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Abstract

Background: Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least
one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this
approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm
that reduces false-positive predictions.

Methodology/Principal Findings: Certain domains and minimotifs are known to be strongly associated with a known
cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where
the minimotif containing protein and target protein have a related cellular or molecular function, the prediction is more
likely to be accurate. This filter was implemented in Minimotif Miner using function annotations from the Gene Ontology.
We have also combined two filters that are based on entirely different principles and this combined filter has a better
predictability than the individual components.

Conclusions/Significance: Testing these functional filters on known and random minimotifs has revealed that they are
capable of separating true motifs from false positives. In particular, for the cellular function filter, the percentage of known
minimotifs that are not removed by the filter is ,4.6 times that of random minimotifs. For the molecular function filter this
ratio is ,2.9. These results, together with the comparison with the published frequency score filter, strongly suggest that
the new filters differentiate true motifs from random background with good confidence. A combination of the function
filters and the frequency score filter performs better than these two individual filters.
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Introduction

Minimotifs are short contiguous peptide pieces of proteins

that have a known biological function. These functions can be

categorized into binding, posttranslational modification of the

minimotif, and protein trafficking. While there are many known

functional minimotifs, predicting a minimotif in a new protein

based on a consensus sequence, position-specific scoring matrix, or

other algorithms produces many false-positive predictions. This

limits the usefulness of minimotif prediction programs such as

Minimotif Miner (MnM) [1,2], Eukaryotic Linear Motif (ELM)

[3,4], and ScanSite [5,6]. These programs all use different

approaches to reduce false positive predictions.

To reduce false positive minimotif predictions, three approaches

have been used in MnM [1,2]. In frequency analysis, the complexity

of minimotif sequence definitions can be used to rank-order

minimotifs. A surface prediction algorithm can identify minimotifs

likely to be on the surface of a protein. The third approach selects

minimotifs that have conserved minimotif sequences in many

species. ELM has also implemented several filters for: 1) Cell

compartments, 2) Globular domains, 3) Taxonomy, and 4)

Structure [3,4,7]. The cell compartment filter selects minimotifs

where both the ligand and its target are in the same cellular

compartment. The globular domain filter selects minimotifs in

intrinsically disordered regions. The taxonomy filter eliminates

minimotifs that are not in the same species. The structure filter

selects for minimotifs that have exposure to solvent or similar

secondary structural features. In ScanSite [5,6], minimotifs are

described as position-specific scoring matrices (PSSMs) that indicate

the frequency of each amino acid at each position using data derived

from peptide library and phage display experiments [8,9]. ScanSite

provides different stringencies of predictions.

Despite these inter-related approaches, false positives remain a

concern, thus new types of filters are needed. In considering new

strategies that might be used to refine minimotif predictions, we

have noticed that some proteins which contain a particular
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domain are thought to have functions related to similar cellular

processes. For example, proteins, which contain PTB or SH2

domain that binds to phospho-tyrosine containing proteins, are

typically involved in signaling [10]. Likewise, BRCT domains

generally bind to phosphopeptides and are often in proteins

associated with DNA repair and cell cycle checkpoints [11,12].

Therefore, we hypothesize that knowledge about molecular and

cellular functions can be used to refine minimotif predictions.

The Gene Ontology (GO) database [13] contains structured

information about biological processes, cellular components, and

molecular functions. Proteins are associated with terms in each of these

ontologies. Each ontology is structured as a directed acylic graph that

maps the relationships between terms. We can take advantage of GO

because it references protein accession numbers and thus, can be cross

referenced to the Minimotif Miner database[1,2].

We have built a syntactical and semantic structure for

minimotifs that enables easy integration of minimotif and GO

data [14]. Briefly, a minimotif is contained in a protein, which is

called the ‘source protein’. A minimotif in the source protein has

an action, designated ‘activity’. The protein which recognizes the

minimotif to induce the activity is the ‘target protein’. For

example, in [yytm in Jak2] [binds] [the SH2 domain of SHB], yytm

is the minimotif sequence, Jak2 is the source protein, binds is the

activity, and SHB is the target protein. SH2 domain specifies the

region where the minimotif binds the target SHB.

For predictions of new minimotifs, the source protein query

contains multiple minimotif short sequences that may encode new

activities with all of the target proteins. In this paper, the source

protein and the set of putative target proteins can be mapped to

cellular and molecular functions derived from the GO database to

determine whether the source and target proteins share at least one

common or similar cellular function and/or molecular function.

This approach was first tested on the Minimotif Miner database of

experimentally verified minimotifs. Analysis of several variations of

the algorithm demonstrates that this approach can reduce false

positive minimotif predictions in the test dataset and eliminate many

predictions in a set of randomly selected query proteins.

Since there are many false positives in minimotif prediction

programs, any means of selecting minimotifs with a higher probability

of being true is desired. The molecular function filter does provide this

advantage. Another important aspect of the filters presented in this

paper is that they segregate minimotifs into groups for uses. With the

cell function algorithm users can choose minimotifs for target proteins

that are involved in the same cellular process or in a different cellular

process. For example if the query protein is involved in cell division,

one user may want to only look for minimotif predictions for

other proteins involved in cell division or may want to identify

predictions that are involved in other cellular processes. We have also

implemented this for molecular functions as well.

Another important contribution of this paper is the novel

conclusion that it may be possible to combine more than one filters

to get another filter whose performance is better than that of the

individual filters. In particular, we have devised two combinations.

The first combination has the molecular function and the frequency

score filter and the second combination has the cellular function

filter and the frequency score filter. The new combination filters

have much better p-values than all the component filters involved.

Methods

Data sources for evaluating the cellular and molecular
function filter algorithms

To reduce the false positives in the minimotif predictions by

MnM with cellular/molecular function information, we obtained

this functional data from the GO database. We selected the GO

database for this purpose because it has the largest ontologies for

these functions and has relationships between functions. The GO

ontology (4/09 release) has 16,698 terms and 32,719 edges for

biological processes/cellular functions and 9309 terms and 9,924

edges for molecular functions. The edges for functional relation-

ships are directed from the juxtaposed node to the larger node for

two neighboring terms. Because identical proteins in the MnM

and GO databases may have different accession numbers, we used

an alias table to map these accession numbers to the cellular/

molecular functions of each protein.

To test the effectiveness of the filter algorithms, we ideally

needed to compare a dataset of verified minimotifs to known

negatives. For experimentally verified minimotifs we used the

Minimotif Miner 2 database (MnM 2), for which the total number

of minimotifs is ,5300 [1,2]. 2,926 of these entries encoded

minimotifs where accession numbers for both the minimotif source

and target proteins were known. Of these 1,739 entries had at least

one cellular function and 2,018 had at least one molecular

function in the GO database. These entries were treated as the

‘‘Validated’’ positive dataset containing experimentally confirmed

minimotifs.

We did not have access to known negative minimotifs, so we

generated a dataset that will serve as ‘‘negative’’ interactions that

are comprised of proteins that are most likely not to interact.

There are ,500,000 known protein-protein interactions for

.5,000 total proteins, but if all possible pairwise interactions are

considered, then the number of true minimotifs is a very small

fraction of the total possible number of all interacting protein

pairs. For example, if there are ,30,000 proteins for the

,500,000 interactions, then the total number of possible pairing

is 449,985,000. Thus, it is safe to assume that choosing randomly

generated protein pairings represents ‘‘negative’’ minimotifs.

Therefore, 20,000 entries of random pairs of source proteins

and target proteins were sampled. Of these pairs, 3,153 had at

least one cellular function and 3,706 of the pairs had at least one

molecular function in the GO dataset. These entries were used as

the ‘‘Negative’’ datasets. We then tested if any of these negative data points

was in the positive dataset. In particular, for every minimotif in our database

we generated all the (source, target) pairs. We assembled all of these pairs into

a collection C. Followed by this, for every pair (A, B) in the negative dataset we

checked if (A, B) was in C. None of these 20,000 pairs was in C. This is

again a validation of the way we have picked the negative dataset.

Design and evaluation of the basic function filter
algorithms

The basic function filter algorithms test whether at least one

common or similar cellular/molecular function is shared by the

given minimotif source protein and target protein. Given the

minimotif source protein S, which contains the putative minimotif

p, and a known or predicted associated target protein T, with the

protein accession number alias table, find the list of cellular

functions of each S, and T. Compare the two function lists to

identify a set C of common cellular functions. The molecular

function filter algorithm is identical except that it utilizes molecular

functions F, instead of C.

This algorithm was applied to the above datasets for molecular

and cellular functions. To evaluate the efficacy of the algorithms

we used two metrics. The percentage for the experimentally

verified minimotifs not removed by the filter is the sensitivity, while

the percentage of negative minimotifs not removed by the filter is

the selectivity. The ratio of sensitivity/selectivity is a Discrimination

Ratio (DR) that measures the preference for verified minimotifs

over that of negative minimotifs. The choice of DR is quite natural.

Improving MnM Predictions
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Please note that sensitivity is the % of true positives and selectivity is the % of

false positives. Clearly, we want the true positives to be large and the false

positives to be low and hence we want this ratio (i.e., DR) to be large. Ideally,

if an ROC curve could be plotted, that will bring out the statistical significance

nicely. For an ROC curve to be plotted there has to be an underlying parameter

that changes. For some of the datasets in our analysis, there is no relevant

underlying parameter that changes and hence we could not plot ROC curves for

them. Also, note that the ROC curve is nothing but a plot of false positives

versus true positives. In some sense we can think of the DR as a (single number)

summary of the ROC curve.

Sensitivity and selectivity both range from 0% to 100% with

100 % indicating complete recovery of the experimental mini-

motifs or of negative minimotifs. A DR above 1 indicates a

Figure 1. ROC curves for minimotif filters. ROC curves for the molecular (A) and cellular (B) function filters, as well as the frequency score filter
are shown. Analysis was with the minimotifs in the MnM 2 database that have known molecular and cellular functions in the GO database (A,B).
doi:10.1371/journal.pone.0012276.g001

Table 1. Evaluation of the cellular function filter algorithm.

Distance sensitivity selectivity DR

0 11% 3% 3.8

1 26% 6% 4.6

2 48% 14% 3.4

3 65% 32% 2.0

4 82% 58% 1.4

5 90% 79% 1.2

doi:10.1371/journal.pone.0012276.t001

Improving MnM Predictions
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favorable filtering preference, while those below 1 show worse

performance in selecting the verified minimotifs rather than the

negative minimotifs.

The cellular function algorithm had a sensitivity of ,11% and a

selectivity of ,3%, with a DR of 3.9, indicating that many motifs

were recovered and there was a ,4-fold preference for retaining a

verified instance over a randomly selected negative instance. The

molecular function algorithm had a sensitivity of ,29% and a

selectivity of ,13%, with a DR of 2.3. The test analysis shows that

there is value in using molecular and cellular function filters for

reducing false-positives in minimotif predictions.

Design and evaluation of an expanded algorithm based
on the function similarity

While the Cellular and Molecular function algorithms have

value in reducing false positives, the structure of the GO database

provided us with an opportunity to vary the stringency of function

assignment and optimize these algorithms. GO contains neigh-

borhood information of each cellular/molecular function term.

The nodes are cellular function terms or molecular function terms

in this case, and the edges go from the children nodes to parent

nodes. So the ‘‘at least one common function’’ becomes ‘‘at least

one similar enough function’’. That is to say, the predicted target

proteins are restricted to those for which at least one cellular/

molecular function is similar enough to one in minimotif source

protein, or the distance between at least one cellular/molecular

function of the target protein and that of the source protein is small

enough. We have introduced a distance threshold into the basic

algorithm.

The expended algorithm works as follows: given the distance

threshold t, for each pair of cellular/molecular functions, one from

the list of S and the other from the list of T following the basic

algorithm, examine their ancestors on the directed graph to see

whether there exists a common ancestor function such that

the total distance or the total number of edges between this

ancestor and the pair of functions is smaller than or equal to the

threshold t.

Results

The basic algorithms used a distance threshold of 0; here we

tested 5 additional distance thresholds of 1, 2, 3, 4, and 5. Results

from the evaluation of the cellular function filter are shown in

Table 1. The sensitivity showed a linear increase with node

distance. The DR for verified minimotifs was the highest when the

distance threshold was one with a 4.6-fold preference for verified

minimotifs, but still showed a 3.4-fold preference for a threshold of

two nodes. The sensitivity significantly increased over the basic

filter by using a distance of one or two, rather than 0.

To test the statistical significance of the filters we have used

ROC curves and p-values. We have employed the programs of the

R project [15] for this purpose. In the case of the cellular function

filter, we have used the distance as the underlying parameter for

plotting the ROC curve (Figure 1A). The area under the ROC

curve is 0.7. and the p-value is 0.12. Note that p-value indicates

the probability of getting the same sensitivity and selectivity results

using a random predictor or filter.

Results from the evaluation of the molecular function filter are

shown in Table 2. Again sensitivity significantly increased with

distances of one or two without a major compromise in the DR. The

molecular function algorithm is more sensitive, but less selective

when compared to the cellular function filter. For the molecular

function filter also, we have plotted the ROC curve with distance as

the underlying parameter. Figure 1B shows this ROC curve. The

area under the ROC curve is 0.8 and the p-value is 0.03.

Both filters have value in reducing false-positives in the test

datasets and stringency of predictions can be controlled by

selecting distances between 0 and 3, whereas the performance of

the algorithms degrades at distance values above 3. The above

results indicate that the filters differentiate verified data from

negative data with a good confidence and strongly suggest when

predicting novel minimotifs these filters would help to decrease the

number of false-positive predictions.

A comparison with the frequency score filter
We wanted to compare the performance of the new filters with

one of the already existing MnM filters, namely, the frequency

score filter. To begin with we have plotted the ROC curve for the

frequency score filter. This ROC curve is shown in Figure 1C.

The area under this curve is 0.7 and the p-value is 0.08, which is

similar to that of the molecular and cellular functional filters.

Table 3 shows a comparison of the new filters with the

frequency score filter on various aspects. Consistent with the ROC

curves this table shows that the molecular function filter is

somewhat stronger than MnM Frequency score filter in discrim-

Table 2. Evaluation of the molecular function filter algorithm.

distance sensitivity selectivity DR

0 29% 12% 2.3

1 59% 21% 2.9

2 82% 35% 2.3

3 91% 50% 1.8

4 94% 61% 1.6

5 96% 72% 1.3

doi:10.1371/journal.pone.0012276.t002

Table 3. Statistics for comparison of functional filters to the
Frequency Score filter.

Cellular
Function

Molecular
Function

Frequency
Score

MF-FS
Combination

CF-FS
Combination

Area 0.72 0.83 0.72 0.89 0.87

p-value 0.12 0.03 0.08 0.002 0.0002

doi:10.1371/journal.pone.0012276.t003

Table 4. Evaluation of the molecular function – frequency
score combined filter.

thresholds

0.02 0.03 0.04

positive data distance = 0 28% 28% 28%

distance = 1 63% 63% 63%

distance = 2 88% 88% 88%

Negative data distance = 0 19% 16% 15%

distance = 1 27% 24% 23%

distance = 2 41% 39% 38%

doi:10.1371/journal.pone.0012276.t004
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inating true positives from false positives. The cellular function

filter is similar to the MnM frequency score filter in performance.

Note: The above results indicate that the cellular function filter has a

poorer p-value than the frequency score and the molecular function filters. As a

result, one has to exercise caution while employing the cellular function filter.

Both the filters could be of value in clustering the motifs predicted by MnM.

A combination of molecular function and frequency
score filters

A novel contribution of this paper is the conclusion that a

combination of several filters can yield a better predictability than

the individual filters. In particular, we have devised two

combination filters. The first combination filter employs the

molecular function and the frequency score filters. Note that these

two filters are based on two different principles. The frequency

score is based on the number of occurrences of the predicted motif

whereas the molecular function filter is based on whether the

source and target proteins share a common molecular function.

Our tests of the combined filter indicate that the combined filter

has a better p-value than the two individual filters.

We have employed the either-or-based combination of the

molecular function filter and frequency score filter, in the

expectation that the two filters can complement each other in

some way, which is reasonable since they focus on different aspects

and therefore the combined filter may outperform any of the two.

Given a motif of some source protein, associated with its target

protein, the combined filter examines whether the source and

target proteins are retained by the molecular function filter, as well

as whether the motif and source are retained by the frequency

score filter. If either filter retains them, the combined filter retains

them.

This idea was tested on the same positive dataset and negative

datasets. The positive datasets have already got experimentally

verified entries of motif, its source protein and the associated target

protein. For the negative datasets, which are 20,000 random

protein pairs, we threw one of each protein pair into Minimotif

Miner (MnM) [1,2] as the source query protein and found its motif

to form the triple of motif, source protein and target protein.

There are totally 463, 062 such triples, of which an unknown

molecular function can be found for both the source and target in

GO dataset. Then three thresholds (0.02, 0.03, 0.04) for frequency

score filter were picked up, together with three distances (0, 1, 2)

for molecular function filter, and the nine combinations of these

thresholds and distances are used as the threshold parameters of

the combined filter. The prediction of the combined filter is shown

in Table 4. To form a smooth curve, very small noises were

added to the sensitivity and selectivity, which is no more than

1.463283e210. The ROC curve is shown in Figure 2A, of which

the area under the curve (AUC) is 0.89 and the p-value is 0.002,

shown in Table 3.

Figure 2. ROC curve for the combined filters. Combination of molecular function and frequency score filters (A) and combination of cellular
function and frequency score filters (B) are shown. These ROC curves have been obtained by combining the two pairs of filters on an either-or basis.
doi:10.1371/journal.pone.0012276.g002

Table 5. Evaluation of the cellular function – frequency score
combined filter.

thresholds

0.02 0.03 0.04

positive data distance = 0 17% 17% 17%

distance = 1 44% 44% 44%

distance = 2 75% 75% 75%

distance = 3 88% 88% 88%

distance = 4 95% 95% 95%

negative data distance = 0 9% 6% 5%

distance = 1 12% 9% 8%

distance = 2 20% 17% 16%

distance = 3 37% 34% 34%

distance = 4 62% 60% 60%

doi:10.1371/journal.pone.0012276.t005
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A combination of cellular function and frequency score
filters

The second combination filter employs the cellular function

filter and frequency score filter in the same way. Considering the

cellular function filter is more stringent, five distances (0, 1, 2, 3, 4)

were used, together with the same three thresholds (0.02, 0.03,

0.04) for frequency score filter. As a result, fifteen threshold

parameters were formed for this combination of cellular function

and frequency score filters. To smoothen the ROC curve, very

small noises were also added, which is no more than

6.743894e211. The prediction of this combination is shown in

Table 5 and the ROC curve is shown in Figure 2B, for which

AUC is 0.87 and the p-value is 0.0002, shown in Table 3. Note

that even though the frequency score filter and the cellular

function filter on their own are not highly predictive, their

combination is very impressive.

Implementation of cellular and molecular function filters
We have implemented these new filters with the other filters on

the MnM 2 website (Figure 3). We allow the user to vary the

stringency by choosing different thresholds. We have added the

results of this analysis and a description to help users interpret the

results they should expect for different distance thresholds. We

have also designed the implementation so that this filter can be

used in combination with other MnM filters. We expect that when

used in combination with other MnM filters, this will increase the

specificity, but reduce the sensitivity of identifying true minimotifs.

We anticipate that some users will want to look for new function of

proteins and exclude minimotif predictions that are related to the

known functions. Therefore, we have used a GUI checkbox that

allows users to only see minimotifs that were excluded from the

filter.

We wanted to examine how many predicted minimotifs were

filtered by the algorithms. We ran the filter on P53, Cyclin A, and

MSH2, which each have different molecular and cellular functions

(22 more proteins were tested and are shown in Supporting
Information S1). Statistics for predictions from this analysis are

shown in Table 6. The basic Cellular function filters eliminated

90–95 percent of the target predictions, retaining only those with

similar cell functions as expected. The Molecular function filter

was less robust eliminating 27–48 of the minimotif predictions.

Altering the GO term distance threshold also had the anticipated

result where the stringency of predictions was titrated as expected.

Figure 3. Image of the filter selector on the MnM website. All filters in this paper are now included as part of the MnM website. The option to
select minimotifs that have similar or dissimilar functions is implemented.
doi:10.1371/journal.pone.0012276.g003
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Discussion

It is important to increase the efficiency and specificity of

minimotif prediction. Many minimotif filters increase the specificity

of minimotif predictions. Over time the collective use of a set of well-

developed filters such as the ones we present here will lead to

accurate computational tools. This is not just true for minimotifs,

but for transcription factor binding sites as well. Incremental

development of algorithms is a standard in computational biology.

We have reported two new filters for the elimination of false

positives in minimotif predictions. Our testing results reveal that

these filters are indeed effective. The use of these filters seems to be

a logical approach for reducing false positives. If two proteins are

involved in the same cellular or molecular function, they may be in

the same or redundant pathways. However, if one contains a

minimotif that is the target of another protein in the pathway, then

this provides a second piece of data suggesting a functional

relationship between the two proteins.

The cell function filter, eliminated 90–95% of the predictions

for the 3 proteins we tested. This is the most stringent filter we

have come across in the other filters designed for MnM. The

frequency filter, surface prediction filter, and evolutionary

conservation filters all showed a preference for filtering false

positives, but not to the extent seen for the cellular function filter.

The molecular function filter, while not as stringent as the cellular

function filter, also performed better than previous filters

implemented in MnM. This suggests that other data-driven

minimotif filters used by themselves, or in combination may

provide a good approach for reducing false positives. This does

come at a cost, as a percentage of true minimotifs may be filtered.

We have been running Minimotif Miner for 4 years and one of

the major difficulties for users is that when a list of potential target

names is presented to them, most scientists do not have a

knowledge-base to understand all of the different functions in the

potential targets and this makes it difficult to select minimotifs for

experimental testing. The new functional filters help to alleviate

this problem, by restricting the predictions to those functions that

are related to the query protein. In the case where a user wants to

know new functions of their query, they can use the ‘‘exclude’’

filter, to identify only those functions that are not previously

related to the query. In conclusion, the functional filters provide a

valuable tool for reducing false-positive prediction of minimotifs.

Figure 3 shows a screenshot of the filter selection page in MnM.

Supporting Information

Supporting Information S1 Supporting information document.

Found at: doi:10.1371/journal.pone.0012276.s001 (0.23 MB

DOC)

Acknowledgments

We would like to thank the Minimotif Miner team for daily input in

preparation of the data for this paper.

Author Contributions

Conceived and designed the experiments: SR MRS. Performed the

experiments: TM JCM. Analyzed the data: SR TM JCM PG MRS.

Contributed reagents/materials/analysis tools: AO PG. Wrote the paper:

SR TM MRS.

References

1. Balla S, Thapar V, Verma S, Luong T, Faghri T, et al. (2006) Minimotif Miner:

a tool for investigating protein function. Nat Methods 3: 175–177.
2. Rajasekaran S, Balla S, Gradie P, Gryk MR, Kadaveru K, et al. (2009)

Minimotif miner 2nd release: A database and web system for motif search.

Nucleic Acids Res 37: D185–D190.
3. Puntervoll P, Linding R, Gemünd C, Chabanis-Davidson S, Mattingsdal M,

et al. (2003) ELM server: A new resource for investigating short functional sites
in modular eukaryotic proteins. Nucleic Acids Res 31: 3625–3630.

4. Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, et al. (2009) Elm: the status

of the 2010 eukaryotic linear motif resource. Nucl. Acids Res 38: D167–D180.
5. Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, et al. (2001) A motif-based

profile scanning approach for genome-wide prediction of signaling pathways.
Nat Biotechnol 19: 348–353.

6. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: Proteome-wide
prediction of cell signaling interactions using short sequence motifs. Nucleic

Acids Res 31: 3635–3641.

7. Via A, Gould CM, Gemünd C, Gibson TJ, Helmer-Citterich M (2009) A
structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinformatics

10: 351–367.

8. Songyang Z, Cantley LC (1998) The use of peptide library for the determination

of kinase peptide substrates. Methods mol Boil 87: 87–98.

9. Yaffe MB, Cantley LC (2000) Mapping specificity determinants for protein-

protein association using protein fusions and random peptide libraries. Methods

Enzymo 328: 157–170.

10. Schlessinger J, Lemmon MA (2003) SH2 and PTB domains in tyrosine kinase

signaling. Sci STKE RE12.

11. Rodriguez MC, Songyang Z (2008) BRCT domains: phosphopeptide binding

and signaling modules. Front Biosci 13: 5905–5915.

12. Williams RS, Lee MS, Hau DD, Glover JN (2004) Structural basis of phos-

phopeptide recognition by the BRCT domain of BRCA1. Nature Struct Mol

Biol 11: 519–525.

13. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: Tool for the unification of biology. Nat Genet 25: 25–29.

14. Vyas J, Nowling RJ, Maciejewski MW, Rajasekaran S, Gryk MR, et al. (2009) A

proposed syntax for minimotif semantics, version 1. BMC genomics 10: 360.

15. R Development Core Team (2009) R: A language and environment for

statistical computing. Vienna: R Foundation for Statistical Computing.

Table 6. Analysis of novel queries with the cellular and
molecular function filters.

Cellular function Molec. function

Protein RefSeq Threshold *Total Retained *Total Retained

p53 NP_035770 0 64 10 67 46

p53 NP_035770 1 64 33 67 53

p53 NP_035770 2 64 52 67 63

p53 NP_035770 3 64 61 67 64

p53 NP_035770 4 64 64 67 65

p53 NP_035770 5 64 64 67 65

Cyclin A NP_003905 0 81 3 82 38

Cyclin A NP_003905 1 81 6 82 51

Cyclin A NP_003905 2 81 23 82 65

Cyclin A NP_003905 3 81 40 82 69

Cyclin A NP_003905 4 81 64 82 72

Cyclin A NP_003905 5 81 77 82 75

MSH2 NP_000242 0 76 8 80 25

MSH2 NP_000242 1 76 15 80 52

MSH2 NP_000242 2 76 34 80 66

MSH2 NP_000242 3 76 62 80 74

MSH2 NP_000242 4 76 73 80 76

MSH2 NP_000242 5 76 75 80 77

*Totals do not include minimotifs for which no GO terms are assigned to the
proteins.
doi:10.1371/journal.pone.0012276.t006
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