
Different Effects of Angiotensin II and Angiotensin-(1-7)
on Vascular Smooth Muscle Cell Proliferation and
Migration
Feng Zhang1,2, Yanhua Hu3, Qingbo Xu3, Shu Ye1*

1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 2 Department

of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China, 3 Cardiovascular Division, King’s BHF Centre, King’s College London, London,

United Kingdom

Abstract

Background: Angiotensin (Ang) II and Ang-(1-7) are two of the bioactive peptides of the rennin-angiotensin system. Ang II
is involved in the development of cardiovascular disease, such as hypertension and atherosclerosis, while Ang-(1-7) shows
cardiovascular protection in contrast to Ang II.

Methodology/Principal Findings: In this study, we investigated effects of Ang II and Ang-(1-7) on vascular smooth muscle
cell (SMC) proliferation and migration, which are critical in the formation of atherosclerotic lesions. Treatment with Ang II
resulted in an increase of SMC proliferation, whereas Ang-(1-7) alone had no effects. However, preincubation with Ang-(1-7)
inhibited Ang II-induced SMC proliferation. Ang II promoted SMC migration, and this effect was abolished by pretreatment
with Ang-(1-7). The stimulatory effects of Ang II on SMC proliferation and migration were blocked by the Ang II receptor
antagonist lorsartan, while the inhibitory effects of Ang-(1-7) were abolished by the Ang-(1-7) receptor antagonist A-799.
Ang II treatment caused activation of ERK1/2 mediated signaling, and this was inhibited by preincubation of SMCs with
Ang-(1-7).

Conclusion: These results suggest that Ang-(1-7) inhibits Ang II-induced SMC proliferation and migration, at least in part,
through negative modulation of Ang II induced ERK1/2 activity.
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Introduction

Vascular smooth muscle cell migration and proliferation are

important processes in the development of restenosis after

angioplasty and in the formation of atherosclerotic plaques

[1,2]. After angioplasty, SMCs migrate from media into intima,

where they contribute to neointima formation and restenosis.

This process is also an important feature in the development of de

nova atherosclerotic lesions, in which fibrous cap is characterized

by the accumulation of SMCs and SMC-derived extracellular

matrix.

Angiotensin II, one of the major active components in the

rennin-angiotensin system, plays an essential role in the patho-

genesis of atherosclerosis [3]. Most of the pathophysiologic actions

of Ang II are mediated by signal transduction through the AT1

receptor. The AT1 receptor, which contains 7 transmembrane

helixes, is a member of superfamily of G protein-coupled

receptors. This receptor mediates the effects of Ang II on

vasoconstriction, proliferation, inflammation, coagulation and

extracellular matrix remodeling.[4] During the development of

atherosclerosis, Ang II, acting through AT1 receptor, induces

vascular SMC growth and migration [1,4].

An major Ang II-induced signaling pathway is activation of

mitogen-activated protein kinases, including extracellular signal-

regulated kinase (ERK1/2) [5], p38 mitogen-activated protein

kinase (p38 MAPK) [6], and c-Jun N-terminal kinase (c-JNK) [7].

ERK1/2 has been reported to be a critical regulatory factor for

Ang II-mediated growth and migration of vascular SMCs [5,8–

11], Inhibition of ERK1/2 decreases Ang II-induced vascular

SMC proliferation and migration [5,11].

Angiotensin-(1-7), another bioactive peptide of the rennin-angio-

tensin system, appears to exert cardiovascular protection in contrast to

Ang II. Ang-(1-7), which can be converted from Ang II by ACE2, has

vasodilator and anti-proliferative properties [12]. In addition, it has

been shown that Ang-(1-7) attenuates ventricular hypertrophy and

fibrosis in response to the hypertensive challenge by Ang II [13]. The

effects of Ang-(1-7) are mediated via the MAS receptor, another G-

protein-coupled, seven transmembrane protein [14]. The peptide has

been shown to oppose many actions of Ang II [15], and to

counterregulate Ang II-induced ERK1/2 activity [16–18].
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There are studies showing the effect of Ang-(1-7) on vascular

SMC proliferation [16,19]. Nevertheless, the effect of Ang-(1-7) on

vascular SMC migration has not been well investigated. There is

evidence showing that intravenouse infusions of Ang-(1-7)

attenuates neointimal formation after vascular injury and stent

implantation in rats [20,21], which could be in part due to effects

of Ang-(1-7) on SMC migration into the neointima. In this study,

we investigated possible effects of Ang-(1-7) on vascular SMC

proliferation and migration. We found that Ang-(1-7) inhibited

Ang II-induced vascular SMC proliferation and migration, and

this inhibitory effect was via the MAS receptor. Furthermore, we

found that Ang-(1-7) treatment suppressed Ang II-induced

activation of ERK1/2 mediated signaling, a possible mechanism

for its inhibitory effect on SMC proliferation and migration.

Results

Ang-(1-7) inhibits Ang II-induced SMC proliferation
RT-PCR and subsequent sequence analysis showed that the

SMCs expressed both the Ang II AT1 receptor and the Ang-(1-7)

MAS receptor. To study effects of Ang II and Ang-(1-7) on SMC

proliferation, same numbers of cells were seeded in individual wells

of 6-well plates, cultured in the presence or absence of Ang II or

Ang-(1-7) or both (Ang-(1-7) was added 10 min before the addition

of Ang II) at a final concentration of 1027 M for four days, and

then the total numbers of cells per well were determined using a

cell counter. As shown in Figure 1, there was a significantly greater

increase in cell number when treated with Ang II, as compared

with the untreated control. In contrast, treatment with Ang-(1-7)

alone did not alter the rate of cell proliferation. However, when

the cells were preincubated with Ang-(1-7), Ang II-induced SMC

proliferation was significantly inhibited (Figure 1).

MAS receptor antagonist abrogates the effects of
Ang-(1-7) on SMC proliferation

As Ang II mediates most of its effects via the AT1 receptor and

Ang-(1-7) mediates its effects via the MAS receptor, we then used

the AT1 receptor antagonist losartan and the MAS receptor

antagonist A-779 to investigate whether Ang II and Ang-(1-7)

exerted their effects on SMC proliferation via these two receptors

respectively. As shown in Figure 2, the AT1 receptor antagonist

losartan blocked Ang II-induced SMC proliferation, whilst the

MAS receptor antagonist A-779 abrogated the anti-proliferative

effect of Ang-(1-7) on Ang II-induced SMC proliferation.

Ang-(1-7) modulates Ang II-stimulated SMC migration
To study effects of Ang II and Ang-(1-7) on SMC migration,

SMCs were subjected to migration assays, in the presences or

absence of Ang II or Ang-(1-7) or both (Ang-(1-7) was added

10 min before the addition of Ang II). The experiments showed

that Ang II increased SMC migration, whereas Ang-(1-7) alone

had no effect (Figure 3). However, cells treated with both Ang II

and Ang-(1-7) had significant lower rate of migration compared

with cells treated with Ang II alone (Figure 3), suggesting that

Ang-(1-7) inhibited the stimulating effect of Ang II on SMC m

igration.

Figure 1. Ang-(1-7) inhibits Ang II-induced SMC proliferation.
Data shown are mean 6 SEM of cell numbers at day 4 from 4
experiments, each with triplicate wells per condition.
doi:10.1371/journal.pone.0012323.g001

Figure 2. Antagonists abrogate the effects of Ang II and Ang-
(1-7) on SMC proliferation. Data shown are mean 6 SEM of cell
numbers at day 4 from 4 experiments, each with triplicate wells per
condition.
doi:10.1371/journal.pone.0012323.g002

Figure 3. Ang-(1-7) inhibits the stimulating effect of Ang II on
SMC migration. Data shown are mean 6 SEM of migration distance
from 4 experiments, each with triplicate wells per condition.
doi:10.1371/journal.pone.0012323.g003
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MAS receptor antagonist blocks the effect of Ang-(1-7)
on SMC migration

To investigate whether the stimulating effect of SMC migration

was mediated via the AT1 receptor and whether the counteracting

effect of Ang-(1-7) was mediated by the MAS receptor, we

performed the migration assays in the presence or absence of the

AT1 receptor antagonist losartan or the MAS receptor antagonist

A-779. As shown in Figure 4, Ang II-induced SMC migration was

inhibited by AT1R antagonist losartan, while the inhibitory effect

of Ang-(1-7) on Ang II-induced SMC migration was blocked by

A-779.

Ang-(1-7) inhibits AngII-induced ERK1/2 phosphorylation
Since the ERK1/2 signaling pathway plays a major role in Ang

II-induced SMC proliferation and migration[5,11], we investigat-

ed whether Ang-(1-7) interfered with Ang II-induced ERK1/2

activation. We found that Ang II treatment stimulated phosphor-

ylation of ERK1/2 and that this effect was significantly inhibited

in the presence of Ang-(1-7) (Figure 5).

Discussion

Our study show that Ang-(1-7) and Ang II exert different effects

on vascular SMC proliferation and migration. Our study confirms

the reported stimulating effects of Ang II on SMC proliferation

and migration, supporting the notion that increased Ang II

generation can promotes atherogenesis and neointimal formation

leading to restenosis after angioplasty [22]. Similar to previous

studies which showed that Ang-(1-7) inhibits proliferation in a

number of cell types [19,23-25], we observed that Ang-(1-7)

negatively modulates Ang II-induced vascular SMC proliferation.

Besides, the most important finding of our study is that Ang-(1-7)

inhibits Ang II-induced SMC migration. This novel finding

provides a further rationale for the use of Ang-(1-7) as a

therapeutic agent for preventing neointimal formation and

restenosis after angioplasty [26,27]. We found that the inhibitory

effect of Ang-(1-7) on Ang II-stimulated SMC proliferation and

migration can be blocked by the MAS receptor antagonist A-779,

indicating that Ang-(1-7) exerts this effect via activating the MAS

receptor. Furthermore, we show that Ang-(1-7) inhibits Ang II-

induced ERK1/2 phosphorylation, which provides a plausible

explanation for the molecular mechanism underlying the inhib-

itory effect of Ang-(1-7) on Ang II stimulated SMC proliferation

and migration, since the ERK1/2 dependent signaling pathway

plays a critical role in mediating the stimulating effect of Ang II on

SMC proliferation and migration.

In our study, we observed that Ang-(1-7) inhibits Ang II-induced

vascular SMC proliferation. Interestingly, whilst Ang II has been

shown to induce proliferation of many cell types including vascular

SMCs,[22] divergent effects have been reported for Ang-(1-7) in

different cell types. It has been shown that Ang-(1-7) causes

inhibition of proliferation of rat vascular SMCs, myocytes and

human lung cancer cells,[19,23,24] and that Ang-(1-7) treatment

attenuates neointimal formation after stent implantation in rats.[20]

On the other hand, Ang-(1-7) simulates proliferation of endothelia

progenitor cells and hematopoietic progenitor cells [28,29].

Moreover, similar to our finding in mouse SMCs, Ang-(1-7) alone

has no effect on mesangial cell growth, whereas Ang-(1-7) inhibits

Ang II-induced increase in mesangial cell proliferation [25]. The

reasons for these divergent effects of Ang-(1-7) are currently

unknown and might be due to differences in the repertoires of

receptors, signaling molecules and cell cycling regulators, etc, in the

different types of cells. There is a reported study showing direct

inhibition of rat vascular SMC proliferation by Ang-(1-7) [19],

which differ from our finding in mouse SMCs, possibly because of

the different animal specials and experiment conditions.

It has been well established that Ang II is a potent stimulus for

vascular SMC migration [5,6,8,10,30]. In contrast, it was unclear

whether Ang-(1-7) also had a effect on SMC migration, although

there are several studies from which there is indirect evidence to

suggest that this might be the case. Some of these studies showed that

Ang-(1-7) treatment attenuated neointimal formation after vascular

injury and stent implantation in the rat [20,27]. Similarly, another

study showed that Ang-(1-7) treatment resulted in a reduction of

neointimal formation and collagen synthesis after angioplasty in

rabbits [26]. As SMC migration is a critical step in the formation of

neointima, it is possible that the reduction in neointimal formation as

a result of Ang-(1-7) in these studies might be in part due to an

inhibitory effect of Ang-(1-7) on SMC migration. The finding of our

study that Ang-(1-7) inhibits Ang II-induced SMC migration provides

direct evidence that supports this notion.

Our study shows that Ang II-induced ERK1/2 activation is

negatively modulated by Ang-(1-7). Previous studies have shown

that activation of ERK1/2 plays an important role in SMC

migration. ERK1 and ERK2 are rapidly activated in rat carotid

arteries after balloon injury [31]. Downregulation of ERK1/2 by

antisense oligonucleotides or gene transfer of a dominant-negative

mutant of ERK1/2 prevents neointimal formation in balloon

angioplasty [32]. In addition, it has been shown that the effect of

Ang II on vascular SMC migration are mediated via an AT1

receptor dependent signaling pathway involving activation of

ERK1/2 [9], and that blocking ERK1/2 activation using the

MAPK kinase inhibitor PD98059 or antisense oligodeoxynucleo-

tides can significantly attenuate Ang II-stimulated SMC migration

[5]. In the present study, we found that Ang-(1-7) reduced Ang II-

stimulated ERK1/2 activity. It is likely that Ang-(1-7) can activate

a signaling pathway that leads to blockage of ERK1/2 activation

and therefore can inhibit Ang II- induced ERK activation and

Ang II-stimulated SMC migration.

Figure 4. Blockade of the effects of Ang II and Ang-(1-7) on
SMC migration by antagonists. Data shown are mean 6 SEM of
migration distance from 4 experiments, each with triplicate wells per
condition.
doi:10.1371/journal.pone.0012323.g004
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There are several possibilities for the mechanism by which Ang-(1-

7) regulates SMC migration. Firstly, inhibition of the ERK1/2-

dependant signally cascade by Ang-(1-7) is likely to play a role in

reduced cell migration. Substrates of ERK1/2 include FAK (focal

adhesion kinase) and paxillin [33,34]. ERK1/2-dependant FAK and

paxillin phosphorylation is important in the regulation of focal

contacts during cell migration [35]. Ang II-induced activation of c-

Src, another vital component in the regulation of focal contacts

formation, has been shown to be abrogated by Ang-(1-7) in human

endothelial cells, and c-Src is upstream of the ERK signaling cascade

[18]. Ang-(1-7) antagonizes Ang II-mediated upregulation of matrix

metalloproteinase (MMP)-9 [36], an extracellular matrix protein-

degrading enzyme known to play an important role in cell migration

[37]. MMP-9 expression has been shown to be mediated by ERK1/

2, and inhibition of ERK1/2 downregulates MMP-9 expression in

vascular SMCs and in arterialized vein grafts [38,39]. As our study

showed that Ang-(1-7) abrogated Ang II-mediated ERK1/2

activation, it is likely that Ang-(1-7) can counteract Ang II-induced

SMC migration through inhibiting FAK and paxillin phosphoryla-

tion and MMP-9 expression via the ERK1/2 pathway. Secondly,

Ang-(1-7) is a bioactive peptide that stimulates nitric oxide release

[40,41], and nitric oxide is known to inhibit Ang II-induced SMC

migration [40,42]. Thirdly, Ang-(1-7) can downregulate AT1

receptor, resulting in reduced Ang II binding in vascular SMCs [43].

The first evidence for an interaction between Ang-(1-7) and Ang

II is the inhibition of the contractile effect of Ang II in the rabbit

aorta by the Ang-(1-7) analogue Sar-Ang-(1-7) [44]. Further studies

show that Ang-(1-7) antagonizes Ang II-induced contraction of

human vessels, including internal mammary arteries and forearm

resistant vessels [28,45,46]. Ang-(1-7) blockade of Ang II-induced

contraction results from release of vasorelaxing factors including

NO and prostaglandins [40], or other biologically active peptides

such as bradykinin [47]. In addition, it has been shown that Ang-(1-

7) prevents Ang II-induced cardiac remodeling, attenuating

myocyte hypertrophy and myocardial interstitial fibrosis induced

by Ang II [48]. The finding of our study that Ang-(1-7) inhibits the

effect of Ang II on SMC proliferation and migration suggests that

the interaction between Ang-(1-7) and Ang II could also occur in

vascular remodeling via affecting SMC proliferation and migration.

The findings from the previous and present studies of different effects

of Ang II and Ang-(1-7), which represent two major members of the

rennin-angiotensin system, are directly relevant to understanding the

Figure 5. Ang-(1-7) inhibits Ang II-induced ERK1/2 phosphorylation. (A) Representative Western blotting results, showing bands for
phosphorylated ERK1/2 (p-ERK1/2) and total ERK1/2. (B) Quantification of band intensity of Western blots. Data shown are mean 6 SEM of 3
experiments.
doi:10.1371/journal.pone.0012323.g005
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pathogenesis of de nova atherosclerosis and neointimal formation after

angioplasty. Moreover, the findings that Ang-(1-7) counteracts the

atherogenic effect of Ang II have led to the development of therapeutic

approaches utilizing the anti-atherogenic properties of Ang-(1-7), e.g.

Ang-(1-7) coated stents [20]. The novel finding of the present study that

Ang-(1-7) inhibits Ang II-induced SMC migration further supports the

rationales for such therapeutic approaches.

Materials and Methods

Materials
Ang II, Ang-(1-7), losartan, Dulbecco’s modified Eagle’s medium

(DMEM), penicillin and streptomycin were obtained from Sigma

Aldrich. A-779 was purchased from Phoenix Pharmaceuticals. Fetal

bovine serum (FBS) was obtained from Invitrogen. Antibodies to

phospho-ERK1/2 and to total ERK1/2 were from Cell signaling.

Cell culture
SMCs were isolated by autogrowth of explant culture from the

thoracic aortas of mice as described before [49], which was

approved by King’s College Ethical Review Process Committee

and under the UK Home Office Animal Scientific Procedures

Division permit number 70/6458. Briefly, mouse thoracic aortas

were removed and washed with DMEM. Intima and inner two

thirds of media were carefully dissected from the vessels, cut into

pieces (<1 mm3). Tissue pieces were then explanted onto a 0.02%

gelatin-coated flask. To get a firm attachment of tissue pieces, the

flask was incubated upside-down for 1 h and then DMEM

supplemented with 20% FBS, penicillin and streptomycin was

slowly added. Cells were allowed to autogrow for 2 weeks and then

passaged until enough cells were obtained. Cells were then

maintained in DMEM supplemented with 10% FBS, penicillin

and streptomycin at 37uC in a humidified atmosphere of 5% CO2.

Reverse-transcriptase polymerase chain reaction (RT-PCR)
RNA was isolated from cultured SMCs using Nucleospin RNA

II 50 Preps (Fisher Scientific) according to the manufacturer’s

instruction. Single-stranded cDNA was synthesized from 1 mg of

total RNA using 0.5 mg random primers and 200 units of M-MLV

reverse transcriptase (Promega). PCR of the AT1 receptor and the

MAS receptor were carried out. The sequences of PCR primers

for AT1-R were 59-GCATCATCTTTGTGGTGGG-39 (sense)

and 59-ATCAGCACATCCAGGAATG-39 (anti-sense) as de-

scribed elsewhere[50], which generated a 690 bp PCR product.

The PCR primer sequences for the MAS receptor were, 59-

GGAACAGGACGGAGGTTACA-39 (sense) and 59-AGTCAG-

GAGGTGGAGAGCAA-39 (anti-sense), which produced a

395 bp amplicon. The PCR products were analyzed by agarose

gel electrophoresis to verify that they had the expected sizes and

were subsequently further verified by sequencing.

Measurement of cell proliferation
Some numbers of SMCs were seeded in different wells on 6-well

tissue culture plates, cultured in the presence of 1% FBS and

stimulated with Ang-(1-7) (1027 M) or Ang II (1027 M) or both

(Ang-(1-7) was added 10 minutes before the addition of Ang II). In

some conditions, cells were preincubated with losartan (1026 M)

or A-799 (1026 M) for 5 minutes followed by treatment with Ang

II or Ang-(1-7). The medium was changed and the cells were

restimulted every 24 hours. After four days, cells were removed

from each well using trypsin/EDTA and cell numbers were

counted by a Vi-CELL cell viability analyzer (Beckham Counter).

Migration assay
SMC migration was measured using a previously described

method [51,52]. Briefly, cells were grown to confluence on 6-well

plates. Parallel lines were drawn with a maker pen on the back of

each well. Liner wounds were made vertical to these parallel lines

by scraping each well with a sterile 200-uL pipette tip. Cells were

then rinsed twice with serum-free medium to remove cellular

debris. Images besides each crossing of parallel lines and wounds

were obtained using an Olympus inverted microscope equipped

with a camera. Cells were incubated with or without losartan

(1026 M) or A-779 (1026 M) for 5 minutes, then with or without

the addition of Ang II (1027 M) or Ang-(1-7) (1027 M), or with the

addition of Ang-(1-7) 10 minutes before addition of Ang II

(1027 M). After 24 hours, images were taken again besides each

crossing. ImageJ software was used to measure the distance

between two edges of each wound. Data are presented as moving

distance, which is the difference in the distances between two

edges at the same crossing at 0 h and 24 h.

Western blotting
SMCs in serum-free media were incubated with or without

Ang-(1-7) (1027 M)for 5 minutes. Ang II (1027 M) was then added

and incubation was continued for an additional 30 minutes. Cell

lysates were prepared in lysis buffer (1% SDS, 62.5 mM Tris-HCl,

pH 7.8) containing protease inhibitor cocktail and phosphatase

inhibitor cocktail (Sigma Aldrich) and protein concentrations were

measured by a Bradford assay. Solubilized proteins (20 ug/well)

were separated in 10% SDS-polyacrylamide gel by electrophoresis

and transferred to nitrocellulose membranes. In the presence of

5% nonfat milk in Tris-buffered saline Tween 20 to block

nonspecific binding, the membranes were hybridized overnight

with an antibody for phosphorylated ERK1/2 (anti-phospho-

ERK1/2, 1:2000) or an antibody for total ERK1/2 (anti-total

ERK1/2, 1:1000), followed by incubation with a second antibody

coupled to horseradish peroxidase. Immunoreactive bands were

detected using a chemiluminescence (ECL) system and X-ray

films. Densitometric analysis of bands was performed using Adobe

Photoshop software.

Statistical analyses
All results are expressed as mean 6 SEM. The data were

evaluated by paired t-test and confirmed by Wilcoxon test. A value

of P,0.05 was considered significant.
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