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Abstract

Background: Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a
central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human
pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera
Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively.
Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world’s population.

Methodology/Principal Findings: We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B
domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-
phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without
any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a
concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated
with significant B domain movements in one of the interacting monomers.

Conclusions: We hypothesize that a loop in the interface between the A and B domains plays an important role linking the
position of the B domain to the buried surface among monomers through two a-helices. The proposed model links the
catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent
subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is
related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation
by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

Enhanced version: This article can also be viewed as an enhanced version (http://plosone.org/enhanced/pone.0012736)
in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note
that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web
plugin are available in Text S1.
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Introduction

During glycolysis, pyruvate kinase (PK) catalyzes the irreversible

phosphorylation of ADP at the expense of phosphoenolpyruvate

(PEP), yielding pyruvate and ATP. PK also regulates glycolytic

flux, serving as a switch between the glycolytic and the

gluconeogenic pathways, and the supply of glycolytic phospho-

metabolites used as synthetic precursors in cellular proliferation

[1].

Allostery is a critical mechanism of regulating PK activity. The

most common form of allosteric regulation for PK is its

upregulation by fructose-1,6-bisphosphate (FBP), which increases

the affinity and reduces the cooperativity of substrate binding [2].

However, other sugars have also been shown to regulate PK

activity; for example, fructose 2,6-bisphosphate is the primary

allosteric effector in trypanosomatids [3]. In mammalian devel-

oping tissues, the M2 isoform of PK is expressed and then replaced

in differentiated cells by an alternatively spliced variant, M1-

isozyme, that is not allosterically regulated. Two additional

allosterically regulable isozymes, PK L/R, are encoded by another

gene with alternative promoters to produce the liver form (L) or

the erythrocyte form (R) [4].
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Several observations suggest that allosteric regulation of

pyruvate kinase is a critical feature in proliferating cells and

tissues. First, tumors often lose expression of M1 and regain

expression of the PK-M2 [5,6], which is advantageous to the

unique metabolism of tumor cells because its regulation by both

fructose-1,6-bisphosphate and tyrosine phosphorylated proteins

gives tumors the metabolic flexibility to shuttle glucose byproducts

into anabolic versus catabolic processes, according to its growth

requirements [1,7,8]. Second, microorganisms that exhibit

obligate or facultative anaerobic growth, including bacteria and

yeast, possess allosterically regulated PK enzymes [9,10]. Third, a

variety of parasitic protozoans, including trypanosomatids and

apicomplexans, express allosterically regulable forms of pyruvate

kinase which allow them to adapt their glycolytic flux to the

different cell environments encountered throughout their life cycle

progression [3,11,12,13].

Toxoplasma gondii is an obligate intracellular parasite of warm-

blooded animals including humans, and belongs to the phylum

Apicomplexa, which includes other medically relevant organisms

such as Plasmodium falciparum and Cryptosporidium parvum, the

causative agents of malaria and cryptosporidiosis, respectively. T.

gondii infection causes toxoplasmosis, a significant health issue for

pregnant women and immunocompromised individuals [14]. The

life cycle of this parasite initiates when its invasive forms are

released into the host gut, where they invade host cells to

reproduce. Carbohydrates appear to be the main source of energy

for the rapidly multiplying forms of Toxoplasma, and the glycolytic

pathways provide the main catabolic route to consume them [15].

T. gondii possesses two genes coding for pyruvate kinases, which

have very distinct biochemical and enzymatic properties. PK1 is

considered to be a cytoplasmic enzyme involved mainly in the

glycolysis pathway, while PK2 localizes to the apicoplast and is

postulated to be involved in fatty acid synthesis [16]. PK1 encoded

by T. gondii appears to be the key regulator of the glycolysis

pathway since neither hexokinase nor phosphofructokinase

enzymes are allosterically regulated [15].

Previous characterization of cytoplasmic T. gondii pyruvate

kinase (TgPK1), using either parasite extracts [15] or a

recombinant purified enzyme [13], indicated that this enzyme

was allosterically activated by glucose 6-phosphate (G6P), which

enhanced its activity under PEP unsaturated conditions. Since

G6P is produced in the initial step of glycolysis by a hexokinase-

catalyzed reaction, this would imply a different regulatory

mechanism of the glycolytic flux in Toxoplasma parasites when

compared to its mammalian hosts, which are typically allosterically

regulated by a metabolite produced further down the pathway,

namely FBP. This observation also underscores that glycolytic

enzymes, despite their ubiquity, are shaped by evolution to best

serve the organism’s lifestyle.

A structural understanding of the peculiarities of TgPK1 in

relation to its enzymatic function would increase TgPK1’s value as

a chemotherapy target, as has been established for other parasites,

e. g. trypanosomatids [17]. To this end, we solved the structure of

TgPK1 in two configurations that provide insight into its allosteric

regulation, and have compared its enzymatic properties with other

apicomplexan PK enzymes.

Results

Enzymatic characterization and allosteric regulation
We have cloned and over-expressed the TgPK1 as a

recombinant protein in E. coli. The purified enzyme was found

to be active and a tetramer in solution based on its elution profile

on size exclusion chromatography (data not shown). The enzyme

was characterized enzymatically, with apparent Km, Vmax and Hill’s

coefficient (nH) values obtained for PEP (Table 1). The values here

reported are in agreement with those previously reported for this

enzyme [13].

The effect of various phosphorylated sugars on the enzymatic

activity of TgPK1 was also tested (Table 1 and Fig. 1). Although

the T. gondii enzyme showed activation by FBP and G6P, each

sugar affected the kinetic parameters differently. While G6P

showed a classic allosteric activation with a six-fold reduction in

the apparent Km and no effect on the Vmax. FBP did not impact

significantly the Michaelis constant but increased the Vmax by 20%.

Both G1P and F1P behaved as allosteric inhibitors with a 40%

reduction in the Vmax. The two remaining phosphorylated sugars

tested, F6P and RBP, showed no significant effect on the TgPK1

enzymatic.

TgPK1 crystallization and overall structure description
We solved the structure of two different constructs of TgPK1:

the full-length enzyme (Met1 to Glu531 plus its N-terminal 66His

tag), which crystallized in the absence of substrates, effectors or

added ions (‘‘full TgPK1’’); and an N-terminal truncated version

starting at position Ile39 (‘‘truncated TgPK1’’). Crystals of the

truncated TgPK1 were grown in the presence of K+, Mg2+ and a

potential inhibitor, although no evidence for this compound was

Table 1. Enzyme kinetic parameters of TgPK1 determined in
presence or absence of phosphorylated sugars.

Km Vmax nH

(PEP mM) (mM NADH/min)

No sugar 0.7560.051 0.04260.0012 1.7160.17

G6P 0.1260.008 0.04460.0008 1.4560.11

G1P 0.4760.057 0.02960.0014 1.6160.28

F6P 0.7560.104 0.04460.0024 1.4160.22

F1P 0.5860.081 0.02860.0016 1.5660.30

FBP 0.5560.044 0.05560.0018 1.6960.19

RBP 0.5060.049 0.03860.0014 1.6760.23

Apparent Km, Vmax and Hill coefficient (nH) values are reported plus or minus
their associated errors.
doi:10.1371/journal.pone.0012736.t001

Figure 1. TgPK1 enzymatic activity in the presence of mono
and biphosphorylated sugars. Graph of velocity against concen-
tration of Phosphoenolpyruvate. Derived kinetic constants are present-
ed in Table 1.
doi:10.1371/journal.pone.0012736.g001

Crystal Structure of TgPK1
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found in the electron density. The full length crystal lacked

electron density for the initial 40 residues, the same ones absent in

the truncated form. Equivalent residues have been removed from

human PK-R with no effect on its enzymatic activity [18].

Therefore the differences observed between these two structures

are most likely not related to the N-terminal truncation but rather

the result of different crystallization conditions.

The quaternary structure of the TgPK1, in both the full and the

truncated structures, is a tetramer resembling previously described

pyruvate kinase structures, e.g. E. coli PK (1PKY, rmsd 1.2 Å over

aligned Ca atoms and 47% sequence identity) and S. cerevisiae PK

(1A3X, rmsd 1.3 Å over aligned Ca atoms and 43% sequence

identity). In both crystals, the asymmetric unit is composed of a

tetramer with imperfect D2 symmetry. Each molecule in the

tetramer is connected through their A and C domains to other

units. The two A–A9 interfaces in the tetramer bury 1557 and

1691 Å2 in the full and 1774 and 2021 Å2 in the truncated form

and the C–C9 excluded from solvent on average 620 Å2 and

720 Å2 in the full and truncated forms respectively. This

asymmetry creates a ‘‘dimer-of-dimers’’ oligomeric structure.

Despite the differences in the areas of contact, both tetramers

showed the same overall dimensions, 135685679 Å (Fig. 2 and

supplementary Datapack S1). However, the full and truncated

TgPK1 tetramers did not show the same relative orientation

between the different monomers. Therefore, the superposition of

one chain does not result in a perfect match across the whole

oligomeric structure.

Each monomer is composed of four domains: A, B, C and N

[19,20]. The central A domain (spanning residues Ile59-Gly124

and Val224-Cys393) is composed of an (a/b)8 barrel. The B-

domain (from Pro125 to Pro223) is composed of only b-strands

and random coils. The catalytic site is located at the interface of

these two domains, where residues in domain A interact with PEP

and ADP and residues from the B domain contact ADP and Mg2+

[21]. The C domain extends from residues Val394 to Glu531 and

is composed of a and b structural elements. This domain contains

the effector binding site (also called the allosteric site) [22,23].

Finally, an N-terminal domain includes the first fifty amino acids

of the protein and is a helix-loop-helix motif, however in the

TgPK1 only a single helix is observed (Fig. 2A).

Figure 2. Structure of T. gondii pyruvate kinase. A) Monomeric structure. The A, B, and C domains are colored blue, red and green respectively.
The catalytic site at the interface of the A and B domains, and the allosteric site in domain C, are highlighted. B and C) Orthogonal views of the
homotetrameric organization of full TgPK1 (B) and truncated TgPK1 (C). The tetramer interface A–A9 is indicated by a line with diamond shaped ends,
and the C–C9 by a line with filled circles at its ends. Dotted circles indicate a disordered B domain in the full structure; and a ‘‘closed’’ conformation in
the truncated structure.
doi:10.1371/journal.pone.0012736.g002
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The monomers from the full length TgPK1 structure were all

similar to each other, superposing over all atoms with rmsd values

under 1 Å (Table 2). A notable difference among the four

monomers was the complete absence of electron density for the B

domain in one of the chains (D), which has not been reported for

any PK structure (Fig. 2B). Within the crystal lattice this domain

was exposed to a solvent channel and the closest crystallographic

neighbor is a C domain from chain C. The missing domain had

little to no influence over the quality of the A domain within chain

D, whose b-factors were similar to the average of the structure.

Conversely, in the truncated TgPK1 structure all of the B domains

were visible in the electron density, with one monomer remarkably

displaying a closed conformation for this domain (Fig. 2C). This

large structural rearrangement involving a rigid body motion of

the B domain resulted in a maximum displacement of nearly 20 Å

(Fig. 3 and supplementary Datapack S1). This conformational

change mimics the one that takes place during the normal catalytic

cycle of the pyruvate kinase when the binding of PEP and ADP

triggers the closure of the cleft between domains A and B. In the

truncated TgPK1 structure this closed conformation was observed

despite an empty active site. Steric hindrance effects would prevent

the binding of the nucleotide to this conformation; consequently

we defined it as inactive. We used the program DynDom [24] to

characterize this domain movement. Two hinge bending motion

regions were identified containing two conserved Pro residues,

P125 and P216, at which point the B domain pivots towards the A

domain by rotating ,68u, generating a 77% closed conformation

compared to the open conformation. Repeating the same analysis

to compare open conformations of the two TgPK1 structures

among them showed a range of rotation angles between 3.4u and

7.4u, with the closing percentage ranging from 13 to 89%. This

compares with rotations of 20u to 26u and closures of 88 to 98%

when inactive (T) and active (R) conformations have been

analyzed for the mammalian PK-M1 and M2 [25].

The full and truncated TgPK1 data were predominantly well-

ordered and the final models covered most of the sequence with

the exception of the previously described B domain and the initial

40 N-terminal residues in the full length structure. Additional

disordered regions included several loops in the full length C

domain (Val407-Pro409, Pro480-Thr485 and Lys515-Ser522). All

these regions are solvent exposed and with the exception of the last

one they are not involved in the C–C9 tetramer interaction

surface. It is noteworthy that the Pro480-Thr485 loop (corre-

sponding to the mobile loop in yeast PK [23]) and Lys515-Ser522

regions are part of the allosteric binding site. In the case of the

truncated TgPK1, the Lys515-Ser522 loop showed two confor-

mations: an ordered conformation where the electron density for

two Glu residues, 516 and 517, was well defined, and a disordered

conformation lacking electron density for the region between

residues 515 and 522 (Fig. 4A and supplementary Datapack S1).

In the disordered conformation, additional electron density was

observed and modeled as a sulfate molecule binding three side

chain hydroxyl groups of residues Thr437, Thr439 and Thr442.

Finally, a disordered region was exclusively associated with the

closing of the AB cleft in the truncated TgPK1, the Gly300 to

Ile306 loop (Fig. 3 and 5). Interestingly, this loop was ordered

despite the absence of a single conformation for the B domain in

Chain D of the full length structure.

Discussion

Structural flexibility and enzymatic activity
Prior studies have highlighted the important effect of PK’s

structural flexibility on its catalytic activity, particularly the

movement of the B domain [21,26]. The open conformation of

the B domain is an inactive state (Tight). Upon binding of both

substrates, it closes through a hinge motion to the active

conformation (Relaxed), which allows for the transfer of the

phosphate group from PEP to ADP [21]. However the two TgPK1

Figure 3. The B domain exists in multiple conformations. A) Superposition between full (Chain B) and truncated (Chain B) TgPK1 structures, in
dark and lighter tones, respectively. B) The detail shows two views of the B domain movement in the open (red) versus closed (pink) conformations.
C) Superposition between the A domains of the active rabbit PK-M1 in complex with ATP and oxalate (1A49[21]) with closed short TgPK1 (darker and
lighter tones respectively). Side chains from the Toxoplasma enzyme clashing with the ligands are represented.
doi:10.1371/journal.pone.0012736.g003

Table 2. All atoms superposition of the four monomers of
the T. gondii pyruvate kinase 1.

rmsd (Å) A B C D

A – 0.841 0.8 0.886

B 5.19 – 0.759 0.985

C 1.214 5.336 – 1.003

D 1.193 5.256 0.971 –

rmsd values are presented above the diagonal for the full form and below the
diagonal for the truncated construct.
doi:10.1371/journal.pone.0012736.t002
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structures reported here have revealed an extreme flexibility

extending the repertoire already present in the ,30 PK structures

available in the Protein Data Bank. First, the full length structure

showed three monomers in an open inactive conformation and

one subunit where there was no electron density for the B domain

(disorder likely due to lack of crystal contacts). This is consistent

with the B domain existing in solution as a continuum of open

conformations. Second, the truncated TgPK1 also showed two

different conformations for the B domain, a closed inactive

conformation in one of the subunits, and an open inactive

conformation in the three remaining subunits. The larger rotation

of the TgPK1 B domain rendered this conformation inactive. A

superposition with an active conformation of the pyruvate kinase,

rabbit PKM2 in complex with oxalate and ATP [21], highlights

potential steric hindrances between TgPK1 B domain residues –

Arg128, Phe131 and Arg210 – and the phosphonucleotide. This

closed inactive conformation illustrates the dynamic nature the

Toxoplasma enzyme and expands the range of movements of the

pyruvate kinase B domain.

Pyruvate kinases show some degree of cooperativity between the

subunits implying a structural linkage between them [27]. How

this is achieved is not well understood, but structural reports on the

same enzyme under different crystallographic conditions [25], in

complex with different ligands [21], or from mutants modifying

the inter-subunit communications [28], have shown subtle but

measurable changes in the tetramer shape, either in translation or

rotation of the different domains. In our case, the translation

component was very limited since both structures showed similar

dimensions of the homotetramer, within 1 Å (Fig. 2 and

supplementary Datapack S1). However, the quaternary structures

are clearly different, since the buried surfaces involved in the

tetramer assembly differ by more than 10%. These differences can

Figure 4. Allosteric site. A) The effector site of the two observed conformations in the TgPK1 structures colored according to surface electrostatic
potential. Left: empty site (ordered conformation); Right: a sulfate molecule occupies the effector site. B) Multiple sequence alignment color coded
according to sequence similarity of pyruvate kinases from T. gondii (TgPK1), P. falciparm (PfPK1), C. parvum (CpPK), E. coli, Geobacillus
stearothermophilus, Leishmania mexicana, Rabbit PK-M1, human PK-R, Yeast (S. cerevisiae) and human PK-M2. Positions 438 and 516 are highlighted in
cyan and yellow respectively. The top and bottom lines indicate the elements of secondary structure of the T. gondii and human PK-M2 enzymes
respectively. C. FBP binding sites of the yeast PK (1A3W[23]) and human PK-M2 (3BJF[8]). Side chains that interact with the phosphate moieties are
indicated.
doi:10.1371/journal.pone.0012736.g004
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be explained by small rotations (1 or 2u) along the A–A9 and the

C–C9 interfaces, that create some ,2 Å displacements. In both of

our TgPK1 structures, one of the B domains showed a

conformation outside of the average open inactive conformation

present in the other three subunits, which was associated with a

change in the dimerization surface interface along the A domains

but not the C domains. In the full length structure the differences

between the A–A9 dimer interfaces are smaller when compared to

the truncated TgPK1 but in both cases the smaller buried surface is

associated with the outlier B domain conformation. These slight

structural differences have a profound impact on the enzyme

kinetics and are responsible for the regulation of the enzyme

activity.

How the movement of B domain impacts the dimer interface is

poorly understood [2,22,29]. In the T. gondii PK1 structure,

changes in the B domain orientation are linked to displacements in

several regions in the A domain, but one in particular, the Gly300

to Ile306 loop located at the double intersection of the A and B

domains and the A–A9 dimer interface, stands out (Fig. 5 and

supplementary Datapack S1). This region contains a conserved

residue Glu305 whose side chain wedges between the A and B

domains, making a hydrogen bond (average distance in the full

length structure ,2.9 Å and ,3.0 Å in the truncated) with the

Nd2 of Asn214, a neighboring residue of the hinge region. In the

closed conformation of domain B, the whole Gly300-Ile306 loop is

disordered and the position of the Asn214 Ca shifts over 3 Å in

the two conformations. Our hypothesis links the order-disorder

transition of this loop with the closing of the B domain. The

Gly300-Ile306 loop is connected to helix a9, therefore the B-

domain movement could be relayed to the A–A9 interface via this

helical element (Fig. 5). In support of this, the changes in the A–A9

surface observed in the truncated TgPK1 structure involved

several residues located in helices a9 and also a12. The a12 is a

partner of helix a9 in the A9 domain and the last secondary

structure element of this domain directly linked to the C domain,

the allosteric binding domain. One might be inclined to suggest

that a conformational change in the C domain induced upon

binding of an allosteric regulator could then affect the adjacent

subunit. Changes in the relative position of these two helices or

enhanced structural flexibility could facilitate the movement of the

B domain and consequently increase affinity for the substrate.

These changes observed in the different subunits of the TgPK1

could be explained by other mechanisms but the proposed model

addresses two observations – the cooperativity among subunits and

the linking between the allosteric site and the catalytic cleft.

Allosteric regulation
The T. gondii PK1 enzyme is allosterically activated by glucose-

6-phosphate. This was unexpected since this enzyme contains a

glutamic acid at position 438, which has been considered a

hallmark of unregulated enzymes like mammalian PK-M1 [13]

(Fig. 4B). It is generally thought that a positively charged amino

acid is required to bind the allosteric effector FBP, but little is

known about the binding requirements for other allosteric

compounds. In the case of human PK-M2, the Ne atom of the

Lys side chain coordinates the 19-phosphate moiety of FBP.

However, the yeast PK binds FBP and possesses a Thr residue at

that position; and Leishmania mexicana PK, that is also regulated by

a biphosphorylated sugar (fructose-2,6-biphosphate), has an Asp

residue at this position (Fig. 4B). Therefore, having a bulky,

negatively charged residue like Glu at this position would be

expected to hinder the binding of positively charge entities like

biphosphorylated sugars but not monophosphorylated sugars. In

the truncated TgPK1, two monomers have a sulfate group in the

region Thr437-Thr442. The presence of a sulfate group in the

allosteric binding had been reported for other structures and had

been postulated to occupy the position allocated for the phosphate

moiety of the effectors [10,25,30]. This region is involved in the

binding of the 69 phosphate group of FBP in human PK enzymes,

M2 and R, and in the yeast PK. The largest stereochemical

hindrance for the binding of biphosphorylated effectors in TgPK1

is His512, a residue situated at the bottom of the allosteric binding

site. This residue is conserved among the parasitic enzymes and, in

its current rotamer, would shift any allosteric compound position

with respect to the FBP as recognized in either the PKM2 or the

yeast structures (Fig. 4C).

Figure 5. The A–A9 interface of TgPK1. The A domain is represented as a transparent surface and the A9 domain as a cartoon representation. The
position of the Gly300-Ile306 loop is indicated in yellow. Helix a9 from the A domain is indicated with a circle, and its interacting helix in the A9
domain, a12 is colored in cyan. ATP and oxalate are shown for reference, with their positions derived from a superposition with 1A49[21]. The scene is
viewed through the B domain (but both B domains have been excluded for clarity).
doi:10.1371/journal.pone.0012736.g005
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Unexpectedly, we observed an ordered conformation in the

allosteric binding site with well-defined electron density for two

regions (Pro480-Thr485 and Lys515-Ser522), absent in previously

determined structures of PK without effectors [22,23]. In the new

conformation present in the truncated TgPK1, when the Lys515-

Ser522 is ordered, the carboxylate group of Glu516 occupies the

position of the sulfate group (Fig. 4A). This residue appears to be

specific to the apicomplexan PKs and is absent in both the

bacterial and in other eukaryotic pyruvate kinases (Fig. 4B).

Additionally, in this conformation the Pro480 to Thr485 loop was

well defined. This section is associated with the binding of the

19phosphate from FBP in the PKM2 and the yeast PKs. However,

these enzymes possess a six-residue insertion when compared to

the apicomplexans, creating a larger helical element (Fig. 4B) that

forms one of the walls of the effector-binding site. It contains

a tryptophan whose indole ring nitrogen interacts with the

19phosphate group together with the side chain from an argi-

nine (Fig. 4C). A smaller loop is also observed in Geobacillus

stearothermophilus PK an enzyme that is regulated by a monopho-

sphorylated sugar, (ribose-5-phosphate) but also in the E. coli type I

PK enzyme that is affected by FBP [2,10]. The short loop Pro480-

Thr485 creates a more limited allosteric site. Overall, the charge

environment seen in the TgPK1 structure is more neutral when

compared to the human PKM2 and the yeast PK, consistent with

the binding of mainly monophosphorylated sugars. In both the

PKM2 and the yeast PK, a transition was observed between the

effector free structure and the bound form; in both cases an

ordering occurred upon binding of the FBP [22,23]. In the case of

the T. gondii enzyme, the allosteric site was ordered in the absence

of any effectors or sulfates. Furthermore, it appears that Glu516

carboxyl group could mask the binding site of the phosphate

moiety. Taken together, these differences in sequence and three-

dimensional structure lead us to propose that the binding mode of

G6P would be significantly different from the yeast and the

mammalian enzymes binding mode of FBP.

In summary, we have solved the structures of two different

forms of the T. gondii pyruvate kinase 1 that reveal an

unprecedented degree of flexibility in the B domain. We

hypothesize that the B domain flexibility is linked to the dynamic

nature of the PK structure in general and that the TgPK1

structures reported here highlight this aspect. The closed

conformation challenges our structural understanding of the PK

catalytic cycle, since it is assumed that the closure of the active site

cleft requires the binding of both substrates, PEP and ADP. The

initial N-terminal residues, which are absent in the truncated

TgPK1 may influence the B domain conformation. Despite this

caveat, the structure illustrates the conformational changes that

accompany the closure of the B domain. These new structures of

the PK enzyme have allowed us to propose a mechanism that

rationalizes the enzymatic characteristics of the T. gondii pyruvate

kinase, one that could be generalized to other apicomplexan PKs.

In addition, the elucidation of the parasitic enzyme structure is

relevant to the development of chemical entities or probes by

means of virtual and enzymatic screening. Specific inhibitors or

activators of the TgPK1 would be extremely useful reagents to

explore the function of the enzyme in vivo (chemical genetics) and

will represent the validation steps for a drug development program

against T. gondii.

Materials and Methods

Cloning and protein production
The full-length synthetic template of 55.m00007 (ToxoDB,

http://www.toxodb.org/) was ordered from Codon Devices

(Cambridge, MA, USA) and the expression constructs were

subcloned from it. Specifically, full length TgPK1 (Met1 to

Glu531) and the N-terminally truncated protein (Ile39 to Glu531,

henceforth referred to as truncated TgPK1) were cloned with a N-

terminal His6-tag followed by a TEV protease cleavage site.

Proteins were expressed as previously described [31]. Briefly,

clones were grown in TB media in a LEX bioreactor system

(Harbinger Biotechnology and Engineering Corp., Markham,

Ontario, Canada). Overnight starter cultures were left to grow at

37uC until reaching an OD600 value around 5, cooled to 15uC,

and subsequently induced with 0.5 mM IPTG overnight at 15uC.

Cells were harvested by centrifugation and the pellets re-

suspended in 40 ml per liter of culture in binding buffer (50 mM

HEPES pH 7.5, 500 mM NaCl, 5 mM imidazole, 5% glycerol)

with protease inhibitors, 1 mM benzamidine and 1 mM phenyl-

methyl sulfonyl fluoride (PMSF), then flash frozen in liquid

nitrogen and stored in 280uC until needed. Resuspended pellets

were pretreated with 0.5% CHAPS and 500 U of benzonase for

40 minutes at room temperature and cells were mechanically lysed

with a microfluidizer (Microfluidizer Processor, M-110EH). The

cell lysate was centrifuged to eliminate cells debris and the cleared

lysate was loaded onto a DE52 (Whatman, MA, USA) anion

exchange resin followed by a 2.5 mL Ni-NTA (Qiagen, MD,

USA). The Ni-NTA column was then washed with 200 mL of a

buffer consisting of 50 mM HEPES pH 7.5, 500 mM NaCl,

30 mM imidazole and 5% glycerol. The protein was eluted with

15 mL of a buffer made of 50 mM HEPES pH 7.5, 500 mM

NaCl, 250 mM imidazole and 5% glycerol. The eluted sample was

further purified by size exclusion chromatography in a Superdex

200 26/60 (GE Healthcare, NJ, USA) column equilibrated with a

buffer consisting of 10 mM HEPES, pH 7.5 and 500 mM NaCl.

The peak fractions eluting at 164 mL for the full length and

168 mL for the truncated TgPK1 (consistent with a tetrameric

enzyme for both forms) were pooled and the protein identity was

evaluated by SDS-PAGE and mass spectroscopy. This purified

protein was used for enzymatic characterization and crystallogra-

phy without removal of the N-terminal purification 66His tag in

either case.

Enzyme characterization
Kinetics experiments were carried out at room temperature

using a lactate dehydrogenase-coupled spectrophotometric assay

in a Synergy 2 microplate reader (BioTek, Vermont, USA)[32].

The kinetic parameters for PEP were determined by modifying its

concentration, from 0.01 to 10 mM, in the following reaction

mixture, 0.2 mM NADH, 2 mM ADP, 50 mM HEPES pH 7.5,

50 mM KCl, 20 mM MgCl2, 10 U of rabbit muscle lactate

dehydrogenase type II (Roche), and 1 mg/ml of the full length

TgPK1. The same method was used to test the effect of several

sugars over the enzyme activity, including, fructose-1-phosphate

(F1P), fructose-6-phosphate (F6P), glucose-1-phosphate (G1P),

glucose-6-phosphate (G6P), fructose-1,6-biphosphate (FBP) and

ribulose-1,5-biphosphate (RBP). All sugars were used at a fixed

concentration of 1 mM. Reactions were monitored for 6 minutes

and kinetic parameters were obtained by fitting initial rate against

substrate concentration by a nonlinear curve-fitting algorithm

(SigmaPlot 2000 software; SPSS Inc., Chicago, USA).

Crystallization, data collection and structure
determination

Purified full length T. gondii PK1 was crystallized using the

sitting drop vapor diffusion method. Crystals for the full length

structure were obtained by mixing one part of a protein solution at

10 mg/ml (10 mM HEPES pH 7.5 500 mM NaCl) with one part
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of reservoir solution containing, 19% PEG3350 100 mM BisTris

pH 6.0 and 200 mM NH4I. Crystals appeared in less than a week.

Crystals were flash cooled in liquid nitrogen and cryo-protected in

mother liquor supplemented with 15% glycerol. The initial

diffraction pattern showed high mosaicity and resolution to

,3.0 Å. The crystal was subjected to an annealing procedure by

plunging in Paratone-N oil then re-freezing in a cryo-stream,

which significantly improved the mosaicity and the resolution

limit. Diffraction data were collected at the X25 beamline at NSLS

(National Synchrotron Light Source at Brookhaven National

Laboratory, NY, USA). The diffraction data were integrated and

scaled using the HKL2000 software package [33]. The structure

was solved by molecular replacement using a full monomer

structure from yeast pyruvate kinase (PDB id. 1A3X) as the search

model and the program Phaser [34]. Crystals of the truncated

TgPK1 were also grown by sitting-drop vapor diffusion technique

over a reservoir of 15% PEG3350 and 100 mM succinic acid

pH 7.0. One part of the reservoir solution was mixed with one

part protein solution, truncated TgPK1 at 10 mg/ml in 10 mM

Hepes pH 7.5, 50 mM NaCl, 150 mM KCl and 5 mM Mg2SO4.

Crystals were cryoprotected by supplementing mother liquor with

15% ethylene glycol prior to flash cooling at 2170uC. Diffraction

data were collected at our in house X-ray facility, equipped with

an X-ray generator FR-E SuperBright (Rigaku, TX, USA) and an

imaging plate detector R-AXIS HTC (Rigaku, TX, USA), at

2.2 Å. The phases of the truncated TgPK1 structure were obtained

by molecular replacement using the full length structure as a

search model. For both structures, model building was performed

with COOT [35] and the structures were refined with REFMAC5

[36] from the CCP4 suite of programs [37]. The stereochemistry

of the both models was checked by MOLPROBITY [38].

Relevant data collection and refinements statistics are shown in

Table 3. The coordinates for the structures and their structure

factors have been deposited with the Protein Data Bank (PDB

accession codes, 3EOE for the full length and 3GG8 for the

truncated TgPK1). Structural superpositions were performed

by LSQKAB [39] as implemented in CCP4; tetramer interfaces

were calculated with the PISA server [40] (http://www.ebi.ac.uk/

msd-srv/prot_int/pistart.html); domain movements were analyzed

using the DynDom server [24] (http://www.sys.uea.ac.uk/

dyndom/); images of sequence alignments were prepared using

ESPript/ENDscript [41]; and structure figures were generated

with Pymol (DeLano Scientific, Palo Alto, California, USA.

http://www.pymol.org).
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doi:10.1371/journal.pone.0012736.t003

Crystal Structure of TgPK1

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12736



10. Suzuki K, Ito S, Shimizu-Ibuka A, Sakai H (2008) Crystal structure of pyruvate

kinase from Geobacillus stearothermophilus. Journal of Biochemistry 144: 305–312.

11. Ernest I, Callens M, Opperdoes FR, Michels PA (1994) Pyruvate kinase of

Leishmania mexicana mexicana. Cloning and analysis of the gene, overexpres-

sion in Escherichia coli and characterization of the enzyme. Molecular and

Biochemical Parasitology 64: 43–54.

12. Le Bras G, Garel JR (1993) Pyruvate kinase from Lactobacillus bulgaricus:

possible regulation by competition between strong and weak effectors. Biochimie

75: 797–802.

13. Maeda T, Saito T, Oguchi Y, Nakazawa M, Takeuchi T, et al. (2003)

Expression and characterization of recombinant pyruvate kinase from

Toxoplasma gondii tachyzoites. Parasitol Res 89: 259–265.

14. Dubey JP (2008) The history of Toxoplasma gondii–the first 100 years.

J Eukaryotic Microbiology 55: 467–475.

15. Denton H, Brown SM, Roberts CW, Alexander J, McDonald V, et al. (1996)

Comparison of the phosphofructokinase and pyruvate kinase activities of

Cryptosporidium parvum, Eimeria tenella and Toxoplasma gondii. Molecular

and Biochemical Parasitology 76: 23–29.

16. Saito T, Nishi M, Lim MI, Wu B, Maeda T, et al. (2008) A novel GDP-

dependent pyruvate kinase isozyme from Toxoplasma gondii localizes to both

the apicoplast and the mitochondrion. J Biol Chem 283: 14041–14052.

17. Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, et al. (2001)
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