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Abstract

Background: Guinea pigs are considered to be genetically adapted to a high altitude environment based on the consistent
finding of a high oxygen affinity of their blood.

Methodology/Principal Findings: The crystal structure of guinea pig hemoglobin at 1.8 Å resolution suggests that the
increased oxygen affinity of guinea pig hemoglobin can be explained by two factors, namely a decreased stability of the T-
state and an increased stability of the R2-state. The destabilization of the T-state can be related to the substitution of a
highly conserved proline (P44) to histidine (H44) in the a-subunit, which causes a steric hindrance with H97 of the b-subunit
in the switch region. The stabilization of the R2-state is caused by two additional salt bridges at the b1/b2 interface.

Conclusions/Significance: Both factors together are supposed to serve to shift the equilibrium between the conformational
states towards the high affinity relaxed states resulting in an increased oxygen affinity.
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Introduction

Life at high altitudes is markedly characterized by low oxygen

availability, which challenges aerobic metabolism. Vertebrates

show a remarkable ability to adapt to life under these conditions

by developing several strategies both on the organismic and

molecular level to alleviate the effects of low oxygen availability as

recently reviewed [1,2,3]. Hemoglobin, the oxygen transport

molecule in the blood of vertebrates, is the most important target

for adaptations on the molecular level.

Hemoglobins in vertebrates show the typical globin fold

accommodating a heme group which reversibly binds oxygen to

its central iron atom [4,5,6]. In vertebrate erythrocytes hemoglo-

bins are usually present as tetramers (a2b2) of two a-chains and

two b-chains, each chain with a molecular mass of ,15 kDa. An

important step in hemoglobin evolution was oligomerization

through which cooperative oxygen binding and allosteric control

of binding properties were acquired. Both, cooperativity and

allosteric control in conjunction, render hemoglobin a highly

versatile oxygen carrier whose binding properties can be tuned

over a wide range by allosteric effectors such as protons and 2,3

bisphosphoglycerate [5,6].

Cooperative oxygen binding has been successfully explained by

the two-state model developed by Monod, Wyman and Changeux

based on the structures of the T-state (tense, unligated) and R-state

(relaxed, ligated) observed in hemoglobin crystals [7,8,9]. Decades

later a second quaternary structure was described for liganded

hemoglobin. This quaternary structure, named R2-state, showed

spatial differences relative to the previously known R-state that

equaled in magnitude the spatial differences between R- and T-

state [10]. Initially the R2-state was thought to be a stable

intermediate along a T«R2«R quaternary transition pathway

[10], later the R2-state was suggested to be the endpoint along the

quaternary structure transition T«R«R2 [11,12]. Determina-

tion of the quaternary structure of normal adult hemoglobin with

the ligand carbonmonoxide under almost physiological conditions

by NMR, revealed that the ‘‘in solution’’ structure of hemoglobin

is a dynamic intermediate between the two quaternary states R

and R2 [13].

Several strategies for adaptation to high altitudes on the genetic

level are known with repect to hemoglobin structure. The

hemoglobin of new world camelids such as llama, guanaco and

vicuña, which live in altitudes up to 5000 m, has a partly

degenerated binding site for the allosteric effector 2,3-bispho-

sphoglycerate caused by a His2RAsn mutation on the b-subunit,

which removes two of the seven contacts between the hemoglobin

molecule and its allosteric effector 2,3-bisphosphoglycerate

thereby increasing oxygen affinity [14,15,16]. The hemoglobin

of barheaded geese, which fly at altitudes up to 9000 m, features

an amino acid exchange at the a1b1 interface increasing oxygen

affinity by a release of tension in the hemoglobin molecule [17].

Recently in deer mice several hemoglobin isoforms and their

differential expression depending on oxygen availability were

characterized. The oxygen binding characteristics of the isoforms

in this case seems to depend on several concomitant amino acid

exchanges within the hemoglobin molecule [18].

Guinea pigs are an important live-stock in the Andean region

and considered to be genetically adapted to a high altitude
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environment. This is based on the consistent finding of a high

oxygen affinity of their blood and the observation that guinea

pigs develop only moderate erythrocytosis when exposed to

chronic hypoxia. Both characteristics are not restricted to guinea

pig living at high altitude, but are also found in guinea pigs

which were born and raised at sea level [19]. Typical guinea pig

blood has a p50 of 25 Torr at pH 7.4 [20,21,22]. The sensitivity

of guinea pig towards the allosteric effector 2,3-bisphosphogly-

cerate is normal [23]. The oxygen affininity of guinea pig

hemoglobin is high in comparison with other animals of

equivalent size and lifestyle such as rat, shrew, hedgehog and

deer mice, which have p50 values of around 36 Torr at pH 7.4

[21,24,25].

Guinea pig blood contains one major hemoglobin component

and two minor hemoglobin components, which are only present in

very small quantities [26]. The sequence of the major hemoglobin

component of guinea pig is known [26]. However, lacking a high

resolution crystal structure of guinea pig hemoglobin, the

molecular basis for the high oxygen affinity of guinea pig

hemoglobin remains unknown.

We have recently reported the crystallization of the major

component of guinea pig hemoglobin in the met-state and now

present the first structure of guinea pig hemoglobin at 1.8 Å

resolution [27].

Methods

Isolation and purification
Guinea pig (Cavia porcellus) blood in Alsever solution was

obtained from Charles River Laboratories (Sulzfeld, Germany).

Guinea pig hemoglobin was isolated and purified according to

Paoli and Nagai (2004) based on the original protocol of Perutz

[5,28]. Briefly, erythrocytes were separated from plasma by

centrifugation at 100 g for 15 min. Then erythrocytes were

washed with isotonic saline (0.9% NaCl) and subsequently lysed

by adding an equal amount of water, resulting in a release of

hemoglobin from the cells. After addition of NaCl to a final

concentration of 3%, cell debris was removed by centrifugation. As

hemoglobin represents 98% of protein in the hemolysate, no

further purification was necessary.

Crystallization
Crystallization of guinea pig hemoglobin was performed by

hanging-drop vapor diffusion at 20uC. The drops contained 5 ml

hemoglobin solution with a concentration of 10 mg/ml and were

mixed with 5 ml reservoir solution. Then the drops were

equilibrated against 1.0 ml reservoir solution (2.6 M (NH4)2SO4,

100 mM sodium phosphate buffer, pH 6.5).

Data collection and processing
Prior to data collection the crystals were soaked in mother

liquor containing 25% glycerol as cryoprotectant. Crystals were

then flashed cooled in the gas stream of a cryostream system

(Oxford Cryosystems, Oxford, United Kingdom), with a nitrogen

gas temperature of 100 K. Data was collected using a Microstar

rotating anode (Bruker AXS, Karlsruhe, Germany) and a

‘‘mar345’’ image plate detector (MARresearch, Norderstedt,

Germany). Data was collected for 360 u with an increment of

1.5 u and a crystal to detector distance of 120 mm. Data was

collected up to a resolution of 1.8 Å and processed with the XDS

program package (Version: December 6th 2007) [29]. The space

group was determined using the program POINTLESS from the

CCP4 program suite [30].

Structure solution and refinement
Crystal parameters have been reported before [27]. The

structure solution was obtained by molecular replacement with

carbonmonoxy horse hemoglobin (PDB-code: 2D5X) as starting

model, using the program PHASER implemented in the CCP4

suite [31]. The structure was refined using the program Coot/

REFMAC [32]. Data collection and refinement statistics for the

final model are presented in Table 1. The final model and

structure factor were deposited in the Protein Data Bank with

accession code 3HYU.

Molecular graphics were produced using PyMOL Molecular

Graphics System (DeLano Scientific, USA).

Results and Discussion

Overall description of the structure
The structure of guinea pig hemoglobin is a typical vertebrate

hemoglobin tetramer made up from two a-subunits and two b-

subunits of 141 and 146 amino acids, respectively (Fig. 1). The

electron density clearly confirmed the sequence, which had

previously been reported for the major hemoglobin component

[26]. The a-chain of guinea pig hemoglobin shares 75% identical

Table 1. Crystallographic parameters.

Diffraction data

Wavelength, Å 1.54

Space group C 2221

a, Å 84.54

b, Å 99.95

c, Å 82.72

Resolution range, Å 19.6-1.67 (1.71-1.67)

No. of measurements 472687 (55630)

No. of unique reflections 36378 (5585)

Completeness, % 99.3 (92.1)

RMERGE 0.052 (0.195)

,I./,s.{ 35.8 (9.95)

Refinement

Rcryst 0.179

Rfree * 0.203

No. of protein atoms 2308

No. of water molecules 229

rms deviation from ideality

Bonds, Å 0.011

Angles, u 1.165

Average B value, Å

All atoms 12.37

Main chain 10.03

Side chain and water 14.31

Ramachandran plot

Residues in most favorable regions, % 98.6

Residues in additional allowed regions, % 1.4

Data collection and refinement statistics.
Numbers in parentheses refer to the highest resolution shell.
*Test set size was 5% of reflections.
{,I./,s. = ratio between the mean intensity and the mean error of the
intensity.

doi:10.1371/journal.pone.0012389.t001
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amino acids with human hemoglobin, while the b-chain is

identical with its counterpart in human hemoglobin in 65% of

the positions. Absorption spectroscopy of dissolved crystals

indicated that guinea pig hemoglobin crystallized as met-

hemoglobin [27]. The active site and its surrounding amino acids

are typical in comparison with other hemoglobins in the met state.

Quaternary structure
Hemoglobins in the met-state usually crystallize in the R-state

conformation and therefore a R-state conformation of the

hemoglobin molecule was also expected for guinea pig met-

hemoglobin. Unexpectedly the C-terminal four amino acids of the

a-subunits had a very different conformation than normally found

in the R-state. Superposition of guinea pig hemoglobin with

human hemoglobin in T-, R- or R2-state revealed that guinea pig

hemoglobin crystallized in the R2-state (Fig. 1). The R2-state of

human hemoglobin features the same special C-terminal confor-

mation of the a-subunit as observed in guinea pig hemoglobin

[10]. Until now the R2-state has been only observed in

hemoglobin crystals grown under low salt conditions. Hence it

has been suggested that the R2-state may be the physiologically

relevant liganded end state structure and that the R-state is an

intermediate trapped between the R2 and T structures by the

high-salt crystallization conditions [10,11,12]. Why does guinea

pig hemoglobin crystallize in the R2-state under high-salt

conditions?

Stabilization of the R2-state
One important factor that may contribute to crystallization in

the R2-state is that the R2-state in guinea pig hemoglobin seems to

be better stabilized than the R2-state in human hemoglobin. A

comparison with R2-states of other species is not possible, since the

R2-state has only been reported in human hemoglobin until now.

Analysis of the salt bridges present in the tetramer reveals that

guinea pig hemoglobin is stabilized by a total of 44 salt bridges in

the R2-state, while human hemoglobin in comparison is only

stabilized by 41 salt bridges in the R2-state. Out of these salt

bridges both hemoglobins have 32 in common, while the

remainder is unique to either one of them. The majority of salt

bridges is formed between residues of the same subunit (intra-

subunit salt bridges) and serves to stabilize a certain subunit. Only

a few salt bridges stabilize interactions between adjacent subunits

(intersubunit salt bridges) and thus are important for stabilization

of the quaternary structure. Both, guinea pig and human

hemoglobin, share one conserved salt bridge at the a1/b1-, a2/

b2-, a1/b2- and a2/b1-interface in the R2-state. In contrast the

b1/b2-interface of human hemoglobin in the R2-state is devoid of

intersubunit salt bridges, while in guinea pig hemoglobin two

intersubunit salt bridges are present (Fig. 2). They connect the N-

terminus of the b1-subunit with the C-terminus of the b2-subunit

and vice versa. Specifically they are formed between the N-terminal

amino group (Val1) of one b-subunit and the C-terminal carboxyl

group (His146) of the adjacent b-subunit. The distance between

both charged groups is 2.6 Å. It was not possible to pinpoint a

Figure 1. Conformational state of guinea pig hemoglobin. The
structure of guinea pig hemoglobin (PDB-code: 3HYU) was superim-
posed with the structures of three conformational states of human
hemoglobin by their Ca-atoms. The guinea pig hemoglobin structure is

shown in cartoon representation, which is colored according to the
distance between corresponding Ca-atoms in guinea pig hemoglobin
and the respective conformational state of human hemoglobin in (A) T-
state (PDB-code: 1A3N, [36]), (B) R-state (PDB-code: 1HHO, [37]) and (C)
R2-state (PDB-code: 1BBB, [10]). Distances between Ca-atoms clearly
show that guinea pig hemoglobin crystallizes in the R2-state (C). Color
coding of Ca-atoms distances was made according to the colors given
in the bar below.
doi:10.1371/journal.pone.0012389.g001
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specific amino acid or set of amino acids responsible for the slightly

different conformations of the C- and N-termini of the b-subunits

in human and guinea pig hemoglobin. Nevertheless, we propose

that the two salt bridges at the b1/b2-interface are an important

factor, which increases the stability of the R2-state of guinea pig

hemoglobin in comparison to human hemoglobin.

Destabilization of the T-state
Besides stabilization of the R2-state an additional factor that

might contribute to the oxygen binding behavior of guinea pig

hemoglobin might be a destabilization of the T-state. Baldwin and

Chothia described in their analysis of the hemoglobin tetramer

flexible joint and switch regions [9]. The switch region involves

residues 38–44 of the al-subunit (C helix and CD corner) together

with residues 97–102 of the b2-subunit (FG corner and G helix). In

the course of the conformational change His97 of the b2-subunit

slides in its position along helix C of the a1-subunit. Specifically, in

the T-state His97 of the b2-subunit is positioned between Thr4l

and Pro44 of the al-subunit. Upon transition to the R-state, His97

of the b2-subunit moves one turn along the C helix of the a1-

subunit to a position between residues Thr38 and Thr41 [9]. In

the R2-state His97 of the b2-subunit slides even further in the

same direction and is positioned opposite to Thr38 of the a1-

subunit [10]. In human hemoglobin the switch region of the a1-

subunit is stabilized by a salt bridge between Glu30 and His50,

which connects helix C and helix E.

In the switch region of guinea pig hemoglobin two important

differences exist in comparison to human hemoglobin (Fig. 3).

Firstly, the salt bridge stabilizing the switch region in human

hemoglobin is not present due to two amino acid exchanges

(Glu30Thr30 and His50Pro50) in the a1-subunit of guinea pig

hemoglobin (Fig. 3). The absence of this salt bridge most probably

renders the switch region more flexible in guinea pig hemoglobin.

Secondly, in the T-state His97 of the b2-subunit in human

hemoglobin is positioned opposite to Pro44 of the a1-subunit. In

guinea pig hemoglobin a bulky histidine instead of proline is found

at position 44 of the a1-subunit, which inevitably will result in a

steric hindrance between His44 and His97 of the b2-subunit

(Fig. 3). This steric hindrance renders the T-state of guinea pig

hemoglobin less stable and therefore will result in a higher oxygen

affinity since the equilibrium between T-, R- and R2-state will be

shifted towards the relaxed states (either R- or R2-state), which

have a higher oxygen affinity. Human hemoglobin mutants

confirm this hypothesis, since the mutants Milledgeville (Pro44-

Leu) and Kawachi (Pro44Arg) have a strongly increased oxygen

affinity [33,34]. This may explain why Pro44 of the a-subunit is

highly conserved in vertebrate hemoglobin. Exceptions are

hemoglobins of rat (Rattus norvegicus) and several fish species which

have exchanged Pro44 of the a-subunit to a serine. However, no

increased oxygen affinity has been reported for the exchange of

Pro44Ser most probably due to the fact that serine is much smaller

than leucine, arginine or histidine and therefore no steric

hinderance exists with His97 of the b2-subunit.

In conclusion we propose that the increased oxygen affinity of

guinea pig hemoglobin can be explained by two factors, namely a

decreased stability of the T-state and an increased stability of the

R2-state. Both factors together serve to shift the equilibrium

between the conformational states towards the high affinity

relaxed states resulting in an increased oxygen affinity of guinea

pig hemoglobin. It is remarkable that guinea pig hemoglobin

crystallizes in the R2-state under oxy high salt conditions, which in

all other vertebrate hemoglobins provokes formation of crystals in

Figure 2. Stabilizing salt bridges of the b1/b2 interface in guinea pig hemoglobin. The b1/b2-interface of guinea pig hemoglobin in the R2-
state is stabilized by two salt bridges between the N-terminal amino group of Val1 the b1-subunit and the C-terminal carboxyl group of the b2-
subunit and vice versa. Both salt bridges are not present in the R2-state of human hemoglobin (1BBB)[10]. Guinea pig hemoglobin (b1 = red,
b2 = light red) and human hemoglobin (b1 = blue, b2 = light blue) in the R2-state (PDB-code: 1BBB) were superimposed according to their Ca-atoms.
Carbon atoms of the N- and C-terminal amino acids of guinea pig hemoglobin are colored light red, while carbon atoms are colored blue in human
hemoglobin. Oxygen and nitrogen atoms are colored red and blue respectively. Salt bridges are denoted by dotted lines.
doi:10.1371/journal.pone.0012389.g002
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the R-state. This may indicate that the R2-state in guinea pigs has

an increased stability and thus is the physiological relaxed state,

while in human hemoglobin the R-state or a mixture of R- and

R2-state seems to be present as the relaxed state [13]. Surely the

increased oxygen affinity of hemoglobin is not the only adaptation

to high altitude in guinea pigs, but increased blood oxygen affinity

has been proven to be advantageous for animals living at high

altitudes, because it increases the oxygen saturation of the arterial

blood [1,2,3,19,35].
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