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Abstract

The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it
difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of
methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which
controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data.
The data modifications can be easily applied to raw data measured with any technological platform and retains all the
complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its
application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our
results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for
assessing the performance of data preprocessing and analysis methods.
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Introduction

The number of methods available for pre-processing and

analysis of high-dimensional data continues to increase, making a

comparative assessment of the performance of these various

methods increasingly important. Such a comparison should be

qualitative, as well as time-, computation- and cost effective.

Currently, no commonly accepted rules exist for such comparative

testing. The performance of each test should be characterized in

terms of the test’s ability to distinguish true changes from noise

that appears to represent a pattern. The receiver operating

characteristic (ROC) curve, which represents all possible combi-

nations of the relative frequencies of the various kinds of correct

and incorrect decisions, is usually employed as a simple empirical

description of these characteristics [1,2,3]. The ROC-curve

presents the relationship between sensitivity and specificity and

can be used to characterize the overall performance of different

arrays and the software designed for data acquisition on the

different platforms. However, the lack of simple inferential

procedures to discriminate between true and false selections has

limited the practical utility of ROC curve analysis. Generation of

the decision rules used to estimate the proportions of true and false

selections requires knowledge of the distribution of these

categorical assessments, which is not provided by the tests

themselves. Neither visual inspection of the array images [4] nor

the use of differences between perfect matches and mismatches on

Affymetrix arrays provides an objective measurement to make

these discriminations.

One promising approach is based on the use of a simulation

strategy that constructs more-or-less realistic data models with

varying statistical characteristics that reflects the properties of real

gene expression data [5,6,7,8,9]. However, such approaches are

not fully satisfactory because they rely on model assumptions that

are not necessarily supported by empirical studies. The true

changes in expression are not known beforehand and largely differ

between each experimental situation. Thus, these changes in

expression cannot be characterized and used for evaluation a priori,

and such comparison approaches do not guarantee complete

similarity between the structure of the simulated data and complex

real-world expression data. The most objective discrimination

between false and true changes in a dataset was achieved by using

a ‘‘spike-in’’ experimental procedure based on Affimetrix Gene-

Chip technology [10,11,12]. This approach generated objectively

different signals by changing the mRNA concentration in a

controlled quantitative manner. Data from spike-in experiments

(where the mRNA-ratios of a set of artificial clones are known) can

be used to determine the relative merits of a set of analysis

methods [13,14]. The design of a spike-in experiment must be

based on assumptions as to how real microarray data behave.

These assumptions are generally less restrictive than those
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required to simulate microarray data. However, this spike-in

approach remains expensive, time consuming and inflexible, thus

limiting its utility.

We propose a simple approach to assessing various methods of

data analysis that is based on the use of real microarray data. Our

assessment can be easily implemented into the design of any

microarray experiment and can be performed with minimal

training. It is important to note that our approach is applicable to

any microarray dataset generated from homogenous groups of

samples hybridized to the arrays.

The first step in our strategy is the introduction of controlled

changes into homogeneous group of microarray data. The group

is split into two equal subgroups, one of which remains unchanged

and is used as a standard for comparison. The second subgroup is

altered by introducing controlled fold changes in the gene

expression values. Similar step - introduced changes in the real

gene expression data - was used earlier for demonstration of the

breakdown of Lowess normalization after ‘‘one direction changes’’

[15]. Our implementation introduces these controlled fold changes

homogenously over the entire range of gene expression levels. This

modification was applied to 5–20% of the entire dataset, thereby

retaining the complex structure and statistical characteristics of the

remainder of the data.

We illustrate the application of this method for an optimal cutoff

estimation, intensity-based filtering and for optimal fold differences

selection that provides the highest ratio of true to false signals. This

method enables us to estimate the degree to which the quality of

the analysis depends on the level of gene expression. Our method

estimates the minimal necessary number of replicates to achieve an

expected sensitivity in the differential gene expression analysis. We

also applied our approach to the comparative estimation of the

quality of data preprocessing (normalization) and the performance

of the methods of differential gene expression analysis.

Materials and Methods

Global gene expression profiling
We performed gene expression profiling from 20 samples of

Epstein-Barr Virus-transformed B cells collected from normal

healthy donors. RNA was isolated using Ambion’s RNAqueous

RNA isolation kit (Ambion Inc., TX) according to the manufac-

turer’s protocol. After purification, RNA concentration was

determined with a Nanodrop scanning spectrophotometer.

Illumina Whole Genome Human Ref-8 v2.0 arrays containing

,24,000 probes were handled according to standard protocols

established by the manufacturer. Briefly, 200ng of total RNA from

each sample were used to generate biotin-labeled cRNA probes

using an Illumina MessageAmp cRNA labeling kit protocol

(Ambion). Quality control of the cRNA was performed using an

Agilent Bioanalyzer and a Nanodrop. Labeled cRNA probes were

hybridized to Illumina arrays and images were obtained on an

Illumina Beadchip scanner. The images and raw data from each

chip were transferred automatically to the microarray database

using one of the specified microarray core servers. The raw data is

available on GEO [16] (GSE22630 accession number) and in

Supplemental Table S1.

Microarray data analysis
Our methods for data normalization and analysis are based on

the use of ‘‘internal standards’’ [17] that characterize some aspects

of the system’s behavior, such as technical variability, as presented

elsewhere [18,19]. In general, an internal standard is constructed

by identifying a large family of genes that behave similarly. Genes

expressed below technical sensitivity represent one example of an

internal standard. This group of genes comprises a background

cohort that conforms to the parameters of normal distribution.

Another example is a group of genes with similar expression

patterns across several distinct experimental conditions, denoted as

an equally expressed cohort. These internal standards are used to

robustly estimate parameters that describe some features of the

experimental system, such as the pattern of genes expressed

distinctly from background, cohort of stably expressed genes, or

genes displaying similar dynamic behavior.

Two-step normalization procedure. The first step is

determination of the parameters of a background of an array –

average (Av) and standard deviation (SD) – is performed using a

special iteration procedure. Data in each array are transformed to

make these parameters equal to 0 and 1, correspondingly. After

this transformation gene expression data are presented in the units

of standard deviation of the background. We accept the threshold

of 3 SD above the mean of background distribution as the

preliminary criterion for distinguishing between expressed and

non-expressed genes. Only genes expressed above background are

used for the second step.

The second step is the adjustment of normalized profiles to each

other by robust linear regression. This procedure is based on the

selection of equally expressed genes as a homogenous family of

genes with normally distributed residuals defined as deviations

from the regression line. The parameters of this distribution are

obtained by the iterative procedure similar to one used for the

selection of normally distributed background noise. Outliers are

thereafter determined as having deviations not associated with

this internal standard of equality of expression.

The differential gene expression analysis – Associative analysis

[18,19] - includes the following steps:

– Construction of the ‘reference group’ by identifying a group of

genes expressed above background with inherently low

variability as determined by an F-test. The ‘reference group’

presents an internal standard of equal expression. As such, the

‘reference group’ is used to assess the inherent variability

resulting from technical factors alone (technological variation).

By creating an estimate of the technological variation we are

able to select a group of biologically stable genes.

– Selection of replicates using the commonly accepted signifi-

cance threshold of p,0.05 with a Student T-test. This selection

maintains the commonly accepted sensitivity level; however, a

significant proportion of genes identified as differentially

expressed at this threshold will represent false positive

determinations.

– An Associative T-test in which the replicated residuals for each

gene from the experimental group are compared with the

entire set of residuals from the reference group defined above.

The Ho hypothesis is checked to determine whether the levels

of gene expression in the experimental group presented as

replicated residuals (deviations from the averaged control

group profile) is associated with a highly representative (several

hundred members) normally distributed set of residuals of gene

expression values in the reference group. The significance

threshold is then corrected to render the appearance of false

positive determinations improbable. Only genes that pass both

tests are presented in the final selections.

The two-step normalization procedure and the Associative

analysis functions are implemented in MatLab (Mathworks, MA)

and available from authors upon request. These algorithms are

also obtainable from an R package diffGeneAnalysis, available as a

part of Bioconductor packages (http://www.bioconductor.org/

Performance of Analyses
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packages/2.5/bioc/html/diffGeneAnalysis.html). Other Biocon-

ductor packages (affy, limma, vsn) were used for Quantile, Lowess

and VSN data normalization and for Limma analysis. SAM:

Significance Analysis of Microarrays was used as an Excel add-on,

downloaded from http://www-stat.stanford.edu/,tibs/SAM/.

Introduction of balanced changes into the gene
expression data

In this study, we used gene expression data from 20 total RNA

samples from Epstein-Barr Virus-transformed B cells collected

from normal healthy donors. This presumably homogenous

group of samples was sorted by average expression level and split

into two equal subgroups, designates as ‘‘control’’ and ‘‘exper-

imental’’. The data was then split into blocks of 1,000 genes each.

Controlled balanced (+/2) changes were introduced into 20% of

the data in the experimental subgroup. One hundred genes in

each 1000 gene block were modified by a positive change

(multiplied by fold change) and another hundred genes were

modified by a negative change (divided by fold change). The top

thousand genes with the highest expression levels were treated

slightly differently: they were split into five 200-gene blocks, and

within each of them 20 genes were modified by positive change

(multiplied by fold change) and 20 genes were modified by

negative change (divided by fold change) (data with color-coded

modifications used in this paper are presented in Supplemental

Tables S2, S3, S4, S5 and S6). The rationale behind it is that a

very wide range of gene expression changes present at the highest

expression levels (Figure 1). Therefore, more detailed controlled

changes are necessary to better assess performance dependence of

an analysis from expression level.

The altered genes are denoted as all positive genes (AP-genes) in

contrast to the remaining genes that were initially not changed (all

negative – AN-genes). One block of AP/AN genes is shown on

Figure 1B. The modification did not noticeably alter the frequency

distribution histogram of the data (data not shown), as would be

expected from the relatively modest amount of change (20% of

genes altered). After applying the analysis procedure, the resulting

selections are compared with the AP- and AN-genes for

determination of the Sensitivity and Specificity of a given analysis.

Sensitivity and Specificity can be expressed using known numbers

of true and false positive and negative selections. Here, true

positives (TP) are selections made in the course of differential

expression analysis among the AP-genes. True negatives (TN) are

genes that were not selected as differentially expressed among the

AN-genes. False positives (FP) are genes selected in the course of

analysis as differentially expressed from the AN-genes. False

negatives (FN) are AP-genes not selected as differentially

expressed. Given these definitions, we derived the following

Figure 1. Test system for determination of the Sensitivity and specificity of the differential gene expression analyses. A supposedly
homogeneous group of samples was divided into two equal subgroups, one of which was not changed and used as a control and the other used as
an experimental group with introduced changes (Supplemental Tables S2, S3, S4 and S5). All data (,20,000 genes) were divided into 20 equal blocks.
A) A fragment of experimental data set. The data are sorted according the averaged level of expression (green line, shown relative to the maximum
expression level units). The figures on the left side of vertical axis show the positions of each block (in percents of the total data). Positive (red) and
negative (blue) changes were introduced in the 20% portion of genes in the block (usually changes applied to the genes with highest expression in
each block, excluding the first one containing the very first 100 genes with highest expression levels. Here 40 differentially expressed genes created
within each of five 200 gene segments). B) Structure of one of the blocks (90–95% of data). Left vertical axis presents positions of positive (red) and
negative (blue) introduced changes with the rest (green) positions of unchanged gene expressions. Right vertical axis shows selections made by an
analysis: red/blue – correct selection of +/2 changes, yellow/light blue – false selection of +/2 changes among not changed genes, green marked FN
– false negative selections (not identified + or 2 changes), green marked TN – true negative selections. Sensitivity of selections is determined here as
a proportion of true positive selections within all produced changes, Specificity determined as a a proportion of true negative selections among all
unchanged genes, and Precision is determined as a proportion of true positive selections among all selections made by an analysis, or as a value
whose deviation from 1 is associated with the presence of false positive selections.
doi:10.1371/journal.pone.0012657.g001
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equations (4):

Sensitivity~
TP

TPzFN
~

TP

AP

Specificity~
TN

AN
~1{

FP

AN

However, the use of Specificity expression as presented here was

not particularly useful for characterizing the quality of microarray

data analyses. The problem with this metric is that in any

microarray analysis, the number of AN-genes always exceeds the

number AP-genes by at least several fold. As a result, a significant

number of false negative selections will produce only a small

deviation from 1 in Specificity value. For example, if there are two

hundred differentially expressed genes from twenty thousand total

genes measured in an array, selection of ten false positives will

result in a Sensitivity of 0.95. In contrast, the same number of false

negatives will produce a Specificity value of 0.999. This Specificity

value does not express the real impact of this number of selected

false negatives, which should be more comparable to the impact of

false positive selections. To improve this situation, we used instead

the Precision parameter, which is a better characteristic for testing

exactness or fidelity in cases with significant differences in sizes of

positive and negative numbers. Accordingly [20], Precision is

calculated as follows:

Precision~1{
FP

TPzFPð Þ

with reciprocal dependence on FP and approaching 1 when FP is

close to zero. Now both Sensitivity and Precision are presented

symmetrically in the proportions of the true/false positives to all

selections.

To estimate stability of the proposed characteristics, our test

procedure can be repeated several times with random permutation

of the order of samples within the group before each split. The

averaged Specificity and Precision parameters from multiple tests,

together with their Standard Deviations, are presented in the

figures.

Results

Influence of fold change and expression level restrictions
on the quality of analysis

The data that include controlled balanced changes in the

expression levels of a small proportion of the genes in the array can

be used for a variety of purposes, including comparison of different

methods of data pre-processing and analysis. We begin, however,

with a demonstration of the potential of this method for estimation

of the effects of different restrictions frequently used in differential

gene expression analyses.

The step typically following completion of a differential gene

expression analysis using strong statistical criteria is to focus on the

most prominent changes. To achieve this some additional

restrictions are applied, such as minimal level of expression and

the fold changes in the level of expression deemed biologically

significant. The influence of these pre-processing steps on the

quality of analysis has not been extensively studied.

Filtering by a minimum expression level obscures the influence

of extreme variability of low expressed genes. Additionally,

filtering out genes that are expressed only at low levels

unambiguously demonstrates that the most important biological

changes are usually well represented by genes with high expression

level. However, the cost of this restriction is that changes in

regulatory genes expressed at low levels, such as transcription

factors [21,22], may be lost.

Statistical analysis of differences in gene expression can identify

even minimal changes in levels of gene expression if those changes

are extremely stable across replicated experiments. However, the

statistical significance of a fold change does not necessarily reflect

biological relevance. Genes with low fold change differences

should certainly be excluded, at least at the stage of initial

examination of the results. Those genes displaying high fold

changes in gene expression (and, hence, in mRNA abundance)

potentially represent the most important functions in the biological

system. We refer to these as ‘‘beacon genes’’ [23]. At the same

time, changes in the expression/activity of regulatory genes, which

are usually neither highly expressed nor display prominent

variations in expression levels, may represent important biological

characteristics of the system. Traditional filtration on a minimal

level of expression and fold change will exclude these genes from

initial examination. However, these genes may be considered at

later stages of the analysis to clarify the biology behind gene

expression changes.

To estimate the influence of fold change and expression level

restrictions on the quality of analysis, we used the data described in

the Materials and Methods as a presumably homogenous group of

20 samples split into two equal subgroups. One of the subgroups

remained unchanged (control) and the other was subjected to the

procedure of balanced changes described above (Table S2, S3, S4,

S5 and S6). Data were Two-Step normalized and the same

method of analysis – Associative analysis of differential gene

expression [19] – was used for all comparisons.

Figure 2 shows the effect of introduced fold change (Fd),

restriction on the minimum fold change (Fa) and expression level

(Em) on the Sensitivity and Precision of the differential expression

analysis. Sensitivity is by far most affected by the choice of these

parameters, whereas Precision remains relatively stable across all

values. Deviation of these parameters from optimal values first

leads to loss of positive selection. The procedure for selecting

differentially expressed genes in the Associative analysis includes

these restrictions. Violation of even one of them results in

exclusion of that gene from the list of differentially expressed

genes. This behavior explains why Sensitivity decreases as

parameters of the analysis are changed. Naturally, it follows that

under these conditions, it is more difficult to create conditions

leading to increased levels of false positives. As a result, the

Precision of the analysis method is more robust to variation in

these restriction conditions.

Figure 2A demonstrates that the use of the same restrictions on

the level of real fold change data and minimal fold restriction

(Fd = Fa) in the Associative analysis leads to the loss of up to half of

all differentially expressed genes. The pre-processing procedures

(normalization, adjustment) are likely responsible for this loss

because even a slight decrease in expression level can reduce the

resulting fold change for a portion of genes below the established

cut off (Fd resulting,Fa), thereby increasing the number of false

negative selections. Figure 2B shows that, in the Associative

analysis, as the restriction on fold change (Fa) approaches (or even

exceeds) the real fold change (Fd), Sensitivity decreases signifi-

cantly, as would be expected in this situation.

Figure 2C shows that, at constant Fd/Fa of 2.0/1.5, the

Sensitivity of detection of differential expression drops as the

restriction for the minimum expression level (Em) decreases. This

behavior is due to excess of highly variable expression near the

Performance of Analyses
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level of background noise. Figure 2D shows that the actual level of

expression has relatively little effect on the performance of the

Associative analysis.

In summary, the maximal level of Sensitivity does not exceeded

0.85 even under the best conditional situations. The controlled

changes introduced into real expression data do not necessary

make the changed expression really significantly different. The

statistical tests for differential expression analysis are based on the

difference in the expression level (Average) and its variation in

replicates (SD). A proportion of genes with extremely high

variation of the expression level is always present even in the very

homogeneous group of samples. The introduction of even

substantial difference for such genes does not cancel the fact of

their extreme variability. Being significantly different in the level of

expression (after controlled changes) such genes remain to be

extremely variable, and as a result could not be selected as

significantly different with any realistic differential analysis. The

selection and exclusion from analysis of such genes (with methods

presented in [19,24]) were able to elevate the Sensitivity level in

optimal variants in Figure 1 to the near 1 value (not shown) and

should be considered in the course of any analysis.

The influence of the number of replicates (Power
analysis)

The model presented here enables easy estimation of the

dependence of analysis quality on the number of replicates. The

results shown in Figure 3 demonstrate that in contrast to the

typically observed decrease in Specificity with decreasing numbers

of replicates (not shown) we observed no decrease in Precision as

the number of replicates was reduced. At the same time, the

Sensitivity of the analysis dropped significantly when the number

of replicates in each group drops below 4–5. The information

Figure 2. The influence of restrictions on the quality of differentially expressed genes detection (Fd - the level of introduced
changes, analysis restrictions on the minimal level of expression – Em, and fold change Fa). All results were obtained by application of
the Associative analysis (see Materials and Methods) to the analysis of data with controlled changes in expression of part of the genes. Sensitivity and
Precision are shown with bars of red and blue color correspondingly. A–B) Dependence of the Sensitivity on the relative values of introduced changes
(fold change Fd) and minimal fold change restriction for Associative analysis (Fa). Only fold change used in Associative analysis smaller than
introduced fold change Fd yielded highest Sensitivity and Precision. C) Decrease of the Sensitivity with decrease of the minimal expression level to
2SD of the normal distribution of technical noise. D) Relative stability of the quality of estimations over the whole range of gene expression levels.
doi:10.1371/journal.pone.0012657.g002
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presented here enables us to estimate the number of replicates

required for the desired performance in an experimental design.

These estimations can be accurate and individually tailored for

specific microarray technologies, sources of mRNA, quality of

technological procedures, and other parameters. For example, in

the analysis presented here, a minimum of 4 replicates are

required to achieve about 80% Sensitivity for the detection of 2-

fold differences. This finding is a consequence of the high quality

of presented expression data and of the good performance of the

analytical procedure (Two-step normalization & Associative

analysis – see Materials and Methods). Larger fold changes can

be identified with even higher accuracy with the same number of

replicates.

The method presented in this study enables estimation of the

number of replicates required by using information about real

diversity in real preliminary data. All other methods of power

analysis use averaged estimations of gene expression variation

obtained in preliminary experiments.

Comparison of data preprocessing (normalization,
adjustment) and methods for differential gene
expression analyses

The effect of noisy technical variation in gene expression level in

the arrays can be minimized using normalization procedures.

However, the choice of normalization method can have a substantial

impact on the results of detection of differentially expressed genes.

Our method enables assessment of different normalization tech-

niques and their effects on the quality of the results.

Figure 4 compares the results of the Associative analysis applied

to the data subjected to different methods of normalization. These

comparisons (upper part of Figure 4) were performed using the 2-

fold balanced changes applied to 20% of the data from the

experimental subgroup (2-fold increase in 10% of the data and a

simultaneous 2-fold decrease in 10% of the neighboring data in

each 1000-gene block as shown in Figure 1, Supplemental Table

S4). Examples of analysis of the data with 10% and 5% balanced

changes (Supplemental Tables S2 and S3) are presented in

Supplemental Figure S1. Both Quantile and Lowess normaliza-

tions resulted in loss of the Sensitivity on highest expression levels.

VSN and 2-step normalizations have equally good Sensitivity in

this area however for the rest of the expression levels VSN

demonstrated lower levels and lower stability of Sensitivity

compared with 2-step normalization. Little difference in Precision

is seen for all three methods excluding VSN, which again shows

drop in level and stability.

In case of asymmetrical changes there was practically complete

loss of Sensitivity and Precision for Quantile and Lowess for genes

with highest expression levels (Figure 4C, D). In fact there was

severe degradation of the Precision in the analysis of the data

normalized by all these procedures (Figure 4D).

Several modified statistics have been proposed for analysis of the

significance of differences in gene expression. Of these, SAM [25]

is arguably the most popular. We compared SAM with two other

procedures – Associative analysis [18,19] and Limma [26]. These

comparisons were performed using the 2-fold balanced changes

applied the 20% of raw data (see above) with subsequent 2-step

normalization (Materials and Methods). The results are shown in

Figure 5 (Analyses for 10% and 5% are shown in the

Supplemental Figure S2). All three methods demonstrate similar

patterns of Sensitivity and Precision, however, Limma analysis

produces much less reproducible results. The loss of reproducibil-

ity and decrease of Sensitivity were seen also in case 10% and 5%

changes (Supplemental Figure S2A, C) for both SAM and Limma

methods. Associative analysis demonstrates essential loss of

Precision compared with other methods (Supplemental Figure

S2B, D). The same loss of Precision was seen also in case of

asymmetrical changes (2-fold increase in 10% data) – Figure 5D.

We would like to note however, that all these positive conclusions

about performance of SAM and Limma methods were obtained

with use of 2-step normalization procedure, which demonstrated

better performance in the most important area of highest gene

expression (Figure 4 and Supplemental Figure S1). Published

microarray data analyses usually used the combination of SAM

and Limma methods with popular Quantile and Lowess

normalizations. Poor performance of these normalizations at high

gene expression area is able to deteriorate essentially the overall

quality of such combinations in gene expression analyses (Figure 5).

Discussion

Rapid development of microarray technology over the past

decade has produced a number of methods for data pre-processing

and selection that can be used to identify differentially expressed

genes in microarray datasets. Importantly, different analytical

methods frequently identify different lists of differentially expressed

genes. Although numerous reviews have examined the details of a

variety of different methods [5,14,25] only a few publications have

addressed the issue of direct quantitative comparisons of different

methods. Despite the fact that ROC-curves [1,2,3] can be used to

characterize overall performance of different array platforms and

software packages, practical use of this comparison is limited due

to the lack of a priori knowledge of the number of true positive and

true negative genes in a given dataset. Verification of the

differences in gene expression using experimental techniques such

as RT-PCR cannot solve this problem because this approach only

verifies a subset of true positives but does not provide any

information about the number of true and false positives in the

entire dataset [25]. Several studies have analyzed simulated

datasets containing a known number of truly regulated genes

[5,6,7,8,9]. However, it is unclear whether these simulated datasets

realistically reflect the complex structure of real microarray data.

Figure 3. The influence of the number of replicates (Power
analysis). Dependence of the quality of Associative analysis (Fa = 1.5,
Em = 20) from the number of replicates is shown for different
introduced fold changes Fd (X axis - Precision on the left side, and Y
axis - Sensitivity on the right side). The results are obtained as an
average of the analysis of three bootstrapped datasets and expressed as
mean/SD.
doi:10.1371/journal.pone.0012657.g003
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Progress has been achieved by using spike-in experiments that

introduce controlled changes in hybridization/expression of a

known portion of the genes in an array experiment. However, this

technique remains expensive and restricted in its applicability. An

essential drawback of the spike-in experiments involves the non-

linearity of probe effects. Deviation from linearity near minimum

detectable level and saturation level can misrepresent the results of

the performance estimation [10]. This drawback is usually

overcome by titration of the probes over a wide range of

concentrations to obtain linear data for use in the comparative

analysis. The necessity for titration makes this method expensive,

lengthy and difficult for interpretation.

We have presented a methodology for quantitative estimation of

the effects of pre-processing procedures and data analysis methods

on the detection of true differentially expressed genes. The greatest

strength of our strategy is the creation of test datasets through the

introduction of controlled changes into real gene expression data.

The methodology presented here is universal and can be applied

to any existing microarray technology, any source of sample

material and any experimental design. The use of real gene

Figure 4. Comparison of normalization methods. The dataset was split into two equal subgroups, one of which remains unchanged and is
used as a standard for comparison. The second subgroup is altered by introduced fold changes in the portion of gene expression. Four different
normalizations were applied to the resulting data: Two-step normalization, Quantile, Lowess, and VSN. Associative analysis (see Materials and
Methods) was used for the selection of differentially expressed genes with Fd/Fa/Em = 2/1.5/20 restrictions in all these cases. The procedure was
repeated three times (every time with different arbitrary split of 20 samples data into 10&10 samples subgroups) and the averages and SD of the
estimations are shown. A) Sensitivity and B) Precision (Y axes) for symmetrical changes in gene expression (2-fold increase in 10% and 2-fold decrease
in another 10% of data). C) Sensitivity and D) Precision for asymmetric changes in gene expression (2-fold increases in 10% of gene expressions only).
X axis shows the positions of the blocks of gene expression data used for the parameters estimations (in percentage along decreasingly sorted data,
i.e. the 99–100 interval presents 1% of the genes with the highest expressions in the array).
doi:10.1371/journal.pone.0012657.g004
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expression data that contains an unaltered microstructure

(expression level profile, variation patterns, and even typical for

the technology errors etc.) is a great advantage of this approach

over similar attempts that have used simulated data or artificial

models based on the use of simplified/averaged statistical

characteristics from real experiments. Introduction of controlled

changes into the expression dataset enables us to address many

problems associated with pre-processing and analysis of micro-

array data, including the quality dependence of the analysis from

the threshold of minimal gene expression, the influence of fold

change restrictions, and other factors. Further, the introduction of

controlled changes completely eliminates the problem of non-

linearity of probe effects because the changes are introduced into

the final expression levels as if they were measured in the linear

region of the dose/response dependence curve. We believe that

the use our comparative approach will improve the robustness of

microarray-based experiments.

Homogeneous real gene expression data from any experiment

can be used to create a transformed dataset with controlled

balanced changes introduced into a portion of the genes measured

in the array. Similar microarray data matching the manufacturer,

organism, tissue/cells can almost always be found among

.400,000 microarray samples stored on Gene Expression

Omnibus (GEO, [16]), if such data were not included in the

initial experimental design.

Homogeneity of the initial data set will influence estimations of

the performance of the analyses. Estimation of true and false

selections are based on the proposition that after arbitrarily chosen

split the resulting subgroups have only changes in gene expression

produced mainly by the controlled modifications in one of the

Figure 5. Comparison of different methods for gene expression analysis. Sensitivity/Precision of Limma, SAM and Associative analyses. The
2-step normalization procedure was used in all cases. The restrictions were Fd/Fa/Em = 2/1.5/20. A) Sensitivity and B) Precision for symmetrical
changes in gene expression (2-fold increases and 2-fold decreases in gene expressions were equally presented). C) Sensitivity and D) Precision for
asymmetric changes in gene expression (2-fold increases in 10% portion of gene expressions). Axes designation is the same as in Figure 4.
doi:10.1371/journal.pone.0012657.g005
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subgroups. In practice, however, we have the presence of various

types of outliers even within most homogeneous biological data.

The approach presented here is especially sensitive to the presence

of genes having extremely variable expressions [27], which could

not be presented equally after arbitrary split of the group into two

subgroups for subsequent controlled changes and analysis. The

best strategy to estimate and minimize the influence of such genes

is to repeat the procedure several times with random permutation

of the order of samples within the group before each split. The

results (Sensitivity/Precision) will be presented in form of means

+/2 SD as shown in Figures 2, 4, 5 and 6. The ‘‘outliers’’ in our

data did not interfere essentially with our tests, as very small

variation in the Sensitivity/Precision estimations was seen in many

cases (see for example 2–step normalization in conjunction with

Associative analysis – Figures 4, 5). Still, the ‘‘outliers’’ can make

more significant influence in some practical cases, especially

associated with the analysis of quite heterogeneous clinical data.

However, even in such cases it is possible to compare different

methods of analysis as they will be still in the same equal

conditions. The presence of ‘‘outliers’’ is a reality of practical

analysis that usually is not estimated and ignored. The use of the

multiple arbitrary splits and analysis of resulting differences in

gene expressions between ‘‘equal’’ subgroups (before introduced

changes) will help to observe real non-homogeneity and estimate

its contribution into all subsequent results.

To demonstrate the potential of our proposed methodology we

performed quantitative comparisons of the efficiencies of different

normalization and analysis methods. The presented results enable

Figure 6. Comparison of different methods for gene expression analysis in conjunction with normalization procedures usually used
with these methods. The results are shown for symmetric (A, B) and asymmetric (C, D) changes in gene expressions for combinations
Quantile&Limma, Lowess&Limma, Quantile&SAM, Lowess&SAM, and 2-step normalization&Associative analysis. All details of experiments and
designations are as in Figure 5.
doi:10.1371/journal.pone.0012657.g006
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to compare the performance of all these methods quantitatively in

the wide ranges of gene expression levels and estimate stability of

the characteristics of the performance (Sensitivity and Precision).

This analysis is based on the use of preliminary data. However, if

the user is unable to run several microarray experiments to

estimate the robustness of specific pre-processing and statistical

analysis methods, real data that mimic the experimental conditions

can be freely obtained from public microarray data repositories

(GEO [16], ArrayExpress [28]).

The question ‘how many replicates is enough?’ is complicated

by many potentially confounding factors such as the type of array

equipment, laboratory technique, and, most importantly, the

quality of the samples. Cost often represents a significant restraint

and it is important to know which fold changes can be detected

reliably for a given number of replicates. Our analytical approach

can be used to objectively estimate the number of replicates of a

microarray experiments required to reach any desired quality of

analysis and can be completely adjusted to the technological

platform and experimental design.

In summary, we present an accurate and universal procedure

for quantitative and qualitative estimation of the methods of

microarray data analysis. Our approach has the potential for

broad applicability to different types of arrays, including those with

asymmetric distributions of up/down-regulated genes. All pro-

grams used for our analysis were written in MATLAB and are

available upon request. The microarray data containing balanced

2-fold differences in the levels of expression of 20% of the genes

measured are provided as Supplemental material (Table S1) and

may be used by readers for quality analysis estimation of their own

analytical methods. The main result of the presented here analyses

were reproduced without essential differences with smaller

proportion of the controlled changes (5% and 10%, Supplemental

material).

Supporting Information

Figure S1 Comparison of normalization methods. Two-step

normalization vs. Quantile, Lowess, and VSN normalizations. All

designations are as in Figure 4. Associative analysis was used for

the selection of differentially expressed genes with Fd/Fa/Em = 2/

1.5/20 restrictions in all cases. A) Sensitivity and B) Precision (Y

axis) for 2-fold symmetric changes of 10% gene expressions. C)

Sensitivity and D) Precision for symmetric changes in 5% gene

expressions.

Found at: doi:10.1371/journal.pone.0012657.s001 (0.73 MB TIF)

Figure S2 Comparison of different methods for gene expression

analysis. Limma, SAM and Associative analysis performance

compared in terms of Sensitivity/Precision. 2-step normalization

procedure was used in all cases. The restrictions were Fd/Fa/

Em = 2/1.5/20 as before. A) Sensitivity and B) Precision for

symmetric changes in 10% of gene expression; C) and D) - the

same for 5% changes.

Found at: doi:10.1371/journal.pone.0012657.s002 (0.58 MB TIF)

Table S1 Raw data (before normalization) without introduced

changes. In this research we used the group of arrays created from

20 samples from Epstein-Barr Virus (EBV)-transformed B cells

collected from normal healthy donors (Illumina Whole Genome,

Human Ref-8 V2.0 arrays containing over 20,000 genes). This

presumably homogenous group was split into two equal

subgroups. One of the subgroups (columns Q-Z) was used as a

control, whereas the artificial changes in gene expressions were

introduced in another subgroup (experimental - G-P columns). All

data were sorted by the average expression in experimental group.

Found at: doi:10.1371/journal.pone.0012657.s003 (6.30 MB

XLSX)

Table S2 Data with introduced symmetrical 2-fold differences in

5% of the expression in one half of samples. Column AA

(Modifications) shows the changed gene expression: 1 - means 2-

fold increase of expression, and 2- 2-fold decrease, zero means

unmodified data. Data with increase/decrease of expression are

highlighted red/blue, respectively.

Found at: doi:10.1371/journal.pone.0012657.s004 (6.45 MB

XLSX)

Table S3 Data with introduced symmetrical 2-fold differences in

10% of the expression in one half of samples. Column AA

(Modifications) shows the changed gene expression: 1 - means 2-

fold increase of expression, and 2- 2-fold decrease, zero means

unmodified data. Data with increase/decrease of expression are

highlighted red/blue, respectively.

Found at: doi:10.1371/journal.pone.0012657.s005 (6.46 MB

XLSX)

Table S4 Data with introduced symmetrical 2-fold differences in

20% of the expression in one half of samples. Column AA

(Modifications) shows the changed gene expression: 1 - means 2-

fold increase of expression, and 2- 2-fold decrease, zero means

unmodified data. Data with increase/decrease of expression are

highlighted red/blue, respectively.

Found at: doi:10.1371/journal.pone.0012657.s006 (6.41 MB

XLSX)

Table S5 Data with introduced asymmetrical 2-fold increase

only in 10% of the expression in one half of samples. Column AA

(Modifications) shows the changed gene expression: 1 - means 2-

fold increase of expression, zero means unmodified data. Data

with increase of expression are highlighted red.

Found at: doi:10.1371/journal.pone.0012657.s007 (6.45 MB

XLSX)

Table S6 The raw data (before normalization) with introduced

asymmetrical 4-fold increase 10% of the expression and 2-fold

decrease in another 10% of the expression in one half of the data.

Column AA (Modifications) shows the changed gene expression:

1 - means 4-fold increase of expression, 2 - means 2-fold decrease

of expression, zero means unmodified data. Data with increase/

decrease of expression are highlighted red/blue, respectively.

Found at: doi:10.1371/journal.pone.0012657.s008 (6.30 MB

XLSX)
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