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Abstract

Cancer subtype classification and survival prediction both relate directly to patients’ specific treatment plans, making them
fundamental medical issues. Although the two factors are interrelated learning problems, most studies tackle each separately.
In this paper, expression levels of genes are used for both cancer subtype classification and survival prediction. We considered
350 diffuse large B-cell lymphoma (DLBCL) subjects, taken from four groups of patients (activated B-cell-like subtype dead,
activated B-cell-like subtype alive, germinal center B-cell-like subtype dead, and germinal center B-cell-like subtype alive). As
classification features, we used 11,271 gene expression levels of each subject. The features were first ranked by mRMR
(Maximum Relevance Minimum Redundancy) principle and further selected by IFS (Incremental Feature Selection) procedure.
Thirty-five gene signatures were selected after the IFS procedure, and the patients were divided into the above mentioned
four groups. These four groups were combined in different ways for subtype prediction and survival prediction, specifically,
the activated versus the germinal center and the alive versus the dead. Subtype prediction accuracy of the 35-gene signature
was 98.6%. We calculated cumulative survival time of high-risk group and low-risk groups by the Kaplan-Meier method. The
log-rank test p-value was 5.98e-08. Our methodology provides a way to study subtype classification and survival prediction
simultaneously. Our results suggest that for some diseases, especially cancer, subtype classification may be used to predict
survival, and, conversely, survival prediction features may shed light on subtype features.
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Introduction

As the most common subtype of non-Hodgkin lymphomas

(NHL), diffuse large B-cell lymphoma (DLBCL) accounts for 30 to

40 percent of lymphoid neoplasm [1]. Diffuse large B-cell

lymphoma is an aggressive, fast-growing lymphoma that can arise

in lymph nodes or outside of the lymphatic system (e.g., in the

gastrointestinal tract, testes, thyroid, or skin). Currently, diagnosis

and classification of lymphoma are based on histological

recognition of tumor cells complemented by immunophenotyping

[2,3]. The heterogeneous clinical course and different treatment

responses within the same diagnostic category, however, suggest

that current diagnostic methods should be improved [4].

Identifying patterns of gene expression can foster understanding

of the molecular mechanisms of tumorigenesis and allow for the

selection of risk-adjusted treatments. Two major subtypes of

DLBCL are identified by their genetic activity [5,6]: activated B-

cell-like (ABC) subtype and germinal center B-cell-like (GCB)

subtype. We found in the literature several studies of gene

expression profiles in DLBCL patients, with some studies focusing

on disease subtypes classification [7,8] and others on survival

prediction [9]. As it is known that the GCB subtype has a better

prognosis than ABC subtype [5] which suggest that the subtype of

DLBCL and survival are intertwined, there should exist a common

gene expression signature not only for subtype classification but

also for survival prediction.

In this study, the gene expression profiles of 350 DLBCL

patients were analyzed. We took 350 samples from four groups

(ABC dead, ABC alive, GCB dead, and GCB alive), and assuming

the group identity of each test sample was unknown, assigned each

to one of the four groups during leave-one-out cross-validation.

The features that can best discriminate the four groups of patients

were ranked by the mRMR (Maximum Relevance & Minimum

Redundancy) [10] principle. Then we applied the IFS (Incremen-

tal Feature Selection) procedure to select an optimized feature set.

During IFS procedure, each test sample was predicted to fall into

one of the four groups using Nearest Neighbor Algorithm (NNA).

As a result, 35 features were chosen. This formed a unified gene

signature for both subtype classification and survival prediction in

diffuse large B-cell lymphomas, by first separating the subjects into
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four groups and then merging them for the subtype and survival

prediction. The subtype prediction accuracy of the 35-gene

signature was 98.6%, as evaluated by leave-one-out cross-

validation. The predicted high-risk and low-risk patients had

significant different overall survival level and the log-rank test p-

value was 5.98e-08.

Methods

Dataset
The data used in this work were from a lymphoma/leukemia

molecular profiling project [11] that included the gene expression

profiles and clinical data of 414 patients with newly diagnosed

diffuse large-B-cell lymphoma. The data are publicly available at

GEO http://www.ncbi.nlm.nih.gov/geo under accession number

GSE10846. We excluded from our study patients with unclassified

diagnosis. There remained 350 patients, including 73 ABC alive

samples, 94 ABC dead samples, 134 GCB alive samples, and 49

GCB dead samples. After averaging the duplicate probes to gene,

filtering the low intensity genes and quantile normalization, we

obtained the expression profiles of 11,271 genes in 350 DLBCL

patients.

Minimum-Redundancy-Maximum-Relevance (mRMR)
feature selection

Minimum-Redundancy-Maximum-Relevance (mRMR) [10] is

a widely used method for feature selection. The goal of mRMR is

to select the feature subset that can best characterize the statistical

property of a target classification variable, with the constraint that

these features are mutually as dissimilar to each other as possible,

but marginally as similar to the classification variable as possible.

The feature that has maximum relevance with the target

variable and minimum redundancy within the features is defined

as a ‘‘good’’ feature. Mutual information (MI) is used to describe

both relevance and redundancy:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð1Þ

where x and y are vectors; p(x,y) is the joint probabilistic density;

p(x) and p(y) are the marginal probabilistic densities.

The whole vector set is defined as V, The selected vector set

with m vectors is defined as Vs, and the to-be-selected vector set

with n vectors is defined as Vt. Relevance D of a feature f in Vt

can be calculated by Equation (2):

D~I(f ,c) ð2Þ

Here c is a classification variable.

Redundancy R of a feature f in Vt with all the features in Vs

can be calculated by Equation (3):

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

mRMR function maximize relevance and minimize redundancy

by integrating Equation (2) and Equation (3):

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj,fi)

2
4

3
5(j~1,2,:::,n) ð4Þ

After the pre-evaluation procedure, a feature set S is provided:

S~ f1

0
,f2

0
,:::,fh

0
,:::,fN

0h i
ð5Þ

The feature index reflects the evaluations for feature. The feature

that fits the Equation (4) better will be added to the set S earlier.

For example, If a,b, fa is considered to be better than fb.

Prediction model
With the features selected by mRMR, we used Nearest

Neighbor Algorithm (NNA) [12] to classify the samples into the

above mentioned categories. NNA predicts a new sample into

categories by comparing the features of this sample with the

features of those that have known categories. The distance

between two vectors px and py is defined as [13,14,15]:

D(px,py)~1{
px
:py

DDpxDD:DDpyDD
ð6Þ

where px
:py is the inner product of px and py, and DDpDD is the

module of vector p. px and py are considered to be more similar if

D(px,py) is smaller.

NNA chooses to classify the new pattern pt into the class of its

nearest neighbor which has the smallest D(pn,pt). That is:

D(pn,pt)~ minfD(p1,pt),D(p2,pt),:::,D(pz,pt),:::,D(pN ,pt)g

(z=t)
ð7Þ

where N represents the number of training samples.

Leave-one-out cross-validation method
Leave-one-out cross-validation is an effective and objective way

to evaluate prediction performance [14,15,16]. Each sample in the

data set is knocked out in turn and tested by the predictor trained

by the other samples remaining in the data set. During this

process, each sample is used not only for the training but also for

the testing.

Evaluation of prediction
Each sample was predicted into one of the groups (ABC dead,

ABC alive, GCB dead, or GCB alive), at first. Then the four

groups were merged into two classes in two different ways. In

subtype classification model, the two classes were activated B-cell-

like subtype and germinal center B-cell-like subtype. The predicted

ABC subtype samples included the predicted ABC dead and ABC

alive samples. The predicted GCB subtype samples included the

predicted GCB dead and GCB alive samples. In survival

prediction model, the two classes were high-risk group and low-

risk group. The predicted high-risk samples included the predicted

ABC dead and GCB dead samples. The predicted GCB subtype

samples included the predicted ABC alive and GCB alive samples.

To evaluate the performance of subtype classification model,

the following equation is used:

Qsubtype~
TABCzTGCB

NABCzNGCB
ð8Þ

where Qsubtype is the overall success rate for subtype prediction.

TABC represents the number of corrected predictions for ABC

subtype samples, NABC the number of total ABC subtype samples

investigated, and so forth.
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Cumulative survival time of high-risk samples and low-risk

samples was calculated by the Kaplan-Meier method [17] and

analyzed by the log-rank test [18]. The log-rank test p-value was

used to evaluate the performance of survival prediction model.

Statistical analyses were performed by the open-source R software,

version 2.10.0 (www.r-project.org).

Incremental Feature Selection (IFS)
mRMR can only provide a list of features by sorting the features

according to their importance to the prediction, but it is still

unknown how many fore features in the list should be selected.

The best fore features are selected by testing all possible top

feature sets and choosing the feature set that can achieve the best

prediction accuracy or smallest log rank test p-value. The possible

feature subset Si can be expressed using the following equation:

Si~ff1,f2,:::,fig(1ƒiƒN) ð9Þ

The initial feature subset is S1~ff1g, and the last feature subset is

SN~ff1,f2,:::,fNg which includes all the features. The leave-one-

out test is used to obtain the accurate prediction accuracies of all

the feature subsets. The one that can achieve the highest

prediction accuracy or smallest log rank test p-value is considered

to be the optimized feature set selected by Incremental Feature

Selection (IFS) [14,15,19]. We can plot a curve, called an IFS

curve, with the number of features i as its x-axis and the accurate

rate or 2log10 of the log rank test p-value as its y-axis.

Results

mRMR results
Using the mRMR program downloaded from http://penglab.

janelia.org/proj/mRMR/, genome-wide 11,271 genes were ranked

and the first 500 genes were chosen as potential candidates to

discriminate the four groups of patients (ABC dead, ABC alive, GCB

dead, and GCB alive). These 500 features are as dissimilar to each

other as possible, but as similar to the classification variable as possible.

IFS results
In the IFS procedure, we built 500 feature sets based on the ordered

feature set S obtained in the mRMR step. Accordingly, 500 prediction

models were constructed and tested as described in the Method

section. Figure 1 shows the IFS curve for (A) subtype classification

model and (B) survival prediction model. In the IFS procedure of

subtype classification model, the predicted ABC dead and ABC alive

samples were combined as predicted ABC subtype samples; the

predicted GCB dead and GCB alive samples were combined as the

predicted GCB subtype samples. In the IFS procedure of survival

prediction model, the predicted ABC dead and GCB dead samples

were merged as high-risk samples, and the predicted ABC alive and

GCB alive samples were merged as low-risk samples.

In Figure 1A, the peak overall accuracy was 1 when the feature

number was 214. However, the overall accuracy had already

achieved 0.98 when about 30 features were used. The accuracies

only had slight undulation when more features were used. In

Figure 1B, the smallest log rank test p-value was 1e- 8.67 when

182 features were selected. The optimal feature set for subtype

classification model and survival prediction model were different,

but the fore features were the same.

Choosing the same feature set for both subtype
classification model and survival prediction model

Although the optimal feature sets for subtype classification

model and survival prediction model were not synchronous, we

did find a good balance of features for both subtype classification

model and survival prediction model, as shown in Figure 2. Since

subtype classification accuracies increased little when the feature

size was larger than 30, and some local minimal p-values were

achieved between feature size of 30 and 50, a good, balanced

feature set could be chosen with size larger than 30 and less than

50. We investigated the relationship between subtype classification

accuracies and log rank p-values by restricting the number of

features to less than 100. As shown in Figure 2, the size of a

proper feature set for both models should be at the top right corner

of the plot, indicating both high subtype classification accuracy

and small log rank p-value, and it is shown as 35. The subtype

prediction accuracy is shown as 98.6%, and log rank p-value is

shown as 5.98e-08 (1e-7.22) at the feature set of 35. The unified

35-gene signature for both subtype classification and survival

prediction in diffuse large-B-cell lymphomas are given in Table
S1. The features were sorted according to their importance to the

prediction. Figure 3 shows the hierarchical clustering heatmap of

patient samples based on expression profiles of the 35-gene

signature. Each row represents a signature gene and each column

Figure 1. The IFS curves for subtype classification model and survival prediction model. (A) The IFS curve for subtype classification
model. The peak overall accuracy was 1 when feature number was 214. However, the overall accuracy had already achieved 0.98 when about 30
features were used. The accuracies only had slight undulation when more features were used. (B) The IFS curve for survival prediction model. The
smallest log rank test p-value was 1e- 8.67 when feature number was 182. Local p-values can already reach low when feature number was around 30
to 50. When the optimized 35 features were used the subtype prediction accuracy was 98.6% and the log-rank test p-value was 1e-7.22.
doi:10.1371/journal.pone.0012726.g001

Figure 2. The relationship of subtype classification accuracies
and log rank p-values. The x-axis is subtype classification accuracy
and the y-axis is 2log10 of the log rank test p-value. The number of
features was restricted to be less than 100 and written on the dot. The
number of optimized feature set for both models was 35 which have
high subtype classification accuracy and small log rank p-value.
doi:10.1371/journal.pone.0012726.g002
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represents a patient sample. The survival and subtype status for

each patient are shown with two bars. Black survival bar

represents dead, grey survival bar represents alive; red subtype

bar stands for ABC subtype, blue subtype bar stands for GCB

subtype. The 35-gene signature clearly separated the ABC subtype

patients from GCB subtype ones. The dead patients and alive ones

were also located at different clusters. Figure 4 shows the

Kaplan–Meier curve of the predicted high-risk and low-risk

patients using the 35-gene signature. The predicted high-risk and

low-risk patients had significant different overall survival level and

the log-rank test p-value was 5.98e-08.

Comparison of our signature with reported subtype
genes and survival genes

We compared our 35-gene signature with reported subtype

genes and survival genes. From SignatureDB [20] (http://

lymphochip.nih.gov/signaturedb/), we downloaded 16 subtype

gene signatures [21,22,23] and 7 survival gene signatures [11,22].

Figure 3. The hierarchical clustering heatmap of patient samples based on expression profiles of the 35-gene signature. Each row
represents a signature gene and each column represents a patient sample. The survival and subtype status for each patient are shown with two bars.
Black survival bar represents dead, grey survival bar represents alive; red subtype bar stands for ABC subtype, blue subtype bar stands for GCB
subtype. The 35-gene signature clearly separated the ABC subtype patients from GCB subtype ones. The dead patients and alive ones were also
located at different clusters.
doi:10.1371/journal.pone.0012726.g003
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Our 35 genes mapped on to 10 subtype gene signatures and 2

survival gene signatures. Figure 5 shows the overlap of our 35-

gene signature with reported subtype genes and survival genes.

Detailed information of each gene in our signature can be found in

Table S1. It can be seen from Figure 5 that 33 genes from our

35-gene signature are reported to be either subtype genes or

survival genes. There are two genes, NIPA2 and IFRD2, which

are not reported as subtype genes or survival genes in

SignatureDB. NIPA2 is a selective magnesium transporter [24].

It has been reported that Nipa2 is related with mammary

tumorigenesis in mice [25]. IFRD2, interferon-related develop-

mental regulator 2, is a Myc target gene involved in lymphoma-

genesis [26].

Discussion

The biological roles of the 35-gene signature
KEGG enrichment of the 35-gene signature using GATHER

[27] (Table S2) reveals that the signature genes are related to

focal adhesion, cell cycle and Wnt signaling pathway. The

enriched KEGG pathways have a close relationship with cancer.

LMO2, MYBL1, BCL6, LRMP, and CCND2 in our 35

signature genes were also reported in Lossos’s 36 genes, which

predicted survival in diffuse large-B-cell lymphoma [9]. LMO2,

ranking second in our signature list, was considered the strongest

indicator in Lossos’s six-gene signature [9] for survival prediction.

MYBL1, ranking third in our list, was also reported in Alizadeh’s

study of DLBCL subtype classification [6]. According to the

mRMR feature list, BCL6 ranked 12th (Table S1) and BCL2

ranked 250th (data not shown). GCB subtype is accompanied with

a chromosomal translocation involving gene BCL2. The expres-

sion of BCL6 may strongly predict survival in patients with diffuse

large B-cell lymphoma [28]. CCND2 ranking 35 on our signature

list was reported to be the target of BCL6 [9,29].

A number of other genes ranking high in our 35-gene signature

list are functionally important for tumorigenesis. BATF is a basic

leucine zipper transcription factor that belongs to AP-1 super

family. Stat3 modulates AP-1 activity through the induction of

Figure 4. The Kaplan–Meier curve of predicted high-risk and low-risk patients using the 35-gene signature. The log-rank test p-value
comparing the overall survival of predicted high-risk and low-risk patients is 5.98e-08.
doi:10.1371/journal.pone.0012726.g004

Figure 5. The overlap of our 35-gene signature with reported
subtype genes and survival genes. 33 genes from our 35-gene
signature are reported to be either subtype genes or survival genes.
doi:10.1371/journal.pone.0012726.g005

Gene Signature of DLBCL
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BATF when Stat3 mediates cellular responses associated with

proliferation, survival and differentiation [30]. It was reported that

in M1 mouse myeloid leukemia cells, forced expression of BATF

resulted in a reduced rate of cellular growth [30]. In low grade

fibromyxoid sarcoma, a chromosomal aberration involving

CREB3L2 was found [31,32]. In Cancer Gene Census (http://

www.sanger.ac.uk/genetics/CGP/Census/), CREB3L2 is record-

ed as a cancer gene of fibromyxoid sarcoma. Histone deacetylase 1

(HDAC1) is responsible for the deacetylation of lysine residues on

the N-terminal part of the core histones [33,34]. It interacts with

tumor-suppressor protein of retinoblastoma [35]. Histone deace-

tylases play an important role in cell growth arrest, differentiation,

and death, generating substantial interest in HDAC inhibitors as

possible antineoplastic agents [36–39]. PTK2 is a focal adhesion-

associated protein kinase implicated in signaling pathways

involved in cell motility, proliferation, and apoptosis [40,41]. It

is required for prostate cancer cell motility [42]. PIM2 is a proto-

oncogene [43] that acts as a serine/threonine protein kinase. It

can prevent apoptosis and to promote cell survival [44,45,46].

The relationship of subtype classification model and
survival prediction model

In DLBCL studies, there are two major tasks: subtype

classification and survival prediction. Furthermore, they are

interrelated (e.g., GCB subtype has a better prognosis than ABC

subtype [5]). Knowledge about subtype classification can improve

performance on survival prediction, and vice versa. To mutually

improve the subtype classification and survival prediction models

with the aid of the other, first we divided the samples into four

groups and then merged the four groups into two classes in two

different ways. A balance of these two models was achieved with

the 35-gene signature. The 35-gene signature proved to be useful

in both subtype classification and survival prediction of diffuse

large-B-cell lymphomas. Our methodology provides a way to study

subtype classification and survival prediction simultaneously. Our

results suggest that for some diseases, especially cancer, subtype

classification may be used to predict survival, and, conversely,

survival prediction features may shed light on subtype features.

Supporting Information

Table S1 The 35 genes in our signature

Found at: doi:10.1371/journal.pone.0012726.s001 (0.03 MB

XLS)

Table S2 KEGG enrichment of the 35 genes in our signature

using GATHER

Found at: doi:10.1371/journal.pone.0012726.s002 (0.02 MB

XLS)
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