H2y � (t)~H2y(t)H1(t)~h(t)y(t) h(t)~H2H1(t)ð Þ ð27Þ

h(t) in (27) is equivalent to f(t) in (12). As in (18), if we assume that

the signal sy(t) is constant then we can express H1(t) as a constant

value H1 and, consequently, h(t) as H (H = H1 H2).

Figure 4. Cascade and Parallel forms. (a) Two cascaded simple regulations (above) and their equivalent simplified form (below). (b) Parallel
simple regulations (above) and their equivalent simplified form (below).
doi:10.1371/journal.pone.0012785.g004
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Negative autoregulation (NAR) occurs when a transcription

factor represses the transcription of its own gene (negative

feedback). It has been demonstrated that NAR speeds up the

response time of the gene expression, decreases the steady state

value, and reduces cell-cell variation in protein levels [13,46].

Using (20) and (24), the transfer function G9(s) can be derived

as:

G(s)0~
G(s)

1zG(s)H(s)
~

G(s)

1zG(s)H
~

1

szD

1z
1

szD
H

~
1

szDzH
~

1

szD0
D0~DzHð Þ

ð28Þ

Note that we have a new degradation/dilution constant D9.

Since both D and H have positive values in biological systems,

D9 is also positive, indicating that the system is stable based on

the pole-zero analysis described previously (Figure 5(c)).
Furthermore, the time constant of the response (1/D9) is

greater than 1/D since H is positive. This explains the

experimental observation of the decrease of the response time

using NAR (Figure 5(c) and (d)).

Positive autoregulation (PAR) occurs when a transcription

factor controls its own protein production rate. In contrast to

NAR, the response time is extended and the steady state value and

cell-cell variation are increased [13]. Using (20) and (24), the

transfer function of PAR is:

G(s)00~
G(s)

1{G(s)H(s)
~

G(s)

1{G(s)H
~

1

szD

1{
1

szD
H

~
1

szD{H
~

1

szD00
D00~D{Hð Þ

ð29Þ

Equation 29 illustrates that, compared to simple regulation, the

time constant (1/D0) is increased because D0 is equal to D

subtracted by H, a positive number. This explains the increase of

the response time (Figure 5(c) and (d)). Additionally, for the

system to be stable, – D0 must be negative (or H must be smaller

than D). In other words, if the positive feedback is ‘‘too strong’’ (H

is greater than D) then the system may become unstable.

5. Case Study II: Negative feedback loop involving two

cascaded simple regulations. Figure 6 shows the block

diagram of a negative feedback loop that consists of two cascaded

simple regulations. Xgene activates Ygene in the presence of signal SXY.

Ygene then activates Zgene in the presence of SYZ, and Zgene at the same

time represses Ygene in the absence of SZY. If we assume that the

basal protein production rate is negligible (zero) the transfer

function becomes second-order system and there are well-

established linear control theory tools for analyzing second-order

systems. However, as we will show in subsequent section, the

results can be extended to cases where the basal rates are not zero.

Figure 5. Feedback loops. (a) Block diagram of a feedback loop and its simplified equivalent form. (b) Block diagram of negative autoregulation
(NAR) and positive autoregulation (PAR). (c) The effect of H on the stability and behavior. NAR speeds up the response time of the gene expression
and decreases the steady state value. In contrast, PAR increases both the response time and steady state value. (d) Simulation results. SR stands for
simple regulation. The effects of NAR and PAR on the response time and steady state value are shown.
doi:10.1371/journal.pone.0012785.g005
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Using (24), the transfer function can be expressed as:

G(s)~
FYZGY (s)GZ(s)

1zFZY GY (s)GZ(s)
ð30Þ

Substituting GY(s) and GZ(s) by 1/(s+DY) and 1/(s+DZ), (30)

becomes:

G(s)~
FYZ

s2z(DY zDZ)szDY DZzFYZFZY

ð31Þ

Now we have a second-order transfer function G(s). Whereas

varying the first-order transfer function parameter D changes only

the response time (1/D), changing the parameters (FYZ, FZY, Dy

and Dz) of a second-order transfer function can influence both the

speed and form of the system response [42]. G(s) can be restated in

a general second-order form:

G(s)~
FYZ

s2zaszb
a~DY zDZ, b~DY DZzFYZFZYð Þ ð32Þ

The natural frequency vn of a second-order system is defined as

the frequency of an undamped oscillation [42].

vn~
ffiffiffi
b
p

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DY DZzFYZFZY

p
ð33Þ

Without damping, the poles would be on the imaginary axis as

shown in Figure 7(b). Equation (33) shows that the natural

frequency can be tuned by varying the strength of both FYZ and FZY.

For a damped system, the damping ratio f is defined as [42]:

f~
a

2vn

~
DY zDZ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DY DZzFYZFZY

p ð34Þ

Various step responses of a second-order system with respect to the

damping ratio f are shown in Figure 7. The damped natural

frequency vn is defined as [42]:

vd~vn

ffiffiffiffiffiffiffiffiffiffiffiffi
1{f2

q
ð35Þ

The poles of an undamped oscillating system lie on the imaginary

axis, and thus the system is said to be marginally stable [42]. Also,

note that all the poles in Figure 7 lie on the left half of the plane

except for the ones that belong to an undamped oscillation. For an

underdamped oscillation, additional specifications can be defined

and used to predict the response in detail, including the peak time,

percent overshoot, settling time, and rise time. Using a numerical

approach, rise time can be computed even though there is no

precise analytical solution [42]. All these specifications can be

expressed in terms of FYZ, FZY, DY and DZ.

6. Case Study III: Tunable synthetic gene oscillators.

Building tunable synthetic gene oscillators has been a central area of

focus for systems and synthetic biologists [47–49]. An oscillating system

is basically an undamped second-order transfer function (Figure 7(b)).
For a system to have no damping, a (being equal to DY + DZ) in (34)

must be zero. Therefore, an additional negative term is required to

decrease the value of a to zero (or close to zero from a practical point of

view) since the degradation/dilution constants DY and DZ are positive

numbers. Using the transfer function method, we will show that the use

of positive autoregulation can lead to undamped oscillations and that

by varying the strength of positive autoregulation we can tune the

oscillation frequency.

A tunable synthetic gene oscillator is shown in Figure 8 [47].

The genes araC (denoted as 1) and lacI (denoted as 2) have

identical hybrid promoters that can be activated by AraC in the

presence of arabinose and repressed by LacI in the absence of

IPTG. As shown in the figure, araC has a positive autoregulation

while LacI a negative autoregulation. F1 and F3 are determined by

the signals, arabinose and IPTG, respectively. The uppermost

block diagram in Figure 8 can be simplified by removing

autoregulations (28 and 29). It can be further simplified since it has

two cascaded elements. The final equivalent block diagram with a

single transfer function is shown at the bottom of the figure. Using

(24), the overall transfer function can be expressed as:

G(s)~
F2

s2z(D1zD2{F1zF2)szD1D2zD1F3{D2F1{F1F3zF2F4
ð36Þ

According to (36), a ( = D1 + D2 2 F1 + F2) must be zero (or close to

zero) for an undamped oscillation. It is clear that F1, the only

negative term created by the positive autoregulation of araC, can

contribute to decreasing a to zero. This explains why positive

autoregulation is needed for an undamped oscillation in biological

systems. The natural frequency of the response is:

vn~
ffiffiffi
b
p

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D2zD1F3{D2F1{F1F3zF2F4

p
ð37Þ

Equation 37 shows that both the parameters influenced by

arabinose (F1 and F2) and parameters influenced by IPTG (F3 and

F4) can change or tune the oscillating frequency. Since F1 and F2

in (37) contribute to both positive and negative terms, it is difficult

to predict their effect on the frequency. Likewise, F3 and F4 are

also found in both positive and negative terms in (37), again

making the prediction difficult. Experimentally, the IPTG

concentration and oscillating frequency show a non-monotonic

relationship [47].

Using the transfer function method, we can identify a way of

changing such a non-monotonic relationship into a monotonic

one. For example, if the negative autoregulation for lacl is removed

from the network (by removing the repression operator site from

the promoter), D1F3 and 2F1F3 are eliminated from (37). The

natural frequency then becomes:

Figure 6. Negative feedback loop involving two cascaded
simple regulations. The top block diagram is reduced (simplified)
into an equivalent block diagram shown at the bottom. Note that the
transfer function in the reduced form is the product of the transfer
functions GY(s) and GZ(s) multiplied by FYZ.
doi:10.1371/journal.pone.0012785.g006

(36)
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vn~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D2{D2F1zF2F4

p
ð38Þ

Now, F4 belongs to a positive term, meaning that as the IPTG

concentration is raised the oscillating frequency also increases, and

vice versa, indicating that IPTG can now cause a monotonic

behavior.

In order for an undamped system (a = 0) to be marginally stable,

b in (37) must be greater than zero so that the two poles lie

separately on the imaginary axis [42]:

Figure 7. Step response of a second-order system with respect to the damping ratio f (the poles are shown as X). (a) Overdamped
oscillation. The damping ratio is greater than 1 and the poles are both negative real numbers. The system reaches its steady state without oscillation.
As the damping ratio increases, it reaches the steady state slower. (b) Undamped oscillation. Note that all the poles are on the imaginary axis. The
damping ratio is zero and there is an oscillation without damping. (c) Underdamped oscillation. The damping ratio is between 0 and 1, and the poles
are complex numbers with the negative real part. The oscillation gradually decreases to zero as the system reaches its steady state. (d) Critically
damped oscillation. The steady state is reached in the fastest way without oscillation. The two poles have the same negative value [42].
doi:10.1371/journal.pone.0012785.g007

Figure 8. Tunable synthetic gene oscillator. The top block diagram is reduced into the block diagram in the middle by removing positive and
negative autoregulation. Then, the two cascaded transfer functions are reduced into a single equivalent transfer function, as shown in the bottom
block diagram.
doi:10.1371/journal.pone.0012785.g008
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D1D2zD1F3{D2F1{F1F3zF2F4w0 ð39Þ

There are two negative terms (– D
2
F1 and – F1F3) that can make

the system unstable and they are related to both arabinose (F1) and

IPTG (F3). However, since F1 is present in both terms and not in

any of the positive terms, decreasing the arabinose concentration

(and not the IPTG concentration) seems to be an effective solution

when there is an issue of instability.
7. Case Study IV: Eliminating the effect of the basal

production rate. In this section, we will demonstrate how the

effect of the basal production rate f0(t) can be removed using a

second-order negative feedback system described earlier. If we add

the Laplace transform of the basal Z protein production rate F0,Z(s)

to the model shown in the Figure 6, as illustrated in Figure 9, the

transform of the output Z(s) is given by:

Z(s)~E(s)GY (s)FYZGZ(s)zF0,ZGZ(s) ð40Þ

Note that E(s) is the error (difference) between F(s) and FZYZ(s). It is

analogous to the concept of steady-state error in the presence of a

disturbance (F0,Z(s) in our case) [42]. Substituting Z(s)~
F (s){E(s)½ �

FZY

into (40) and solving for E(s), we get:

E(s)~
1

1zFYZFZY GY (s)GZ(s)
F (s){

FZY GZ(s)

1zFYZFZY GY (s)GZ(s)
F0,Z(s) ð41Þ

where the first term can be regarded as a transfer function relating E(s)

to F(s) and the second term relating E(s) to F0,Z(s).

Applying the final value theorem to Eq. (41), we obtain:

e(?)~ lim
s?0

sE(s)~ lim
s?0

s

1zFYZFZY GY (s)GZ(s)
F (s)

{ lim
s?0

sFZY GZ(s)

1zFYZFZY GY (s)GZ(s)
F0,Z(s)

ð42Þ

As we assume the basal rate is constant F0,Z, F0,Z(s) becomes

F0,Z/s. Substituting this value into the second term of (42), the

steady-state error component due to the basal rate can be

found as:

{ lim
s?0

sFZY GZ(s)

1zFYZFZY GY (s)GZ(s)
F0,Z(s)

~{ lim
s?0

sF0,ZFZY GZ(s)

s 1zFYZFZY GY (s)GZ(s)½ �

~{
1

lim
s?0

1

F0,ZFZY GZ(s)
z lim

s?0

FYZGY (s)

F0,Z

ð43Þ

Equation (43) can provide important insight about reducing

the steady-state error due to basal activity by tuning the

strength of FYZ or FZY.

8. Case Study V: A synthetic oscillator involving four

cascaded simple regulation loops. A second order system

with a negative feedback loop described earlier could be

efficiently analyzed using a pole/zero plot and various

formulas. Even though we do not have such formulas for

higher order systems, pole/zero plots can still be useful for

predicting their behavior.

Figure 10 shows the block diagram of a fourth order system

with various feedbacks. It is a synthetic network called IRMA (In

vivo Reverse-engineering and Modeling techniques Assessment)

that consists of four genes (CBF1, GAL4, SWI5, and ASH1) in

Saccharomyces Cerevisiae [50]. It has been demonstrated both

computationally (using a non-linear model) and experimentally

that the network could be turned into an oscillator by changing

various parameters (Michaelis-Menten coefficient, Hill coefficient,

etc) that control the strength of the interactions among genes.

An equivalent model was built using the transfer function

method, as shown in Figure 10(a), where the strength of the

interactions was determined by changing the values of the

constants (F12, F23, F31, F33, F34, and F41) shown in the figure.

The numbers 1, 2, 3, and 4 in subscript represent the four genes

mentioned earlier, respectively. As described in the paper [50], we

were able to demonstrate that increasing the values of F12, F33,

F34, and F41 contributes to generating an oscillatory behavior.

Figure 10(b) shows that as we increase the values of those

constants, the dominant poles (two poles that have the least real

values) cross the imaginary axis. When the dominant poles are

exactly on the axis, the system exhibits an undamped oscillation,

similar to the behavior of a second order system shown in Figure 7
(see Movie S1 and File S1).

9. Case Study VI: Interconnected feedforward loops.

Feedforward loops (FFL) are network motifs [13] that combine into

more complex and larger networks (e.g. in Bacillus Subtilis [51]). The

coherent type-1 feedforward loop (C1-FFL) and incoherent type-1

feedforward loop (Ic1-FFL) are the most abundant FFL types [52]. In

this section, we will describe how transfer function method can be

used to model a network that consists of interconnected feedforward

loops. Figure 11(a) shows a simplified schematic diagram of the

network. Two sets of C1-FFL and Ic1-FFL in parallel are connected

in cascade. Ic1-FFLs generate pulses of C1 and C2, and C1-FFLs

create delays in C2 and C3 expression. Figure 11(b) shows a

schematic diagram that illustrates the sequential expression of C1,

C2, and C3. Figure 11(c) shows the block diagram of the network.

Using the transfer function method, the sequential expression of the

three genes can be simulated as shown in Figure 11(d). Note that if

the values of the protein concentrations are normalized, the

expression pattern will be equivalent to the one shown in

Figure 11(b).

Figure 9. Negative feedback loop involving two cascaded
simple regulations with the Laplace transform of the basal
production rate F0,Z(s) added. The top block diagram is reduced
(simplified) into an equivalent block diagram shown at the bottom.
doi:10.1371/journal.pone.0012785.g009

(41)
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B. Linear State-Space Method for Gene Network
Modeling

A state is a complete summary of the status of a system at a

particular point in time, and it is described by the values of a set of

state variables [53]. Based on the linearization scheme presented

previously, a linear state-space method can be applied to model

gene networks. There are many benefits in using the linear state-

space approach. First, it allows time-varying systems, meaning that

the models can include time-varying signals. This was not possible

in the case of transfer function-based models described earlier.

Secondly, large complex networks that are multiple-input

multiple-output (MIMO) systems can be represented in a compact

way, using vectors and matrices. Thirdly, the dynamic behavior of

a system can be understood using the eigenvalues and eigenvec-

tors. The eigenvalues are equivalent to the poles discussed in the

transfer function method. Finally, we can build a stochastic linear

state-space model that enables us to utilize a spectrum of tools

available for optimal/robust estimation/control for gene network

modeling [35–37]. As an example, we illustrate that the Kalman

filter, one of the well-established optimal estimation algorithms in

science and engineering, can be applied towards modeling a

simple two-gene network.

In the linear model of simple regulation (linear ODE form

shown in (13)), the system involves two proteins, x(t) and y(t), with

units of concentration per cell. If we consider gene y as our system

of interest, then and the state vector s can be expressed as:

s~ y(t)½ � ð44Þ

The state-space model can be represented as [53]:

_ss~AszBu?
dy(t)

dt
~{d(t)y(t)zF0zf (t)x(t)~{d(t)y(t)z 1 f (t)½ �

F0

x(t)

� �

A~{d(t),B~ 1 f (t)½ �,u~
F0

x(t)

� �� �
ð45Þ

where u is the input vector. Note that we do not have to assume

that f(t) and d(t) are time-invariant as in the transfer function case

(18).

The state-space method is analogous to the transfer function

method in many ways. Therefore, in this section we present only

the case of a negative feedback loop involving two cascaded simple

regulations. The network shown in Figure 6 can be written as a

state-space model:

dy(t)

dt
dz(t)

dt

2
664

3
775~

{d(t) {fzy(t)

fzy(t) {dz(t)

� �
y(t)

z(t)

� �
z

1

0

fxy(t)

0

0

1

� � F0,y

x(t)

F0,z

2
64

3
75

A~
{d(t) {fzy(t)

fzy(t) {dz(t)

� �
,B~

1

0

fxy(t)

0

0

1

� �
, u~

F0,y

x(t)

F0,z

2
64

3
75 ð46Þ

where fab(t) denotes a function (shown in (12)) related to the

production of protein b by protein a. F0,a represents the basal

production rate of protein a. We can predict the behavior and

Figure 10. Negative feedback loop involving four-cascaded simple. (a) Increasing the values of F12, F33, F34, and F41 contributes to
generating an oscillatory behavior (shown in red). (b) Increasing the values of F12, F33, F34, and F41 causes the dominant poles to cross the imaginary
axis. When the dominant poles are exactly on the axis, the system exhibits an undamped oscillation.
doi:10.1371/journal.pone.0012785.g010
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stability of the system using the eigenvalues and eigenvectors of the

matrix A [53,54]. For example, assuming dy(t) = dz(t) = 0.01

(constant), fzy(t) = 0.01 (constant), fyz(t) = 0.04 (constant), fxy(t)?x(t) = 10

(constant), the eigenvalues (l1 and l2) and eigenvectors (w1 and w2)

of A can be calculated as:

l1~{0:01z0:02i, l2~{0:01{0:02i,

w1~
{0:4472i

{0:8944

" #
, w1~

0:4472i

{0:8944

" #
ð47Þ

Since the eigenvalues are equivalent to the poles, we can

immediately predict that y and z will exhibit underdamped

oscillations and the system is stable. The solution can be written as:

y(t)

z(t)

" #
~C1el1tw1zC2el2tw2~C1e {0:01z0:02ið Þt {0:4472i

{0:8944

" #

zC2e {0:01{0:02ið Þt 0:4472i

{0:8944

" # ð48Þ

where C1 and C2 are determined by the initial values of y and z.

Depending on the initial values, the time-dependent values of y and

z can follow an infinite number of paths as shown in the vector field

(Figure 12). However, regardless of the initial values, the figure

shows that all the trajectories will eventually converge into an

equilibrium point. This equilibrium point can also be computed by

solving dy(t)/dt = 0 and dz(t)/dt = 0 in (46). Note that the damped

oscillatory behaviors that were predicted using the eigenvalues are

observed in both Y and Z expressions (Figure 12).

1. Case Study VII: Optimal estimation in gene network

measurements. Stochastic optimal estimation [18,19,43,45]

and control methods aim to determine the best strategy for

estimating or controlling a dynamic system in the presence of

uncertainty [35]. This objective is common to many fields,

including engineering, science, and economics [35]. Assume that,

in the case of simple regulation xRy, we are given noisy time-

series fluorescence measurement data of y protein [55–57]. Would

it be possible to ‘‘optimally’’ estimate protein x which is also

fluctuating due to noise? In this section, we will illustrate that the

Kalman filter, a well-established optimal estimation algorithm, can

be applied for stochastic modeling of a simple regulation (two-gene

network). Before we discuss the stochastic model of simple

regulation, it is important to note that there are two different

noise contributions in gene networks [18,58,59]. ‘‘Intrinsic noise’’

is generated by the inherent stochasticity of biochemical processes,

such as transcription and translation, which are directly related to

the expression of a specific gene. On the other hand, the

environment including other cellular components (mitochondria,

microtubules, etc) that indirectly influence the expression of y gene,

contribute to the ‘‘extrinsic noise’’.

First, the least squares estimation is used to estimate the

constant concentration of protein x (without noise), given noisy

measurement data of protein y. Using the Euler’s method,

equation (13) can be expressed as:

Figure 11. Interconnected feed forward loops. (a) A simplified schematic diagram. Two sets of C1-FFL and Ic1-FFL in parallel are connected in
cascade. (b) The sequential expression of C1, C2, and C3. Ic1-FFLs generate pulses of C1 and C2, and C1-FFLs create delays in C2 and C3 expression. (c)
Block diagram. The protein production constants ‘‘F’’s are not shown in the diagram. (d) Simulation result. The sequential expression of the three genes
is shown. Note that if the values of the protein concentrations are normalized, the expression pattern will be equivalent to the one shown in (b).
doi:10.1371/journal.pone.0012785.g011
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ynz1~ynz
dyn

dn
:h~ynz F0,nzf (t)xn{d(t)yn½ �:h

~F0,nhzf (t)hxnz(1{d(t)h)yn n~1,2,:::,N{1ð Þ
ð49Þ

where h is the step size. For simplicity, we will assume f(t) and d(t)

are constant (F and D) and the basal protein production rate and

initial value of y are zero (F0,n = y1 = 0):

y2~Fhx1z(1{Dh)y1~Fhx1

y3~Fhx2z(1{Dh)y2~Fhx2z(1{Dh)Fhx1

y4~Fhx3z(1{Dh)y3~Fhx3z(1{Dh)Fhx2z(1{Dh)2Fhx1

..

.

yNz1~FhxNz(1{Dh)yN~FhxNz(1{Dh)FhxN{1z� � �z(1{Dh)N{2Fhx1

?

y2

y3

y4

..

.

yNz1

2
6666666664

3
7777777775
~

Fh 0 � � � 0

(1{Dh)Fh Fh � � � 0

(1{Dh)2Fh (1{Dh)Fh � � � 0

..

. ..
.

P 0

(1{Dh)N{2Fh (1{Dh)N{1Fh � � � Fh

2
6666666664

3
7777777775

x1

x2

x3

..

.

xN

2
6666666664

3
7777777775

?y~Hx

ð50Þ

which can be compactly shown as y = Hx. Since the measurement

data vector y has noise:

y~Hxzey ð51Þ

where ey is assumed to be a Gaussian zero-mean white noise vector.

S, the covariance matrix of ey, can be shown as:

S~E ey eyð ÞT
h i

~

s2 � � � s2,Nz1

..

.
P

..

.

sNz1,2 � � � sNz1

2
664

3
775 ð52Þ

Note that in this formulation protein x is noise-free and thus has no

stochastic influence on y. Using the least squares method, the

estimated x can be calculated as:

x̂x~ HTH
� �{1

HTy ð53Þ

Now, we will use the Kalman filter for estimating noisy x from noisy

y (Methods: Derivation of the discrete-time Kalman filter for simple

regulation). For estimating the concentration of x with a noise vector

ex (intrinsic and extrinsic noise combined), following equations can

be used:

x̂Nz1DN~x̂N DN

x̂Nz1DNz1~x̂Nz1DNzKN yNz2{hNz1̂xNz1DN
� �

PNz1DN~PN DNzqN

KNz1~PNz1DNhNz1 PNz1DN hNz1ð Þ2zsNz2

h i{1

PNz1DNz1~PNz1DN 1{KNz1hNz1ð Þ2zKNz1DsNz2 KNz1ð ÞT

ð54Þ

Figure 13(a) shows x, which is the sum of a constant value

(200 molecules/cell) vector and Gaussian zero-mean white noise

Figure 12. Vector field of the negative feedback loop. The direction and magnitude of each vector is determined by (46). When the initial
value is (400,400), the trajectory eventually converges to the equilibrium point (200,800) (green arrows). Damped oscillations of both Y and Z
expressions are also shown in small boxes.
doi:10.1371/journal.pone.0012785.g012

(50)

Linear Theory for Gene Network

PLoS ONE | www.plosone.org 12 September 2010 | Volume 5 | Issue 9 | e12785



vector with a standard deviation of 10. The noise is assumed to

have both intrinsic and extrinsic components. y produced by the

action of x is shown in Figure 13(b). Note that the noise has been

reduced significantly. The noise in Figure 13(b) can be regarded

to be as intrinsic only, indicating that a simple regulation can

behave as a low-pass filter (removes high-frequency signals which

are noise components in this example) [32]. In Figure 13(c),
extrinsic noise ey described in (50) is added to y, and the total noise

is composed of both intrinsic and extrinsic components. For the

simulation, we assume that the extrinsic noise ey is a Gaussian

zero-mean white noise vector with the standard deviation 9.

Figure 13(d) shows the estimated x using the Kalman filter,

given y in Figure 13(c). Even though it does not exactly duplicate

x shown in (a), it is the ‘‘optimal’’ estimation of x.

2. Case Study VIII: Analysis of a six-node gene

network. Here, we will illustrate the utility of the state-space

method for the analysis of a 6-node network (Figure 14(a)).
There are a few dynamic features that we may intuitively extract

from the figure based on our previous discussions. For example,

there is a coherent type-1 feedforward loop (C1-FFL) embedded in

the network (that consists of A, B, and C), which suggests that gene

C is expressed after the expression of gene B (there is a delay in the

C expression).

The 6-node gene network can be modeled using the following

state-space formulation:

_AA(t)

_BB(t)

_CC(t)

_DD(t)

_EE(t)

_FF (t)

2
666666666664

3
777777777775
~

{dA(t) 0 0 {fDA(t) 0 0

fAB(t) {dB(t) {fCB(t) 0 0 0

fAC (t) fBC (t) {dC (t) 0 {fEC (t) 0

0 0 fCD(t) {dD(t) 0 0

fAE (t) 0 0 0 {dE (t) fFE (t)

0 0 0 fDF (t) 0 {dF (t)

2
666666666664

3
777777777775

A(t)

B(t)

C(t)

D(t)

E(t)

F (t)

2
666666666664

3
777777777775

z

1 fXA(t) 0 0 0 0 0
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ð55Þ

where fAB(t) is analogous to f(t) in (13) and accounts for the relation-

ship between A(t) (transcription factor) to B(t) (expressed protein). It is

Figure 13. Estimation of x using the Kalman filter. (a) x is the sum of a constant value (200 molecules/cell) vector and Gaussian zero-mean
white noise vector with a standard deviation of 10. It is assumed to have both intrinsic and extrinsic noise components. (b) y produced by the action
of x illustrated in panel a. (c) Extrinsic noise ey is added to y shown in panel b. (d) The estimated x using the Kalman filter is shown.
doi:10.1371/journal.pone.0012785.g013

(55)
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assumed that gene A is expressed by an arbitrary gene X, which is

shown as an input in the model. Figure 14(b) illustrates that

intuitive and qualitative information about the dynamic behavior can

be acquired using the linear state-space method. The delay in gene C

expression compared to the expression of gene B is also shown.

C. Further Discussion and Conclusion
We demonstrated that well-established tools of linear control

theory can be used to model gene networks and explain

experimental observations in a highly intuitive way. Methods

such as the transfer function (frequency domain) and linear state-

space (time domain) were applied to reveal inherent characteristics

and predict the dynamic behavior of various gene network

topologies, including cascade/parallel forms, feedback loops, and

feedforward loops. Additionally, we showed that well-established

optimal estimation tools, such as the Kalman filter, can be used in

the context of gene network modeling in the presence of noise.

While we assumed that multiple transcription factors act on a

single gene in an additive/subtractive way, in biological systems

positive or negative cooperativity, and mutual exclusion can also

be observed. Combinational logic is one approach that can be

used for determining the net effect of multiple inputs at such

junctions [13,30]. We expect that hybrid models that combine

both continuous and logical approaches may provide additional

insight.

Methods

A. Simulations
For simulations, the value of degradation/dilution constant (D)

was 0.01/min and f(t) was set as a constant (F) that ranged from

0.01 to 0.1/min. The input x(t) had a fixed value between 100 and

1000 molecules/cell and the typical basal protein production rate

was set as 0.1 molecules/min.

B. Derivation of the discrete-time Kalman filter for simple
regulation

1. Recursive least squares estimation. For the estimation

of x, a new piece of information ynew can be used without

repeating calculations already done on yold through the recursive

least squares estimation [34,36]. With a new piece of updated

information, (51) can be expressed as:

y2

y3

y4

..

.

yNz2

2
66666664

3
77777775
~

h1,1 h1,2 � � � h1,Nz1

h2,1 h2,2 � � � h2,Nz1

h3,1 h3,2 � � � h3,Nz1

..

. ..
.

P
..
.

hNz1,1 hNz1,2 � � � hNz1,Nz1

2
66666664

3
77777775

x1

x2

x3

..

.

xNz1

2
66666664

3
77777775
z

ey
2

ey
3
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4

..

.

ey
Nz2

2
66666664

3
77777775
ð56Þ

From (56), it can be stated that:

yNz2~ hNz1,1 hNz1,2 � � � hNz1,Nz1½ �

x1

x2

x3

..

.

xNz1

2
6666666664

3
7777777775
ze

y
Nz2

?yNz2~hNz1xNz1ze
y
Nz2

ð57Þ

A linear recursive estimator can be written as [36]:

x̂xNz1~x̂xNzKN yNz2{hNz1x̂xD
� �

ð58Þ

where KN is a gain matrix.

The mean of the estimation error ex̂x
Nz1 ~xNz1{x̂xNz1ð Þ can

be computed as [36]:

E ex̂x
Nz1


 �
~ I{KNz1hNz1ð ÞE ex̂x

N


 �
{KNz1E ey

Nz2½ � ð59Þ

The covariance matrix P of the estimation error ex̂x is:

P~E ex̂x ex̂x
� �T

h i
~

p1 � � � p1,N

..

.
P

..

.

pN,1 � � � pN

2
664

3
775 ð60Þ

Figure 14. A six-node gene network. (a) A schematic illustration. (b) Simulation result based on the linear state-space method.
doi:10.1371/journal.pone.0012785.g014

(56)
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A recursive formula for the calculation of the estimation-error

covariance also can be shown as [36]:

PNz1~ 1{KNz1hNz1ð ÞPN 1{KNz1hNz1ð ÞTzKNz1DsNz2 KNz1ð ÞT ð61Þ

The gain matrix can be expressed as [36]:

KNz1~PN hNz1ð ÞT hNz1PN hNz1ð ÞTzsNz2

h i{1

ð62Þ

2. Propagation of the mean and covariance. Suppose we

have the following linear discrete-time system [36]:

xNz1~ANxNzBNuNzex
N ð63Þ

where uN is a known input and ex
N is Gaussian zero-mean white

noise. The covariance matrix of ex can be shown as:

Q~E ex exð ÞT
h i

~

q1 � � � q1,N

..

.
P

..

.

qN,1 � � � qN

2
664

3
775 ð64Þ

If we take the expected value of both sides of (63):

E xNz1½ �~E ANxNzBNuNzex
N½ �?�xxNz1~AN �xxNzBNuN ð65Þ

which shows the propagation of the mean of xN [36]. The

propagation of the covariance can be shown as [36]:

P�xxDNz1~E xNz1{�xxNz1ð Þ xNz1{�xxNz1ð ÞT
h i

~AN P�xxDN AN
T zqN ð66Þ

3. Derivation of the discrete-time Kalman filter. If we

have all of the measurements up to and including time N+1

available for our estimate of xNz1, then we can form a posteriori

estimate denoted as x̂xNz1DNz1. If we have all of the measurements

before (not including) time N+1 available for our estimate of xNz1,

then we can form a priori estimate denoted as x̂xNz1DN . Similarly,

PNz1DNz1 denotes the covariance of x̂xNz1DNz1 and PNz1DN
denotes the covariance of x̂xNz1DN . Assuming that the initial state

E x1½ � is given:

x̂x1D1~E x1½ �~�xx1D1 ð67Þ

Using (65) that describes the propagation of the mean of xN , we

obtain:

�xx2j1~A1�xx1j1zB1u1?x̂x2j1~A1x̂x1j1zB1u1~x̂x1j1

(A1~B1~1,u1~0)
ð68Þ

The reasoning can be extended as following:

x̂xNz1DN~x̂xN DN ð69Þ

Assuming P1D1, the covariance of the initial estimate x̂x1D1, is given

and using (66):

P1D1~P�xx,1D1

P�xx,2D1~A1P�xx,1D1A1zq1?P2D1~A1P1D1A1zq1~P1D1zq1 (A1~1)
ð70Þ

The reasoning can be extended as following:

PNz1DN~ANPN DNANzqN~PN DNzqN (AN~1) ð71Þ

Now we have the time-update equations for x̂x and P and we need

the measurement-update equations for x̂x and P. Utilizing the

recursive least squares development (56–62), the discrete-time

Kalman filter for simple regulation can be summarized as:

x̂xNz1DNz1~x̂xNz1DNzKN yNz2{hNz1x̂xNz1DN
� �

KNz1~PNz1DNhNz1 PNz1DN hNz1ð Þ2zsNz2

h i{1

PNz1DNz1~PNz1DN 1{KNz1hNz1ð Þ2zKNz1DsNz2 KNz1ð ÞT

ð72Þ

Supporting Information

File S1 LabVIEW VI file for Case Study V.

Found at: doi:10.1371/journal.pone.0012785.s001 (0.06 MB

TXT)

Movie S1 Movie file for Case Study V.

Found at: doi:10.1371/journal.pone.0012785.s002 (1.16 MB

MOV)

Author Contributions

Wrote the paper: YJS LB. Conceived the modeling approach and its

theoretical foundation: Y-JS. Designed the simulations: Y-JS, LB.

Performed the simulations: Y-JS. Analyzed the simulation results: Y-JS,

LB.

References

1. Nelson DL, Cox MM (2005) Lehninger Principles of Biochemistry. New York:

W H Freeman and Company.

2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. (2002) Molecular

Biology of the Cell. New York: Garland Science.

3. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.

4. Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene

regulatory networks: in numero molecular biology. Nat Rev Genet 2: 268–

279.

5. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science 298: 824–827.

6. Iglesias PA, Ingalls BP (2009) Control Theory and Systems Biology. Cambridge:

The MIT Press.

7. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev

Genet 8: 450–461.

8. Cuccato G, Della Gatta G, di Bernardo D (2009) Systems and Synthetic biology:

tackling genetic networks and complex diseases. Heredity 102: 527–532.

9. Schena M (1995) Quantitative monitoring of gene expression patterns with a

complementary DNA microarray. Science 270: 467.

10. Kohane IS, Kho AK, Butte AJ (2005) Microarrays for an Integrative Genomics.

Cambridge: The MIT Press.

11. Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438:

443–448.

12. DasGupta B, Vera-Licona P, Sontag E (2010) Reverse Engineering of Molecular

Networks from a Common Combinatorial Approach. In Elloumi M,

Zomaya AY, eds. Algorithms in Computational Molecular Biology: Techniques,

Approaches and Applications. Hoboken: John Wiley & Sons.

13. Alon U (2006) An Introduction to Systems Biology: Design Principles of

Biological Circuits. London: CRC.

14. Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, et al. (2006) A

bottom-up approach to gene regulation. Nature 439: 856–860.

15. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new

engineering rules for an emerging discipline. Mol Syst Biol 2: 2006.0028.

Linear Theory for Gene Network

PLoS ONE | www.plosone.org 15 September 2010 | Volume 5 | Issue 9 | e12785



16. Bleris LG, Xie Z, Adadey A, Sontag E, Benenson Y (2009) Transcriptional

feedforward motif as stable expression unit. Systems Biology of Human Disease
Conference Proceeding. Boston.

17. Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks.

Nat Biotechnol 27: 1139–1150.
18. Dunlop MJ, Cox RS, 3rd, Levine JH, Murray RM, Elowitz MB (2008)

Regulatory activity revealed by dynamic correlations in gene expression noise.
Nat Genet 40: 1493–1498.

19. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene

expression and its consequences. Cell 135: 216–226.
20. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol

42: 563–585.
21. Smolen P, Baxter DA, Byrne JH (2000) Modeling transcriptional control in gene

networks–methods, recent results, and future directions. Bull Math Biol 62:
247–292.

22. Bower JM, Bolouri H (2001) Computational Modeling of Genetic and

Biochemical Networks. Cambridge: MIT Press.
23. Shmulevich I, Dougherty ER, Zhang W (2002) Gene perturbation and

intervention in probabilistic Boolean networks. Bioinformatics 18: 1319–1331.
24. Goutsias J, Lee NH (2007) Computational and experimental approaches for

modeling gene regulatory networks. Curr Pharm Des 13: 1415–1436.

25. Steggles LJ, Banks R, Shaw O, Wipat A (2007) Qualitatively modelling and
analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23:

336–343.
26. Schilstra (2008) Bio-logic: Gene expression and the laws of combinatorial logic.

Artif Life 14: 121.
27. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory

networks. Nat Rev Mol Cell Biol 9: 770–780.

28. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous
versus asynchronous modeling of gene regulatory networks. Bioinformatics 24:

1917–1925.
29. Bolouri H (2008) Computational Modeling of Gene Regulatory Networks.

London: Imperial College Press.

30. Shin YJ, Nourani M (2010) Statecharts for gene network modeling. PLoS One 5:
e9376.

31. Anderson BDO, Moore JB (1990) Optimal Control: Linear Quadratic Methods.
Mineola: Dover.

32. Lathi BP (2002) Linear Systems and Signals. Oxford: Oxford University Press.
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