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Abstract

SH3 domains mediate signal transduction by recognizing short peptides. Understanding of the driving forces in peptide
recognitions will help us to predict the binding specificity of the domain-peptide recognition and to understand the
molecular interaction networks of cells. However, accurate calculation of the binding energy is a tough challenge. In this
study, we propose three ideas for improving our ability to predict the binding energy between SH3 domains and peptides:
(1) utilizing the structural ensembles sampled from a molecular dynamics simulation trajectory, (2) utilizing multiple peptide
templates, and (3) optimizing the sequence-structure mapping. We tested these three ideas on ten previously studied SH3
domains for which SPOT analysis data were available. The results indicate that calculating binding energy using the
structural ensemble was most effective, clearly increasing the prediction accuracy, while the second and third ideas tended
to give better binding energy predictions. We applied our method to the five SH3 targets in DREAM4 Challenge and
selected the best performing method.
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Introduction

Peptide recognition domains (PRDs) recognize peptides and relay

the signals. There are diverse PRDs that are involved in diverse

signal transduction pathways. In many cases, they work in a

modular fashion [1,2], which implies that the interaction between

peptides and PRDs can be dealt with separately. Due to their

importance in cellular signal transduction, numerous experimental

and computational studies have been performed to characterize

their binding specificity. Development of the SPOT synthesis

method has contributed significantly to our understanding of the

binding specificity of PRDs. It has allowed measurement of the

binding affinity of PRDs to multiple peptide sequences [3]. High-

throughput analyses have been performed using this technique

[4,5]. Moreover, the accumulation of data has made it feasible to

develop diverse computational methods for the prediction of PRD-

peptide interactions. A molecular dynamics (MD) simulation

technique was used to study interactions between SH2 domains

and the peptides [6]. The global motion of the domains was studied

using a Gaussian Network Model to explain the promiscuity of the

PDZ domain [7]. Position specific scoring matrices were construct-

ed to capture the interaction characteristics of SH3 domain families

[8]. A 3D QSAR method was used to predict the affinity of peptides

on MHC [9]. Physical energy terms, such as van der Waals,

electrostatic, and desolvation energies, were used to predict the

energy of domain peptide interactions [10]. With these physical

energy terms as feature vectors, machine learning techniques such

as using a support vector machine were applied to peptide-SH3

domain interaction prediction [11,12]. Statistical energy derived

from the binding energy data and the complex structures was used

to describe the specificity of SH2 domain [13]. In other studies,

protein-protein interaction data such as yeast two-hybrid was used

to generate probabilistic models that can predict peptide sequences

binding to SH3 domains [14,15].

In DREAM4 (URL: http://wiki.c2b2.columbia.edu/dream/

index.php/D4c1), prediction methods for peptide-PRD were

assessed by blind test for three types of peptide recognition

domains: kinase, PDZ, and SH3. The development of prediction

methods is needed because even current high-throughput

techniques, such as SPOT, are limited to rather small sequence

variations [16]. Computational predictions for peptide-PRD can

be applied to far more diverse peptides. Experimentally confirmed

pre-publication binding data were kindly provided by Sachdev

Sidhu at Terrence Donnelly Center for Cellular and Biomolecular

Research, University of Toronto and Ben Turk at Department of

Pharmacology, Yale University. The goal of the project was to

predict the position weighted matrix (PWM), which defines the

binding specificity of the target domains. Only the sequences of

domains were given. We participated in the SH3 domain peptide

specificity prediction category, for which five domains were given.

For SH3 domain binding peptides, two canonical motifs are

frequently observed: +xxPxxP (class I motif) and PxxP x+ (class II

motif), where ‘x’ denotes any of 20 amino acids, ‘+’ positively

charged amino acids, and ‘P’ proline. These peptides are restricted

to triangular prism shape conformation due to the ‘PxxP’ motif

[17,18]. In this conformation, side chains of neighboring amino
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acids are directing to other directions. In this way, each amino

acid of the peptide can be assumed to have little interaction with

the inter-peptide amino acids so that each position can be

considered to be independent of each other, which is a necessary

property for representing the binding specificity with the PWM.

We approached this challenge by modeling the domain-peptide

complex structures and then calculating the energy matrices

describing the binding energy contribution of a specific amino acid

at a specific position, excluding any prior experimental binding

energy information. Fernandez-Ballester et al. tried a similar

approach [19]. In their research on the SH3 domain, they

particularly focused on the generation of good template structures.

However, peptides can have many conformations due to their

thermal fluctuation. Thus, explicit consideration of structural

ensemble would improve the binding energy prediction. In other

previous researches, positions of peptides binding on PRD

domains were considered as being fixed at the canonical motif.

However, for general sequences without canonical motifs there is

no clue how such methods can be applied. Furthermore, there is

no guarantee that peptides in canonical motifs have the lowest

energy. Thus it is worthwhile to test the effect of different

sequence-structure mapping; in other words, the lowest energy

binding position of peptide-domain needs to be investigated.

In this study, we developed three ideas: utilizing the structural

ensemble sampled from a molecular dynamics simulation

trajectory, using multiple peptide templates, and optimizing the

sequence-structure mapping. We validated our ideas using Land-

graf et al.’s data set for SH3 domain-peptide specificity [5]. Using

this method, we predicted the binding specificity of 5 DREAM4

SH3 domain targets.

Results

We tested the validity of the three ideas which we expected

would improve our ability to predict the binding energy between

SH3 domains and peptides: (1) utilizing the structural ensembles

sampled from a MD simulation trajectory, (2) using multiple

peptide templates and (3) optimizing the sequence-structure

mapping. We tested the validity of these ideas on ten previously

studied SH3 domains (ABP1, BOI1, BOI2, LSB3, MYO5,

RVS167, SHO1, YSC84, Amphyphisin, Endophilin) for which

SPOT analysis data were available [5]. The BLU values in the

SPOT data were converted into energies by taking a logarithm,

assuming that the number of domain-peptide complexes is

proportional to BLU value. The overall scheme of the method is

shown in Figure 1. For each SH3 domain, 9 peptide structures

Figure 1. Ensemble Based Binding Energy Calculation Method. Our method is composed of three steps: structure sampling, energy matrix
generation, and binding energy calculation. Initial complex structures were generated by superimposing the peptides of crystal structures to the
modeled SH3 domains. For each initial complex the near binding state conformations were sampled by molecular dynamics simulation. Sampled
structures were used in calculating the contribution of each amino acid on the binding energy on each position, which is converted into energy
matrices. The resulting energy matrices were used to calculate the binding energy of peptides.
doi:10.1371/journal.pone.0012654.g001
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collected from the PDB were used as a template to construct the

SH3 domain-peptide complexes. For each SH3 domain-peptide

complex structure, a structural ensemble composed of 11 different

conformations sampled from the MD simulation trajectory was

generated. As a result, a total of 99 (9 peptide structures 611 time

points) complex structures were generated for each domain, and

those complex structures were used as templates to make 99

energy matrices using FoldX [20,21]. For each target peptide, the

binding energy was calculated using those 99 energy matrices.

Effect of utilizing the structural ensemble sampled from
MD simulation trajectories

We tested whether utilizing the structural ensemble sampled

from MD simulation trajectories would have any advantage over

using a single complex structure. To test this, among nine different

domain-peptide complex models we selected a single structure that

had the highest correlation with SPOT data (the best complex

model). Using this structure model and optimizing the sequence-

structure mapping, we calculated the correlation coefficients for

the following three different cases: (i) using a single conformation

sampled at a single time point, (ii) using the single best

conformation among 11 different conformations for each SH3

domain, and (iii) using the structural ensemble sampled at 11

different MD simulation time points. The results are shown in

Table 1.

It should be noted that the 11 conformations sampled from the

MD trajectory are all equivalent in the sense that there is no clear

way to tell which conformation is the most appropriate for

calculating the binding energy for a given peptide. Therefore, in

order to estimate the prediction performance for case (i), we

calculated the Pearson’s correlation coefficient using each

conformation separately for the 11 sampled MD conformations

and then calculated the average correlation coefficient. For case

(ii), to select the best conformation, one with the highest

correlation was chosen. In some cases, such as ABP1, the

difference between the average performance and the best

performance was small. However, in many cases, such as

Amphyphisin and YSC84, the difference was rather large,

indicating that the binding energy calculated using FoldX can

be sensitive to a small structural variation. The results indicate that

choosing a good structural template is critical for predicting the

binding energy accurately.

In the fourth column of Table 1, the correlation coefficients for

case (iii) are shown. It is clear that using multiple conformations

sampled from MD simulations always improves the prediction

accuracy compared to the case where only one conformation was

used for the prediction. Overall, from Table 1, it is evident that

case (ii) and case (iii) produced comparable prediction accuracy.

Notably, in four domains (ABP1, Endophilin, MYO5, SHO1), the

prediction accuracies were even better than that of the single best

conformation case. Considering the fact that choosing the ‘‘best’’

template structure for any given peptide a priori is impossible in

most cases, the results suggest that utilizing multiple conformations

generated by MD simulations is the best strategy.

We further analyzed how prediction accuracy varied according

to the number of conformations used in case (iii). To do this, we

calculated the binding energies using only the n lowest energy

conformations (n = 1, …,11) for each peptide. We chose the

conformations in this way because we wanted to test whether

simply choosing the single lowest energy conformation for each

peptide is a better strategy than choosing multiple conformations.

In Figure 2, we also showed the correlation coefficients for the

case-(i) (n = 0). If we compare the points at n = 0 and n = 1, it is

clear that choosing the conformation with the single lowest energy

for each peptide was always better than choosing a single arbitrary

conformation. The results shown in Figure 2 also show that as the

number of conformations increased, the prediction accuracy

generally increased, indicating that choosing multiple conforma-

tions is better than choosing one or two lowest energy

conformations.

Effect of Using Multiple Peptide Templates
Our second idea is nearly identical to that of recent study of

Fernandez-Ballester et al. [19] in which they used FoldX for

binding energy calculations and chose a single template among

multiple peptide templates based on the minimum energy criteria.

However, as we used structural ensembles and optimization of

sequence-structure mapping for the binding energy calculation, we

tested this idea again in combination with two other new methods.

Similar to conformational selection from 11 sampled MD

conformations, there is no clue to which peptide is most suitable

for a given sequence. When a sequence has one of the two

canonical motifs, this information can be used. In Table 2, we

compared the case where the peptide is chosen by the energy and

the case where the peptide is chosen by the type of canonical motif

in the sequence. Sequences in the SPOT data for RVS167,

SHO1, LBS3, and YSC84 have distinct class I and II motifs.

Considering the motifs separately, energy based peptide selection

is better in 6 out of 8 cases. Thus we can conclude that choosing

the peptide template that has the lowest binding energy is a

reasonable strategy.

There was a peptide template that had better performance than

the peptide selected by the lowest energy criteria. However, there

is little information on which peptide template would be most

suitable for a particular SH3 domain. Thus, using multiple peptide

templates and selecting the binding peptide based on the lowest

energy criteria would be the best approach unless there is some

prior information about the best template peptide.

Effect of Sequence-Structure Mapping
SPOT data contains information from which the binding

affinity of a peptide to a certain SH3 domain can be obtained, but

it does not provide information on how the peptide binds to the

SH3 domain. In previous studies, all peptides were assumed to

bind to the SH3 binding pocket in the canonical binding mode.

However, inspection of PDB structures revealed that in some cases

Table 1. Effect of structural ensemble sampled from MD
simulation trajectory.

SH3 Domain
Single
Conformation*

Best
Conformation

Multiple
Conformations

ABP1 0.3260.03 0.37 0.39

Amphyphisin 0.3360.13 0.53 0.43

Endophilin 0.4160.06 0.48 0.53

MYO5 0.2360.10 0.33 0.36

RVS167 0.3160.07 0.44 0.38

SHO1 0.3560.05 0.42 0.43

LSB3 0.5760.06 0.65 0.65

YSC84 0.3460.16 0.55 0.47

The Pearson’s correlation coefficients between the predicted binding energies
and SPOT data are shown.
*Average correlation coefficient of 11 conformations.
doi:10.1371/journal.pone.0012654.t001
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peptides resided in the binding pocket one residue off from the

canonical binding mode. This inspired us to analyze the different

sequence- structure mappings other than the canonical binding

modes. In addition, the blind test in the DREAM4 project

motivated us to develop a method which was not dependent on the

canonical binding motifs.

Figure 2. Performance Dependency on Number of Averaged Energies. Out of 11 conformations sampled via molecular dynamics simulation,
the average energy of n lowest energies was used as the binding energy. At n = 0, the average performance when a single conformation was used for
calculation is plotted. ‘+’: ABP1, ‘6’: Amphyphisin, ‘*’: Endophilin, empty box: MYO5, filled box: RVS167, empty circle: SHO1, filled circle: LSB3, triangle:
YSC84, line: averaged performance.
doi:10.1371/journal.pone.0012654.g002

Table 2. Effect of using multiple peptide templates.

Energy Based Selection Best Peptide Template Average{

Domain* Peptide Template{ Class I Class II

ABP1 0.42 0.39 4 (II) 0.36 0.32

Amphyphisin 0.20 0.43 8 (II) 0.03 0.35

Endophilin 0.49 0.53 9 (II) 0.30 0.41

MYO5 0.21 0.36 2 (I) 0.20 0.17

RVS167 0.35 0.38 7 (II) 0.25 0.30

RVS167(I) 0.29 0.48 6 (II) 0.26 0.36

RVS167(II) 0.41 0.48 7 (II) 0.26 0.36

SHO1 0.43 0.43 3 (I) 0.36 0.32

SHO1(I) 0.49 0.52 3 (I) 0.45 0.30

SHO1(II) 0.23 0.26 2 (I) 0.25 0.21

LSB3 0.68 0.65 9 (II) 0.19 0.59

LSB3(I) 0.56 0.47 4 (II) 0.39 0.42

LSB3(II) 0.72 0.71 9 (II) 0.35 0.66

YSC84 0.46 0.52 9 (II) 0.07 0.46

YSC84(I) 0.41 0.40 3 (I) 0.26 0.25

YSC84(II) 0.52 0.57 9 (II) 0.19 0.49

The Pearson’s correlation coefficients between the predicted binding energies and SPOT data are shown.
*When sequences are separated into Class I and Class II, the class is marked in parentheses. Class I has (R/K)xxPxxP motif and Class II has PxxPx(R/K) motif. ABP1,
Amphyphisin, Endophilin, and MYO5 do not have the canonical SH3 motifs.
{Peptides 1, 2, and 3 have Class I orientation, and peptides 4, 5, 6, 7, 8, and 9 have Class II orientation. Class I and Class II are marked in parentheses.
doi:10.1371/journal.pone.0012654.t002
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Sequences in the SPOT data can be mapped on a peptide

structure in several ways. We selected mapping with the lowest

energy as the optimal alignment. We compared this energy with

that of the canonical motif mapping. To exclude the peptide

selection effect, we used the peptide template with the best

performance. The ensemble structure concept was used in all

calculations. For 8 out of 12 cases, the optimization of sequence-

to-structure mapping increased the prediction performance, as

shown in Table 3. The encouraging result was that deteriorating

performances in the remaining 4 cases was very small. These

results indicate that the sequence-structure mapping clearly

improves the binding affinity prediction.

Comparison to Previous Methods
The three ideas proposed in this study turned out to improve

the binding energy calculation. For further evaluation, we

compared our results to those of other prediction methods by

Fernandez-Ballester et al. [19] and by Hou et al. [11]. The area

under the receiver-operating curve (AROC) was calculated for the

classification of binder and non-binder. We used the method of

Fernandez-Ballester et al. for a comparison: The top 100 and

bottom 100 binding energy sequences were used as binders and

non-binders, and the AROC values in their publication were

compared to those of our values. As shown in Table 4, our method

was better than the previous method for four out of six domains.

For the comparison to the method of Hou et al., binder and non-

binder data in Hou’s publication were used. Our method was

better than the method of Hou et al. for four out of five domains.

DREAM4 targets
The same analysis was performed for the DREAM4 Peptide

Recognition Domain Specificity Prediction Challenge for SH3.

We applied our method on the 5 DREAM4 target domains with

all three ideas discussed above. Of 5 domains provided for

challenges, 3 gold standard PWM matrices were revealed

(homology to FISH, Intersectin-1-5 and PACSIN1), and the

results for those three domains are discussed here.

For each DREAM4 domain, the binding energies were calculated

for three sequence groups: random sequences, random sequences

with PxxPxR and RxxPxxP motifs, and sequences generated from

the DREAM4 gold standard PSFM. The distributions of the

predicted binding energies for each group are shown in Figure 3. For

the second and third DREAM4 targets, our method was able to

distinguish the DREAM4 gold standard from random sequences, as

shown in the upper panel of Figure 3. However, our method failed to

characterize the first DREAM4 target.

As the binding motifs were known for SH3 domains,

comparison with the sequences with these motifs is a more

stringent way to validate our method. In this case the enrichment

of the gold standard sequences in the lower energy region was

observed for the third target (lower panel of Figure 3).

To further compare the predicted results, the position specific

frequency matrix (PSFM) was compared using WebLogo [22]

(Figure 4). Among 105 randomly generated sequences, the

sequences for the 1000 lowest energies were collected and amino

acids frequencies at each position were counted to generate the

PSFM. In some sequence-structure mapping, some positions may

not be assigned to any amino acid. For those cases, the letter ‘X’

was used to represent them. For the second target, there was some

similarity between the N-terminal region of the gold standard and

the middle region of our results. However, as the canonical motif,

PxxP, lies at the N-terminal region, our structural model could not

fully cover the regions constituting the gold standard. In target 3,

the predicted PSFM showed some pattern matching with the gold

standard (Figure 4). The positions of positively charged and

hydrophobic amino acids in the predicted sequences matched well

with those in the DREAM4 gold standards.

Discussion

The overall results indicate that binding energy calculation

utilizing structural ensembles sampled from MD simulation

trajectories clearly increased the accuracy of binding energy

Table 3. Effect of sequence-structure mapping.

Domain{
Alignment
(best peptide)*

Without alignment
(best peptide)**

ABP1 0.39 0.36 (23, II)

Amphyphisin 0.43 0.47 (21, II)

Endophilin 0.53 0.54 (21, II)

MYO5 0.36 0.31 (23, I)

RVS167(I) 0.48 (0.25) { 0.34 (23, I){

RVS167(II) 0.48 0.48 (0, II)

SHO1(I) 0.52 0.50 (23, I)

SHO1(II) 0.26 (0.24) { 0.24 (0, II){

LSB3(I) 0.56 (0.44){ 0.43 (23, I){

LSB3(II) 0.71 0.69 (0, II)

YSC84(I) 0.40 0.38 (23, I)

YSC84(II) 0.57 0.57 (0, II)

The Pearson’s correlation coefficients between the predicted binding energies
and SPOT data are shown.
{When sequences are separated into Class I and Class II, the class is marked in
parentheses. Abp1, Amphyphisin, Endophilin, and Myo5 do not have the
canonical SH3 motifs.

*Pearson’s correlation coefficient for the best peptide template when
alignments are adjusted.
**Pearson’s correlation coefficient for the best template peptide when the
alignment is fixed to that of canonical motif PxxP. The offset and class of
peptide templates are indicated in parentheses.
{Cases when the class of the best peptide template is inconsistent with the
class of sequence motifs. The best peptide belonging to the sequence motif is
indicated in parentheses in the second column. The correlation of fixed
alignment for that peptide is shown in the third column.

doi:10.1371/journal.pone.0012654.t003

Table 4. Comparison to Other Binding Energy Calculation
Methods.

SH3 domain
Fernandez-
Ballester*

Our
Method Hou* Our Method

ABP1 0.83 0.88 – –

BOI1 0.67 0.55 0.84 0.72

LSB3 0.96 1.00 0.91 0.95

MYO5 0.88 0.74 0.59 0.66

RVS167 0.70 0.88 0.78 0.86

SHO1 0.83 0.87 – –

YSC84 – – 0.89 0.96

Area under ROC curves (AROC) are shown.
*Methods by Fernandez-Ballester [19] and Hou used different data sets[11].
Accordingly, our method was compared with the two methods separately.
doi:10.1371/journal.pone.0012654.t004
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calculations, while using multiple peptide templates tended to give

better binding energy predictions. In addition, sequence-structure

mapping appeared to improve the prediction accuracy. To test our

three ideas more rigorously, we need to test each idea separately in

various settings, in addition to the testing that we performed in our

work. However, it seems unlikely that the three ideas would work

better only for the situations that we set up for the testing.

The improvement of binding energy calculation using ensemble

structures might originate from two conditions: the ensemble

nature of peptide–protein complex structures and the reduction of

computational errors by averaging. In many binding energy

calculation methods including FoldX, it is commonly assumed that

protein backbone structures are fixed and only a finite number of

side chain conformations (rotamers) are considered for calculating

the binding energy. The reason for this assumption is purely

computational, simply to reduce the computational cost. In reality,

however, domain-peptide complexes exist in many different

conformational states, dynamically moving from one conformation

to another. It is likely that SH3 domain-peptides complexes bind

together in various binding modes. Our method captures some of

this dynamic nature of proteins. We assumed that MD simulation

could produce diverse conformations that could reasonably

represent the whole conformational space of domain-peptide

complexes. The results seem to validate our hypothesis. Our

results are consistent with several recent computational methods

based on the ensemble of structures, such as CC/PBSA, in which

using the Concoord algorithm diverse structures are sampled to

predict the stability or binding affinity change upon mutations

[23]. ClusPro considers a cluster of docked structures to predict

the real docking conformation [24].

Compared to other methods, our method showed better

performance. In the previous binding energy calculations by

Figure 3. Distribution of Predicted Binding Energy for DREAM4 Target. Binding energies were calculated for randomly generated
sequences (upper panel, dashed lines), for random sequences with canonical SH3 binding peptide motifs (lower panel, dashed lines), and for
sequences derived from the DREAM4 Gold Standard (solid lines).
doi:10.1371/journal.pone.0012654.g003

Figure 4. DREAM4 Gold Standard and Predicted PSFM. Position specific frequency matrices are represented with WebLogo [22]. Gold
Standards are disclosed for three targets out of five challenges. They are displayed on the upper panel. The PSFM of 1000 sequences with 1000 lowest
energies are displayed on the lower panel. Target 1: Homology to FISH, Target 2: Intersection-1-5, Target 3: PACSIN1. In case of target 2, the first
position of the DREAM4 fold standard is matched with the fourth position in our prediction.
doi:10.1371/journal.pone.0012654.g004

SH3-Peptide Binding Energy
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Fernandez-Ballester et al, SH3-domains structures and peptide-

SH3 complex structures were constructed with careful manual

inspection and computational structure analysis [19]. For BOI1

and MYO5, Fernandez’s work was better than ours. The low

sequence homology of the template in BOI1 might be responsible

for this. It is unclear why our method failed for MYO5 even

though a crystal structure was used. One cause may be the limited

number of peptide structures in our method, nine, while

Fernandez-Ballester’s method used 29 peptides. Though linear

independency of interaction was assumed in our method, the

backbone structures of the peptides are dependent on the initial

sequence of the peptide. Thus, using more diverse peptides might

be required to predict binding energy for more diverse sequences.

As the method of Hou et al. used different energy function (MM/

GBSA) from ours (FoldX), it is not clear whether the performance

difference came from energy function or the ideas tested in this

study, but it is clear that our method could discriminate binders

and non-binders better than the method of Hou et al.

For the two SH3 domains, BOI1 and BOI2, the prediction was

almost random. The low sequence homology of the template

structures (34% and 33%, respectively) might have caused the

failure in the homology modeling. Therefore, application of our

methods to the domains whose structures cannot be reliably

predicted would be inappropriate.

In DREAM4, the p-value of the PSFM was evaluated in

selection of the best performer. The p-value was estimated from

the distribution of Frobenius distances between random PSFMs

and DREAM4 gold standard PSFM. However, it might not be a

good measure for performance evaluation. Simple PSFMs with the

perfect matching of the motifs produce significantly small p-values:

p-values for PxxPxR motif are 1.4610233 and 1.06102100

(effectively zero) for Target 1 and Target 2, and p-value for

RxxPxxP motif is 1.06102100 for Target 3. The estimated p-

values of our PSFMs were 2.07610233, 1.94610220, and

3.12610231 for Target 1, Target 2, and Target 3, respectively.

Note that the low p-value for Target 1 is somewhat contradictory

to the low discrimination power in energy distribution (Figure 3,

Target 1). Therefore PSFM based Frobenius distance might not be

a good measure for the performance measure. Instead, prediction

of binding energy for each peptide would be a better performance

measure.

In this study, we developed several methods to improve binding

energy calculation and they showed promising results. However,

the overall performance was not sufficient to accurately predict the

binding specificity of many SH3 domains. For three blind tested

SH3 domains in DREAM4, our method could not predict the

general pattern of binding peptides in one case. This calls further

research on the binding energy calculation. Our method also

requires a large number of computations due to the conformation

sampling process with MD simulation. Moreover the sampled

conformations are highly dependent on the sequences of the

peptides. Thus, development of more efficient and general

conformation sampling methods would be required to improve

computational binding energy prediction.

Materials and Methods

Overall, our methods are composed of three parts: (1) structure

sampling, (2) energy matrix generation, and (3) binding energy

calculation (Figure 1). SH3 domain–peptide complex structures

were generated by homology modeling, and for each complex

structure an ensemble of structures was sampled from the MD

simulation trajectories. Using those sampled complex structures as

templates, energy matrices were calculated by running FoldX.

These matrices contain the binding energy contribution of each

amino acid at each position. The binding energy of a given

sequence was then calculated with the energy matrices.

Structure Sampling
Homology Modeling. In this work, we studied 15 SH3

domains including 5 DREAM4 targets. The structures of ABP1,

Endophilin, MYO5, SHO1 and LSB3 are available in the PDB:

1JO8, 3IQL, 1ZUY, 2VKN and 1OOT, respectively. For the

remaining 10 domains we generated their structures by standard

homology modeling procedures. The structure with the highest

sequence identity to each domain was searched in PDB [25] and

was used as the template structure. For DREAM4 targets, 2DNU

(50% sequence identity), 1UKL (75%), 2DRK (49%), 1W6X

(48%), and 2DBM (56%) were used. For the other 5 domains

(Amphyphisin, BOI1, BOI2, RVS167, YSC84), for which SPOT

analysis data [5] were available, 1BB9(55%), 2CUC(34%),

2FPD(33%), 1SSH (50%), and 2A08 (97%) were used. Modeller

9v2 with a default option was used for the homology modeling

[26] to generate structure models.

Collecting Peptide Structures. Thirty SH3 domain-peptide

complexes were collected from the PDB. Redundant peptides were

removed. Nine structures with relatively high sequence diversity

and with linear peptide conformation were chosen and used as

peptide templates in generating domain-peptide complex structure

models. Three complexes (1ABO, 1JU5, 1QWF) are belonged to

class I, and six complexes (1AVZ, 1B07, 1CKA, 1JEG, 1PRM,

1SSH) to class II. For each peptide, at most ten amino acid

residues of peptides flanking the SH3 domain center were used.

For peptides with less than 10 residues, alanines were added to N-

and/or C- terminus using Modeller9v2.

Sampling SH3 domain-peptide complex structures. The

initial structures of the SH3 domain-peptide complexes were made

by structurally aligning the SH3 domains of the complexes onto

the target SH3 domains. PyMOL was used for superimposition

and inspection of the structures. (DeLano, W.L. The PyMOL

Molecular Graphics System. (2008) DeLano Scientific LLC, Palo

Alto, CA, USA.) When a clash occurred, the side chains were

slightly adjusted to avoid the clash. A Gromacs 4.0.2 package was

used for the MD simulation with the Amber03 force field

[27,28,29]. Initially, energy minimization was performed with

the steepest descent method for 5000 steps, followed by 50 ps

equilibration with position constraints to the heavy atoms of the

complexes. The simulation system was then heated from 100 K to

310 K for the first 500 ps, followed by equilibration up to 2 ns.

From the 2 ns to 5 ns trajectories, 11 structures for each SH3-

peptide complex structure were sampled with 300 ps uniform

intervals.

Energy Matrix Generation
Similar to the work done by Fernandez-Ballester et al. [19], we

assumed that each residue of the peptide independently contrib-

utes to the total binding energy. Under this assumption, the

peptide binding affinity of each SH3 domain can be expressed as a

20610 matrix where each element represents the binding energy

of a particular amino acid at a specific position of the peptide. To

calculate the energy matrices, we used FoldX 3.0b [20,21].

Specifically, a peptide was mutated into poly-alanine, and then

alanine at each position was mutated into one of 19 amino acids

and their binding energies were calculated using the PositionScan

module in FoldX. This calculation was performed for 10 residue

positions of the peptide. The resulting 20 (amino acids) by 10

(positions) matrix was defined as an ‘energy matrix.’ The binding

energy of any given sequence can be calculated by looking up the

SH3-Peptide Binding Energy
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energy matrix and summing up the binding energy contribution

from each amino acid at all positions.

Binding Energy Calculation
In this study we assumed that a peptide-domain binding state

was represented by multiple structures, i.e., a structural ensemble.

Thus 11 MD sampled conformations represent a binding state,

and an average of their energies is regarded as the binding energy

of the binding state. To represent diverse binding modes, 9

peptides with different sequences and structures were used. We

assumed that a peptide with a certain sequence has one of those

binding modes, and that the mode of the peptide with the lowest

energy is the closest one to the natural binding mode of the

sequence.

In addition, as there is no one-to-one mapping from a sequence

to a peptide structure, we considered several different mappings,

and one with the lowest energy was chosen.

More specifically, our structural model for a peptide has ten

positions, P1P2…P10. The consequent energy matrix has a binding

energy corresponding to each amino acid. Then, for a sequence

with length 10, S1S2…S10, its energy was calculated from the

summation of energies of amino acids for each position. However,

a sequence with length n, S1S2…Sn, can be placed on the position

in many different manners, such as (P1, S1), (P2, S2), …, (P10, S10)

or (P1, S2), (P2, S3), …, (P10, S11). We denoted the first case as

‘offset 0’ and the second case as ‘offset 21’. Binding energy was

calculated using the mapping with offset from 24 to 4.

Generation of DREAM4 Evaluation Sequences
To evaluate DREAM4 gold standard, 104 sequences were

generated using the gold standard PSFM. Random sequences

were generated with equal probability for each amino acid. Class I

and Class II peptides were generated by fixing RxxPxxP and

PxxPxR motifs but varying the other sites.
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