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Abstract

Background: Lung cancer remains the leading cause of cancer-related deaths worldwide. The recurrence rate ranges from
35–50% among early stage non-small cell lung cancer patients. To date, there is no fully-validated and clinically applied
prognostic gene signature for personalized treatment.

Methodology/Principal Findings: From genome-wide mRNA expression profiles generated on 256 lung adenocarcinoma
patients, a 12-gene signature was identified using combinatorial gene selection methods, and a risk score algorithm was
developed with Naı̈ve Bayes. The 12-gene model generates significant patient stratification in the training cohort HLM & UM
(n = 256; log-rank P = 6.96e-7) and two independent validation sets, MSK (n = 104; log-rank P = 9.88e-4) and DFCI (n = 82; log-
rank P = 2.57e-4), using Kaplan-Meier analyses. This gene signature also stratifies stage I and IB lung adenocarcinoma
patients into two distinct survival groups (log-rank P,0.04). The 12-gene risk score is more significant (hazard ratio = 4.19,
95% CI: [2.08, 8.46]) than other commonly used clinical factors except tumor stage (III vs. I) in multivariate Cox analyses. The
12-gene model is more accurate than previously published lung cancer gene signatures on the same datasets. Furthermore,
this signature accurately predicts chemoresistance/chemosensitivity to Cisplatin, Carboplatin, Paclitaxel, Etoposide,
Erlotinib, and Gefitinib in NCI-60 cancer cell lines (P,0.017). The identified 12 genes exhibit curated interactions with
major lung cancer signaling hallmarks in functional pathway analysis. The expression patterns of the signature genes have
been confirmed in RT-PCR analyses of independent tumor samples.

Conclusions/Significance: The results demonstrate the clinical utility of the identified gene signature in prognostic
categorization. With this 12-gene risk score algorithm, early stage patients at high risk for tumor recurrence could be
identified for adjuvant chemotherapy; whereas stage I and II patients at low risk could be spared the toxic side effects of
chemotherapeutic drugs.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in

industrialized countries [1]. Local and distant recurrence is the major

cause of treatment failure (i.e. deaths) in lung cancer. Currently, surgery

is the foremost treatment option for patients with stage I non-small cell

lung cancer (NSCLC). However, 35–50% of stage I NSCLC patients

will relapse within 5 years [2,3]. It remains a critical challenge to

determine the risk for recurrence in early-stage cancer patients. Patients

at high risk for recurrence might benefit from adjuvant chemotherapy,

whereas those with a low risk for tumor recurrence might be spared of

the side effects of chemotherapy. Following this, another critical issue in

clinics is to determine an individual patient’s predisposition to a specific

anticancer drug. The emerging use of biomarkers may enable

physicians to make treatment decisions based on the specific

characteristics of individual patients and their tumor, instead merely

of on population statistics [4].

The advances in microarray technologies yield promise in the

molecular prediction of individual clinical outcome. Such success

is manifested by the commercial gene tests for breast cancer,

Oncotype DX [5] and MammaPrint [6,7]. Nevertheless, the high

dimensionality of the data has complicated major diagnostic and

prognostic breakthroughs [8] and puts a premium on innovative

data mining methods. In current biomarker identification studies,

genes are ranked according to their association with the clinical

outcome, and the top ranked genes are included in the classifier. It

has been noted that individual biomarkers showing strong

association with the outcome are not necessarily good classifiers

[9–11]. Furthermore, each individual gene selection algorithm has

different strengths and limitations. A hybrid model combining

multiple gene selection methods could better identify novel

biomarkers from high-throughput data for clinical utility.

There have been a few studies on lung cancer prognosis by

transcriptional profiling [12–19]. To date, there is no fully-
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validated and clinically applied model for predicting lung cancer

recurrence [20]. This study presents a combinatorial gene

selection system for the identification of a 12-gene lung cancer

prognostic signature. This 12-gene signature is more accurate

compared with previously published signatures in a multi-

institutional study of lung adenocarcinoma (n = 442) [19]. This

12-gene signature could identify stage I and stage II patients who

might benefit from adjuvant chemotherapy and who could be

spared of it. Quantitative RT-PCR analyses of independent

NSCLC tissue samples confirmed the gene expression patterns of

the identified biomarkers in terms of tumor characteristics. A

functional pathway analysis then revealed that the signature genes

had interactions with well established cancer hallmarks, indicating

the important roles of the signature genes in tumor initiation and

progression. Furthermore, the 12-gene signature accurately

predicted chemoresistance and chemosensitivity to Cisplatin,

Carboplatin, Paclitaxel (Taxol), Etoposide, Gefitinib and Erlotinib

in a panel of 60 cancer cell lines (NCI-60).

Results

Prognostic model system
In the post-genomic era, hybrid models that take advantage of

different algorithms in different stages of gene selection are

needed for biomarker discovery and disease classification. In this

study, we combined statistical methods and machine learning

algorithms to identify prognostic biomarkers of lung adenocar-

cinoma. The surgical resections collected from the University of

Michigan Cancer Center (UM) and Moffitt Cancer Center

(HLM) form the training set (n = 256), whereas the samples

obtained from Memorial Sloan-Kettering Cancer Center (MSK,

n = 104) and the Dana-Farber Cancer Institute (DFCI, n = 82)

constitute two independent validation sets. The clinical charac-

teristics of the patient cohorts were described in the previous

publication [19].

The prognostic study includes three phases (Fig. 1): 1)

identification of a small set of signature genes by combining

Significance Analysis of Microarrays (SAM) [21], different-

variance t-tests, and Relief algorithm from genome-scale transcrip-

tional profiles of the training cohort (UM & HLM), 2) construction

of a classifier using Naive Bayes algorithm to predict overall survival

in lung cancer patients, and 3) validation of the gene expression-

based prognostic model in two independent patient cohorts (MSK

and DFCI). Independent test sets were used in the model

validation and evaluation of the identified gene signature over

previously published lung cancer prognostic signatures.

Identification of a 12-gene prognostic signature
A combinatorial scheme with multiple gene selection methods

was adopted in the process of identifying a lung cancer prognostic

gene signature. The first step selected candidate genes from 22,283

probes quantified on the training cohort (n = 256). A combination

of t-tests and SAM was then used to select genes with expression

levels significantly different between low-risk (patient who survived

longer than 5 years) and high-risk (those who died within 5 years

following surgery) groups with a predefined false discovery rate.

Twenty-seven censored cases with follow-up time less than 5 years

were removed from this analysis due to the uncertainty of patient

post-operative status. Specifically, a different-variance t-test

selected 718 genes with significant differential expression

(P,0.01) between the two prognosis groups. To control false

discovery rate (FDR), SAM was used to select 1,431 genes that

significantly differentiated the two prognostic groups at a FDR of

25% (delta = 0.46). There were 583 genes selected by both t-tests

and SAM, and these were considered for the next stage of the

analysis.

In order to refine the gene set into a more feasible size for

clinical application, Relief algorithm implemented in WEKA 3.4

was used to rank each of these 583 genes in terms of the power to

separate low-risk and high-risk groups. This ranked list was used in

a step-wise forward selection to identify a gene subset with the

highest prognostication accuracy. Specifically, starting from the

top ranked gene, one gene was added at each step to the gene set,

until the classification accuracy could not be improved by adding

one more gene. This gene set was used to classify good-prognosis

and poor-prognosis groups with Naı̈ve Bayes algorithm. This

process stopped when the addition of a new gene did not increase

the classification accuracy as evaluated in a 10-fold cross

validation. As a result, a 12-gene signature (Table 1) was identified

which could provide the best prediction for overall survival.

Survival prediction using 12-gene prognostic model
Using mRNA expression profiles of the identified 12 genes as

predictors, a prognostic classifier was constructed to stratify

patients into low-risk (5-year survival) and high-risk (non-5-year

survival) groups. The Naı̈ve Bayes classifier implemented in WEKA

3.4 was used in the classification on UM & HLM training samples

(low-risk n = 104; high-risk n = 125). Twenty-seven censored cases

without sufficient follow-up information were removed in the

model construction. Priors estimated by the model are 0.45 for

low-risk class and 0.55 for high-risk class. Other parameters of the

trained Naı̈ve Bayes model, including the mean and standard

deviation for each of the 12 genes in both low- and high-risk

groups, are listed in Table 2.

The Naı̈ve Bayes classifier computes the posterior probability of

death within 5 years after surgery in each patient. This posterior

probability represents the risk for tumor recurrence in patients,

since recurrence is the major cause of treatment failure (i.e. death)

in lung cancer. Based on the posterior probability, a patient is

classified into the high-risk group if the value is greater than 0.5; or

into the low-risk group otherwise. The training model was

evaluated in a 10-fold cross validation. Without parameter re-

estimation, this model was then used to predict posterior

probability representing the risk for tumor recurrence in each

patient in two test sets (MSK and DFCI), as well as the censored

cases left out of the model construction. The distribution of the

posterior probability of 442 patients in this study was illustrated in

Fig. 2A. After obtaining the predicted outcomes, Kaplan-Meier

(KM) analysis was carried out to estimate the average survival

probability at the 5-year mark following surgery. Results show that

high-risk posteriors from the prognostic model are strongly

associated with the 5-year survival probabilities (Fig. 2B). Patients

with a high probability of tumor recurrence tend to be more likely

to have treatment failure after surgery. This indicates that the

high-risk posterior probability computed by the model is a good

prognostic factor of lung cancer survival. The wide 95%

confidence interval at posteriors ranging from 0.35 to 0.6

(Fig. 2B) might be due to the small sample size in this distribution

(Fig. 2A). Furthermore, a posterior of 0.5 means that the chance of

tumor recurrence is random, which also leads to a looser

confidence interval.

Using the prognostic categorization scheme described above,

the 12-gene signature separated patients into high- and low-risk

groups with significantly distinct (log-rank P = 6.96e-7) post-

operative survival on the training cohort in Kaplan-Meier

analysis (Fig. 3A). This scheme generated significant patient

stratification on independent validation sets MSK (log-rank

P = 9.88e-4; Fig. 3B) and DFCI (log-rank P = 2.57e-4; Fig. 3C).

Refined Lung Cancer Prognosis
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The 3-year post-operative survival rate for low-risk groups is 79-

94% in the studied cohorts, representing a significantly better

prognosis compared with the corresponding high-risk groups for

which the 3-year survival ranges from 48% to 63%. When 3-year

survival was used to define high- and low-risk groups (high-risk:

death within 3-y; low-risk: alive after 3-y), the 12-gene risk

algorithm achieved a sensitivity (correctly predicted high-risk

patients) of 73.65% in the training set, 86.96% in MSK, and

68.18% in DFCI, and a specificity (correctly predicted low-risk

patients) of 59.21% in the training set, 57.75% in MSK, and

76.36% in DFCI (Table S9). The sensitivity and specificity of the

12-gene signature in predicting 5-year survival is also provided in

Table S9.

In current practice, treatment for patients diagnosed with

NSCLC is based on AJCC tumor stage. Surgical resection is the

major treatment option for stage I NSCLC patients. However,

about 35–50% of stage I NSCLC patients will develop and die

from tumor recurrence within the five years following surgery

[2,3]. On the other hand, stage IB patients who received surgical

resection followed by adjuvant chemotherapy showed improved

survival rate [22]. Thus, we sought to explore whether the 12-gene

signature could identify specific high-risk patients with stage I

tumors. Results show that the 12-gene prognostic signature could

reliably identify high-risk patients with stage I tumors on both the

training cohort (results not shown) and two validation cohorts (log-

rank P = 0.04; Fig. 3D and 3E). The prognostic model also

Figure 1. Overview of the study design for the identification of the 12-gene signature with combinatorial gene selection scheme
and the construction of the expression-defined prognostic model.
doi:10.1371/journal.pone.0012222.g001
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separated high- and low-risk groups (log-rank P = 4.73e-3) within

stage IB patients in the combined test sets (Fig. 3F). The 12-gene

signature did not generate significant prognostic stratification on

the stage IA patients (results not shown). These results demonstrate

that the identified 12-gene signature is independent of and

provides more refined prognosis than the current AJCC staging

system. Using this model, stage I NSCLC patients could be

advised to receive adjuvant chemotherapy according to the

expression profiles of the 12 gene markers.

Treatment selection for stage I and II NSCLC patients
based on the 12-gene signature

In order to assess whether the 12-gene signature could be used

for treatment selection for stage I and II non-small cell lung

cancers, patients who did not receive chemotherapy were selected

for further analysis. The prognostic model separated high- and

low-risk stage I patients without chemotherapy in the training

(UM & HLM; log-rank P = 0.04; Fig. 4A) and test cohorts (MSK &

DFCI; log-rank P = 0.02; Fig. 4B). Similarly, the model differen-

tiated high- and low-risk stage II patients without chemotherapy in

the training (log-rank P = 0.06; Fig. 4C) and test cohorts (log-rank

P = 0.03; Fig. 4D) in Kaplan-Meier analyses. The results indicate

that this gene expression-defined prognostic model could reliably

select patients with early stage NSCLC for adjuvant chemother-

apy. Meanwhile, it could also spare some stage I and II NSCLC

patients from chemotherapy based on the expression patterns of

the identified gene markers in the tumors.

Prognosis evaluation of the 12- gene signature with
clinical covariates

To confirm the prognostic power of the identified 12-gene

signature, the expression-defined prognostic model was evaluated

with commonly used prognostic factors of lung cancer, including

gender, age, and tumor stage on the combined testing cohorts

(DFCI and MSK). The posterior probability of high-risk, termed

as 12-gene risk score, was used as a covariate in the multivariate

Cox analysis (Table 3). Without the 12-gene risk score, tumor

stage was the only factor significantly (P,0.00006) associated with

elevated risk of lung cancer death. When the 12-gene risk score

was added to the multivariate Cox model, the 12-gene risk score

Table 1. The identified 12-gene lung cancer prognostic signature.

Gene Probe Set ID Protein Functions Classification

ATP6V0D1 212041_at ATPase Metabolism

PKLR 222078_at Pyruvate kinase Metabolism

SCLY 219808_at Catalyzes the decomposition of L-selenocysteine to L-alanine and
elemental selenium

Metabolism

SMPD1 209420_s_at Converts sphingomyelin to ceramide Metabolism

DLC1 210762_s_at A candidate tumor suppressor gene Oncogene

PDPK1 204524_at Cell signal protein Oncogene

ZAK 218833_at Cell signal protein Oncogene

STK24 208855_s_at Protein kinase Signaling Transduction

XPO1 208775_at Mediates nuclear export of cellular proteins Signaling Transduction

LMF1 46142_at Maturation of specific proteins in the endoplasmic reticulum Structure

FAM164A 205308_at Unknown N/A

CCDC99 221685_s_at Cell cycle Signaling Transduction

doi:10.1371/journal.pone.0012222.t001

Table 2. Parameters estimated in the 12-gene Naı̈ve Bayes classifier.

Gene (attribute) Low-risk mean (mLi ) Low-risk standard deviation (sLi ) High-risk mean (mHi ) High-risk standard deviation (sHi )

LMF1 101.6708 31.6461 88.6869 29.5986

DLC1 868.5886 578.3862 648.4284 530.6969

PKLR 14.3474 6.872 11.002 5.5501

ATP6V0D1 1388.054 398.6874 1209.6369 325.7233

CCDC99 277.1923 56.2284 300.0086 60.678

SCLY 58.3824 13.2988 63.6222 13.7703

PDPK1 297.6373 117.3514 253.7384 103.0455

FAM164A 264.8707 106.5128 223.8295 96.6066

SMPD1 278.5686 84.5316 239.3571 65.4393

XPO1 1674.3741 344.9824 1824.6274 400.4278

ZAK 132.694 67.7063 159.0546 79.1456

STK24 2248.6647 529.6098 2457.9982 576.496

doi:10.1371/journal.pone.0012222.t002
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demonstrated a strong association with the lung cancer survival

(hazard ratio = 3.94, 95% CI: [2.07, 7.52]), and tumor stage

remained significant (Table 3). Similarly, a comprehensive

evaluation was carried out with all available clinical covariates

and demographic data in the dataset, including smoking history,

race, and tumor differentiation (Table 4). In this comprehensive

evaluation, the 12-gene risk score remained a highly significant

prognostic factor with a hazard ratio of 4.19 (95% CI: [2.08,

8.46]). In both multivariate analyses, the hazard ratios of the 12-

gene risk score algorithm were higher than other clinical covariates

except tumor stage (III vs. I), while there is no significant difference

between the hazard ratio of the 12-gene signature and tumor

stage. These results demonstrate that the 12-gene signature is a

more accurate prognostic factor than some commonly used

clinical parameters.

Comparison with other lung cancer gene signatures
In the study by Shedden et al. [19], prognostic classifiers were

constructed with gene expression signatures alone or gene

expression signatures combined with clinical covariates. Among

twelve gene signatures identified in their study (Table S7), the best

signature was reported as ‘‘method A’’ (referred to as ‘‘Shedden A’’

in this study), which contains about 9,591 genes/probes. In order to

compare the predictive performance of our prognostic model with

their best model, the estimated hazard ratio and the concordance

probability estimate (CPE) of the models were evaluated. Hazard

ratios greater than 1 indicate that patients with high predicted risk

scores have poor clinical outcome. The model has strong predictive

power if the CPE value is close to 1; CPE value close to 0.5 indicates

that the model has poor predictive power (comparable to random

prediction). Results show that the proposed 12-gene signature has

the highest hazard ratio and CPE in both test sets when compared

to the gene signatures from Shedden et al. [19] (Fig. 5).

To evaluate the 12-gene signature with previously published 14

lung cancer signatures [12,13,16–19,22–25] (Table S6), Gene Set

Enrichment Analysis (GSEA) was used to assess the enrichment of

these signatures on 5-year survival. The normalized enrichment

score (NES) and its corresponding false discovery rate (FDR)

associated with each gene signature were evaluated on all 442

samples used in this study. In general, a gene set with high NES

and low FDR is desired, as it indicates that the gene set expresses

diversely with respect to the clinical outcome and the finding is

unlikely to be by chance. In comparison to 14 other published

gene signatures, the 12-gene signature exhibits high enrichment in

patient group whose survival is longer than 5-year with

significantly low FDR (absolute NES = 1.5; FDR,0.10) (Fig. S1).

In this analysis, the most enriched signature with the lowest FDR

was SHEDDEN_MH of 244 genes (absolute NES = 2.00;

FDR,0.002). Overall, among the 15 gene sets studied, the 12-

gene signature is one of the best lung cancer signatures evaluated

with GSEA.

RT-PCR Validation of gene expression patterns
In order to further confirm the expression patterns of the

identified 12 genes, RT-PCR microfluidic low density arrays

were used to analyze independent NSCLC tumor samples. First,

the 12-gene expression patterns obtained from both microarray

and RT-PCR were compared in terms of lymph node metastasis

(Fig. 6A). On the RT-PCR data normalized with POLR2A, gene

expression fold changes of the 12 genes in lymph node positive

(LN+) versus lymph node negative (LN2) samples were

compared with those in microarray data from Shedden et al

[19]. The results show that the mRNA expression patterns of the

12-gene signature measured in both platforms are concordant in

terms of lymph node metastasis. Then, to confirm the gene

expression patterns in terms of overall survival, fold changes

Figure 2. Association of the 12-gene risk score algorithm and lung cancer survival. (A). Histogram showing the distribution of the risk
scores (posterior probabilities of high-risk) in 442 lung adenocarcinoma patients. (B). Average rate of death at five years after surgery corresponding
to 12-gene risk score (posterior possibility). The dotted lines represent 95% confidence interval.
doi:10.1371/journal.pone.0012222.g002
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between low-risk (alive after 3 years) and high-risk (death within 3

years) groups were also compared (Fig. 6C). Three-year survival

was used to keep the balance of the high-risk (n = 11) and low-risk

(n = 12) groups in the RT-PCR cohort. All gene markers

exhibited consistent expression patterns in over survival except

XPO1 in both platforms.

Prediction of chemoresponse in NCI-60 cell lines
After substantiating the clinical relevance of the 12-gene

signature in predicting lung adenocarcinoma overall survival, we

sought to explore whether the signature can predict chemor-

esponse to anti-lung cancer agents, including Cisplatin, Carbo-

platin, Paclitaxel, Etoposide, Erlotinib, and Gefitinib. Here, the

NCI-60 cell lines, regardless of tissue origin, were used in the

study. For each drug, cancer cell lines that are either sensitive or

resistant to the drug were included to build a chemoresponse

classifier based on the 12-gene expression profiles in the cell lines.

The performance of the classifiers was evaluated with leave-one-

out cross validation (Table 5). Statistical significance of the

classification was evaluated by comparing the overall accuracy of

the 12-gene signature with that of 1000 random signatures of the

same size using the same algorithm. The overall prediction

accuracy of chemoresponse was 81% (P,0.004) for Paclitaxel

(Taxol), 78% (P,0.001) for Carboplatin, 80% (P,0.005) for

Cisplatin, 73% (P,0.017) for Etoposide, 79% (P,0.001) for

Erlotinib, and 94% (P,0.001) for Gefitinib. These results

demonstrate that the 12-gene signature accurately predicted

sensitivity and resistance to common lung cancer chemotherapeu-

tic agents in cancer cell lines.

The differential expression in sensitive and resistant lung cancer

cell lines was analyzed for each signature gene. The drug responses

of the lung cancer cell lines in the NCI-60 panel were provided in

Table S8. Among the signature genes, the over-expression of

STK24 was linked to chemoresistance to all the studied drugs

except Gefitinib in the lung cancer cell lines; whereas the over-

expression of FAM14A was associated with chemosensitivity to all

the studied drugs except Gefitinib in lung cancer cell lines. The

under-expression of STK24 was associated with resistance to

Gefitinib (P,0.05). The under-expression of CCDC99 was

observed in resistance to Paclitaxel (P,0.05). The over-expression

of DLC1 was associated with chemoresistance to Erlotinib

(P,0.05), Paclitaxel, and Cisplatin; whereas its under-expression

Figure 3. Kaplan-Meier analyses of the 12-gene prognostic model in patients with resectable lung adenocarcinoma. The model
stratified patients into two significantly distinct (log-rank P,6.96e-7) prognostic groups in the training set (A) in 10-fold cross validation. The training
model was applied to two test sets (B and C) and generated significant patient stratification. This model separated (log-rank P,0.04) stage I patients
in both test sets (D and E) as well as stage IB patients (log-rank P,4.73e-3) from test sets (F).
doi:10.1371/journal.pone.0012222.g003
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was associated with chemoresistance to Etoposide and Carboplatin

(not statistically significant) (Fig. 7).

EGFR mutation is a well known factor in drug response to

Gefitinib and Erlotinib. In the NCI-60 cell lines, EGFR mutation

was detected only in the SK-MEL-28 melanoma and RPMI-8226

myeloma lines, but not in any lung cancer cell lines [26].

We analyzed the raw expression levels of EGFR probe sets.

Specifically, a fold change of 1.76 over-expression of EGFR

(210984_x_at) was observed in Erlotinib resistant vs. sensitive lung

cancer cell lines (P,0.05), whereas no significant differential

expression of EGFR was observed in other studies drugs (results not

shown). In the overall patient cohorts (n = 442) from Shedden et al

[19], EGFR expression was not significantly associated with lung

cancer overall survival in univariate Cox modeling.

Figure 4. Evaluation of the 12-gene signature in treatment selection. The 12-gene signature separated high- and low-risk groups from
patients who did not receive chemotherapy (log-rank P,0.05) in the following cohorts: (A) stage I patients from the training cohort, (B) stage I
patients from two test cohorts, (C) stage II patients from the training cohort, (D) stage II patients from the two test cohorts.
doi:10.1371/journal.pone.0012222.g004

Refined Lung Cancer Prognosis
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Functional pathway analysis
Having established the clinical relevance of the 12-gene

prognostic signature, we sought to explore the functional

involvement of this gene set in lung tumorigenesis and tumor

progression. Two functional pathway analysis tools, Ingenuity

Pathway Analysis (IPA) and Pathway Studio 7.0, were used to

obtain curated molecular interactions related to the 12 genes.

Results from IPA show that the signature genes interact with

major cancer signaling pathways, such as TNF and AKT (Fig. 8A).

Pathway Studio 7.0 was used to find interactions among the 12

genes and 13 major lung cancer hallmarks (EGF, EGFR, KRAS,

MET, RB1, TP53, E2F1, E2F2, E2F3, E2F4, E2F5, AKT1, and

TNF) reported in the literature. Pathway Studio revealed various

types of interactions ranging from regulation to protein modifica-

tion among the 12 genes and eight out of 13 cancer hallmarks

(Fig. 8B). The functional pathway analysis suggests that the 12

signature genes are involved in lung cancer oncogenesis and tumor

progression.

Discussion

Lung cancer remains the leading cause of death worldwide. It is

important to identify clinically relevant prognostic biomarkers to

develop personalized treatment. More importantly, the discovered

biomarkers may reveal fundamental molecular mechanisms of this

deadly disease, and enhance our understanding of why patients

with certain tumor molecular characteristics have a poor clinical

outcome and how their outcome could be improved.

This study presents a hybrid model system for the identification

of a 12-gene signature for lung cancer prognosis and chemor-

esponse prediction. The 12-gene signature accurately quantifies

survival in patients with resectable lung adenocarcinoma, and

provides significant prognostic categorization within stage I and IB

patients, respectively. This signature reliably identified high-risk

patients within stage I and II who did not receive chemotherapy.

The gene expression-defined risk score is a more accurate

prognostic factor than commonly used clinical parameters. This

prognostic signature also predicts chemoresistance and chemosen-

sitivity to several major anti-lung cancer drugs in NCI-60 cancer

cell lines. Together, the results indicate that the 12-gene signature

could be used to select early stage lung adenocarcinoma patients at

high risk for tumor recurrence for adjuvant chemotherapy.

Meanwhile, it may spare stage I and II low-risk patients from

unnecessary chemotherapy. Furthermore, the 12-gene signature

has the potential to be used to inform physicians which anticancer

Table 3. Multivariate Cox proportional analysis of 12-gene
risk score and major clinical covariates including gender, age,
and tumor stage on testing cohorts (DFCI and MSK).

Variable* P-value Hazard Ratio (95% CI)y

Analysis without 12-gene risk score

Gender (Male) 0.22 1.34 (0.84–2.16)

Age at diagnosis (.60) 0.08 1.61 (0.95–2.74)

Tumor Stage

Stage II 6.25E-05 2.91 (1.72–4.91)

Stage III 1.09E-05 4.16 (2.20–7.85)

Analysis with 12-gene risk score

Gender (Male) 0.17 1.40 (0.87–2.26)

Age at diagnosis (.60) 0.29 1.34 (0.78–2.31)

Tumor Stage

Stage II 3.47E-04 2.61 (1.54–4.43)

Stage III 7.40E-06 4.31 (2.28–8.16)

12-gene risk score 3.10E-05 3.94 (2.07–7.52)

*Gender was a binary variable (0 for female and 1 for male); age at diagnosis
was a binary variable (0 for ,60 years old and 1 otherwise); tumor stage was
categorical variable of 3 categories (Stage I [as the reference group], Stage II,
and Stage III).
ydenotes confidence interval.
doi:10.1371/journal.pone.0012222.t003

Table 4. Multivariate Cox proportional analysis of all available
clinical covariates and 12-gene risk score on testing cohorts
(DFCI and MSK).

Variable* P-value Hazard Ratio (95% CI)y

Analysis without 12-gene risk score

Gender (Male) 0.43 1.22 (0.74–1.99)

Age at diagnosis (.60) 0.05 1.70 (0.99–2.92)

Race

Others/Unknown 0.28 0.43 (0.09–1.97)

White 0.10 0.28 (0.06–1.28)

Tumor differentiation

Moderately differentiated 0.14 0.53 (0.23–1.24)

Poorly differentiated 0.70 1.17 (0.53–2.61)

Smoking history

Smokers 0.62 0.84 (0.43–1.66)

Unknown 0.91 0.89 (0.11–7.10)

Tumor Stage 3.31E-04 2.72 (1.57–4.69)

Stage II 2.38E-05 4.93 (2.35–10.33)

Stage III 0.43 1.22 (0.74–1.99)

Analysis with 12-gene risk score

Gender (Male) 0.38 1.25 (0.76–2.08)

Age at diagnosis (.60) 0.12 1.56 (0.89–2.72)

Race

Others/Unknown 0.52 0.60 (0.13–2.77)

White 0.11 0.29 (0.07–1.32)

Tumor differentiation

Moderately differentiated 0.17 0.56 (0.24–1.29)

Poorly differentiated 0.83 0.91 (0.41–2.06)

Smoking history

Smokers 0.61 0.84 (0.43–1.64)

Unknown 0.79 0.75 (0.09–5.98)

Tumor Stage

Stage II 1.37E-03 2.44 (1.41–4.22)

Stage III 5.12E-06 5.88 (2.75–12.58)

12-gene risk score 6.34E-05 4.19 (2.08–8.46)

*Gender was a binary variable (0 for female and 1 for male); age at diagnosis
was a binary variable (0 for ,60 years old and 1 otherwise); race was a
categorical variable of 3 categories (African American [as the reference group],
White, and Others [composed of Asian (5), Hawaiian or Pacific Islander (1), and
unknown]); tumor grade was categorical variable of 3 categories (Well [as the
reference group], Moderately, and Poorly differentiated); Smoking history was a
categorical variable of 3 categories (Non-smokers, Smokers, and Unknown);
tumor stage was categorical variable of 3 categories (Stage I [as the reference
group], Stage II, and Stage III).
ydenotes confidence interval.
doi:10.1371/journal.pone.0012222.t004
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drugs should be used in treating a particular patient. The

expression patterns of the 12-gene signature were confirmed in

RT-PCR. Curated interactions between the signature genes and

major cancer signaling hallmarks revealed in the functional

pathway analysis provides further evidence that the 12-gene

signature might be involved in lung cancer oncogenesis and tumor

progression.

In the post-genomic era, innovative computational models are

needed to identify clinically important disease markers. Given the

current scale of high throughput data, a combinatorial gene

selection scheme is needed at different stages of gene filtering.

The choice to use a different feature selection technique depends

on an evaluation with an independent classifier. If the

classification performance cannot be further improved with the

current algorithm, a different algorithm will be used to reduce the

feature space. In this study, SAM and t-tests was used to identify

candidate genes showing differential expression between two

prognostic groups in the training set. SAM method is very similar

to t-test. We used t-tests (P,0.01) to select genes with certain level

of differential expression between two prognostic groups, and

used SAM to control for false discovery rate (FDR,25%). The

results from SAM and t-test are not exactly the same, because the

SAM method adds a constant (s) in the denominator to ensure

that genes with a very small variance in the samples and a small

differential expression are not selected as significant markers.

When s = 0, SAM is exactly the same as t-test [21]. In our study,

genes that met both criteria (P,0.01 in t-tests and FDR,25% in

SAM) were included for further analysis. From this candidate

gene pool, Relief was then used to rank the importance of these

genes in terms of prognostic classification for the selection of the

final gene signature. This hybrid system was able to identify a

small set of genes that are more accurate than previously

published lung cancer gene signatures on the same datasets. We

have experimented to change the threshold in SAM statistics. As

a result, there were 87 genes with a FDR,10% and no genes

were selected with a FDR,1% from the training set. The 87

genes were not able to generate significant stratification in all

three patient cohorts. These results indicate that using SAM

method alone is not sufficient to identify the most accurate

prognostic gene signature. The hybrid models combining pooled

variance t-tests and Relief algorithm also identified a 15-gene

signature (Table S1). Among the two gene signatures, 16 genes

(Table S2) share common biological functions (Table S5). The

performance of these gene signatures (fitted as covariates in Cox

model) is comparable to that of the 12-gene signature (Tables S3,

S4 and S9; Fig. S2). The 15-gene signature was also validated

with RT-PCR analysis of independent NSCLC tumor samples

(Fig. S3). Overall, the hybrid models presented in this study are

Figure 5. Comparison of the 12-gene risk score algorithm and various models presented by Shedden et al. [19] in two test sets in
term of hazard ratios (A) and concordance probability estimate CPE (B).
doi:10.1371/journal.pone.0012222.g005
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Figure 6. Comparison of expression patterns of 12 signature genes measured with DNA microarray and RT-PCR microfluidic low
density arrays (LDA). Gene expression fold change in lymph node positive (LN+) patients vs. lymph node negative (LN2) patients was compared
(A). Samples included in the fold change comparison were summarized in (B). Gene expression fold change in high-risk (death within 3-y) vs. low-risk
(alive after 3-y) groups was also compared on patients with follow-up information (C). The RT-PCR data was normalized with POLR2A in a sample-wise
manner. DNA microarray data were obtained from Shedden et al [19]. An asterisk (*) was put above a bar if that gene showed significant differential
expression in t-tests (P,0.05).
doi:10.1371/journal.pone.0012222.g006

Table 5. Prediction accuracy of chemoresponse in NCI-60 cell lines using the 12-gene signature.

Drug Sensitivity (chemoresistance) Specificity (chemosensitivity) Overall accuracy P-value*

Carboplatin 76% (19/25) 80% (16/20) 78% (35/45) ,0.001

Paclitaxel 72% (8/11) 87% (13/15) 81% (21/26) 0.004

Cisplatin 85% (22/26) 74% (14/19) 80% (36/45) 0.005

Etoposide 80% (16/20) 67% (14/21) 73% (30/41) 0.017

Erlotinib 79% (11/14) 80% (16/20) 79% (27/34) 0.001

Gefitinib 92% (11/12) 95% (20/21) 94% (31/33) ,0.001

*A P-value,0.05 represents that the overall accuracy of the 12-gene signature is significantly higher than that of random gene signatures with the same size using the
same classifier in 1000 tests.
doi:10.1371/journal.pone.0012222.t005
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efficient and robust, and could be used in biomarker discovery in

general.

Materials and Methods

Microarray profiles and patient samples
Gene expressions profiles analyzed in this study include 22,283

probes quantified with Affymetrix HG-U133A on 442 lung

adenocarcinoma samples from Shedden et al [19]. This study

cohort contains four data sets (University of Michigan, H. Lee

Moffitt Cancer Center, Memorial Sloan-Kettering Cancer Center,

and Dana-Farber Cancer Institute) contributed by six institutions.

Tumors were collected by surgical resection from patients who

have provided consent and protocols were approved by the

Institutional Review Boards (IRB-Med) of the respective institu-

tions. None of the patients received preoperative chemotherapy or

radiation and least two years of follow-up information was

available. Regions containing a minimum of 60% tumor cellularity

were required for macrodissection, and in most instances tumor

cellularity of at least 70–90% was identified for inclusion in the

sample for RNA isolation. The raw microarray data are available

from caArray website (https://array.nci.nih.gov/caarray/project/

details.action?project.id = 182).

A total of 91 NSCLC specimens to be used in RT-PCR analysis

were obtained from West Virginia University Tissue Bank and the

Cooperative Human Tissue Network (CHTN) (Ohio State

University Tissue Bank, Columbus, OH). Tumor tissues were

collected in surgical resections and were snap-frozen and stored at

280uC until used for RNA extraction. This study was approved

with an IRB exemption from West Virginia University.

RNA extraction, and quality and concentration
assessments

Total RNA was extracted from snap-frozen tumor tissues using

a RNeasy Fibrous Tissue Mini Kit according the manufacturer’s

protocol (Qiagen, USA). Total RNA was eluted in 30 ml of RNase-

free water and stored at 280uC. The quality and integrity of the

RNA was evaluated by visualizing the gel image and electrophe-

rogram for each sample using the 2100 Bioanalyzer (Agilent

Technologies, CA). RNA assessed as having good quality from 74

tumor samples was included for further analysis. The RNA

concentration of each sample was determined using a Nanodrop-

1000 Spectrophotometer (NanoDrop Tech, Germany). Total

RNA samples were analyzed on an Agilent 2100 Bioanalyzer

RNA 6000 Nano LabChip.

Generation of complementary DNA (cDNA)
The reverse transcriptase polymerase chain reaction was used to

convert the high-quality single-stranded RNA samples to double-

stranded cDNA, using an Applied Biosystems GeneAmpH PCR

9600 machine (Foster City, CA). For standardization across all

samples, one microgram of RNA was used to generate cDNA.

Real-time RT-PCR low-density arrays
Real-time RT-PCR assays of an independent patient cohort of

NSCLC tumor samples were used to confirm the expression levels

of the identified signature genes in microarray platform. The

identified signature genes and three housekeeping genes were

included in the experiment. The three housekeeping genes, 18S,

UBC, and POLR2A, were selected due to their confirmed constant

mRNA expressions across samples [27].

We analyzed 74 tumor samples with high quality RNA using

TaqMan microfluidic low-density array (LDA) plates on an ABI

7900HT Fast RT-PCR instrument (Applied Biosystems). The

report was generated by the SDS2.3 software (Applied Biosys-

tems). In the report, the number of cycles required to reach

threshold fluorescence (Ct) and DCT for each sample relative to

the control gene defines the expression pattern for a gene. The

gene expression data were further analyzed using the 2{DDCT

method [28].

SAM statistics
Significance analysis of microarray (SAM) implemented in

MultiExperiment Viewer (MeV; downloaded from http://www.

tm4.org/mev.html) was used to identify statistically significant

genes. The relative difference of the expression levels of each gene

in two prognostic groups is computed and ranked (gene specific t-

tests). Null distribution of the relative difference of each gene is

generated by random permutations of patients’ prognostic group

labels. The expected relative difference of each gene is calculated

as the mean of the relative differences of this gene in the null

Figure 7. Genes with at least 1.5-fold expression fold change in resistant vs. sensitive lung cancer cell lines to four anticancer drugs.
In the graph, differential expression with statistical significance (P,0.05, t-tests) is marked by a red asterisk.
doi:10.1371/journal.pone.0012222.g007
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Figure 8. Functional pathway analysis of the 12 signature genes. (A) Using core analysis from Ingenuity Pathway Analysis (IPA), curated
interactions were revealed among the identified signature genes and major lung cancer signaling pathways. (B) Six of the 12 signature genes also
exhibited various curated interactions with eight prominent lung cancer hallmarks with Pathway Studio 7.0.
doi:10.1371/journal.pone.0012222.g008
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distribution. Genes with observed relative difference that varies

from the expected relative difference by a certain threshold (delta)

were identified as significant genes. For a specific delta, SAM

provides a false discovery rate (FDR) based on the permutation

analysis of expression data [21].

Relief algorithm
Based on the genes selected with different variance t-tests and

SAM statistics, Relief was used to rank these genes with WEKA 3.4.

Relief evaluates the importance of a variable by repeatedly

sampling an instance and checking the value of the given variable

for the nearest instance from the same and different classes. The

values of the attributes of the nearest neighbors are compared to

the sampled instance and used to update the relevance scores for

each attribute. As approximated in following equation, Relief

computes the weight of attribute A as:

W ½A�~P(different value of Ajnear miss){

P(different value of Ajnear hit)

Relief assigns more weight to those attributes that have the same

value for instances from the same class and differentiate between

instances from different classes [29,30].

Naı̈ve Bayes classifier
Naı̈ve Bayes algorithm is based on Bayes theorem with the

assumption that attributes are conditionally independent given the

target class. A new sample with attribute values ,a1, a2,…, ai.

would be classified into the most probable class based on posterior

probability and computed according to the Bayes theorem [31].

Specifically, the new sample would be classified into the class with

the highest posterior probability, based on the following equation:

Cpredicted~arg maxcj[C P(a1,a2,:::,ai Dcj)P(cj)

where C is the set containing all the classes for the problem and cj is

a specific class.

Based on the conditional independence assumption, it holds

true for the situation that given a class of instances, the probability

of observing the conjunction of attributes a1, a2,…, ai would be

the product of the probability of the individual attributes:

P(a1,a2,:::,ai Dcj)~P
i

P(ai Dcj) [31]. Therefore, a simpler form of

the above equation used in Naı̈ve Bayes classifier is as follows:

Cpredicted~arg maxcj[C P(cj)P
i

P(ai Dcj)

In this study, the Naı̈ve Bayes algorithm was used to classify 5-

year survival status in the training data with WEKA 3.4 [32].

Since gene expression is an attribute of continuous values, the

probability density function for normal distribution was estimated

to compute the probability of the gene in each class. Thus, the

posterior probability for a new sample could be computed by:

P(cj Da1, a2,:::, ai)~

P(c j)P
i

1
ffiffiffiffiffiffi

2p
p

sji

e

{
(ai{mji )

2

2s2
ji

P(a1,a2,:::, ai)

where P(cj) is the prior for class j, mij and sij are estimated mean

and standard deviation for the ith gene in class j.

Functional Pathway Analysis
Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City,

CA), and Pathway Studio 7.0 (Ariadne Genomics, Rockville, MD)

were used to derive curated molecular interactions, including both

physical and functional interactions, and pathway relevance. The

databases and software toolsets weigh and integrate information

from numerous sources, including experimental repositories and

text collections from published literature.

Gene Set Enrichment Analysis (GSEA.)
GSEA (http://broad.harvard.edu/gsea/) was used to evaluate

the enrichment of gene sets in prognostic groups defined by 5-year

survival. All measured genes are ranked according to the

differential expression between the two prognostic groups. An

Enrichment Score (ES) for each gene set is computed by going

through the ranked list from the top. ES is increased if the

encountered gene is a member of the gene set or decreased if

otherwise.

In this study, multiple gene sets were evaluated with the GSEA. In

Multiple Hypothesis Testing, prognostic group labels are randomly

permuted. A normalized enrichment score (NES) for each gene set is

generated by averaging enrichment scores from all permutations.

Statistical significance of the corresponding NES is indicated by false

discovery rate (FDR) in the permutation analysis [33].

Transcriptional Profiles in NCI-60 Cell Panel
Genome-wide mRNA expression profiles in NCI-60 cell lines

[34] were retrieved with CellMiner (http://discover.nci.nih.gov/

cellminer). The data were generated on Affymetrix U133A and

normalized using the GCRMA method [35]. The signature genes

were identified from the data file with gene symbols or UniGene

Cluster IDs (for unknown genes).

Drug activity profiles in NCI-60
The drug activity data in NCI-60 were retrieved from

Developmental Therapeutic Program at NCI/NIH through

DTP Data Search (http://dtp.nci.nih.gov/dtpstandard/dwindex/

index.jsp). The latest screening results for each studied drug were

used in the analysis. Growth inhibition was assessed from the

changes in total cellular protein after 48 hours of drug treatment

using a sulphorhodamine B assay. Drug activities (log10 GI50) were

recorded across the 60 human cancer cell lines. GI50 is the

concentration required to inhibit cell growth by 50% compared

with untreated controls. The activity profile of an agent consists of

60 such activity values, one for each cell line.

Defining Drug Sensitivity and Resistance
Drug activity data for Cisplatin, Carboplatin, Paclitaxel, and

Etoposide was processed to define drug resistance and sensitivity in

the NCI-60 lines as described before [36,37]. Specifically, for each

drug, log10 (GI50) values were normalized across the 60 cell lines.

Cell lines with log10 (GI50) at least 0.5 SDs above the mean were

defined as resistant to the drug. Those with log10 (GI50) at least 0.5

SDs below the mean were defined as sensitive to the drug. The

remaining cell lines with log10 (GI50) within 0.5 SDs were defined

as intermediate in the range of drug responses.

Classification of chemosensitivity/resistance
The mRNA expression profiles of the 12-gene lung cancer

signature were used to predict chemosensitivity/resistance in the

cancer cell lines. For each drug, only sensitive and resistant cell lines

were included in the analysis, while those with intermediate response

were excluded from classification. A k-nearest neighbor method
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was used to classify chemoresponse to Paclitaxel. Neural network

was used to classify drug response to Carboplatin, Gefitinib, and

Erlotinib. Boosting trees (AdaBoost) was used to classify response

to Etoposide. An ensemble learning method (Decorate) was used

in classifying chemoresponse to Cisplatin. The classification results

were evaluated with a leave-one-out cross validation. These

algorithms were implemented in WEKA 3.4 [32].

Differential expression analysis in resistant and sensitive
lung cancer cell lines

Using the average expression values of each gene in the lung

cancer cell lines in the NCI-60 panel, fold change of the gene

expression in resistant cell lines versus sensitive cell lines was

computed as follows:

Fold Change~2(Re sis tan t Mean{Sensitive Mean)

Where Resistant_Mean is the mean expression of the group of resistant

cell lines and Sensitive_Mean is the mean expression of the group of

sensitive cell lines. In this study, a value of 1.5 (1.5 for over-expressed

and 0.67 for under-expressed) is the threshold used in deciding if a gene

is expressing differently. Statistical significance of the fold change is

computed using two-tail, unequal variance two-sample t-tests. It’s

considered statistically significant if a p-value is #0.05.

Statistical Analysis
In Kaplan-Meier analysis, log-rank tests were used to assess the

difference in probability of survival of different prognostic groups.

Hazard ratio and concordance probability estimate (CPE) were

used in the evaluation of different molecular prognostic signatures.

If the model gives hazard ratio greater than 1, it means that

patient samples predicted as high risk are more likely to have poor

outcome. CPE values close to 1 represents high concurrence and

good predictive power; CPE values close to 0.5 represents low

concurrence and poor predictive power. All the analyses were

performed with packages in R unless otherwise specified.

Supporting Information

Table S1 A 15-gene lung cancer prognostic signature. This gene

signature was identified using pooled-variance t-tests and RELIEF

algorithm. The expression of the 15 genes were used as covariates

in Cox model and median risk score from training set was used as

the cutoff point.

Found at: doi:10.1371/journal.pone.0012222.s001 (0.05 MB

DOC)

Table S2 A 16-gene signature sharing common biological

functions between 12- and 15-gene signatures (Table S5). Cox

model was fitted with these 16 gene expression levels and 75th

percentile of the risk scores from training set was used as the cutoff.

Found at: doi:10.1371/journal.pone.0012222.s002 (0.05 MB

DOC)

Table S3 Multivariate Cox proportional analysis of 15- and 16-

gene risk score with major clinical covariates in lung cancer

survival on testing cohorts (DFCI and MSK).

Found at: doi:10.1371/journal.pone.0012222.s003 (0.05 MB

DOC)

Table S4 Multivariate Cox proportional analysis of 15- and 16-

gene risk score with all clinical covariates in lung cancer survival

on testing cohorts (DFCI and MSK).

Found at: doi:10.1371/journal.pone.0012222.s004 (0.08 MB

DOC)

Table S5 Comparison of biological functions between 12-gene

signature and 15-gene signature with curated database. The

biological functions were obtained using Ingenuity Pathway

Analysis (IPA).

Found at: doi:10.1371/journal.pone.0012222.s005 (0.09 MB

DOC)

Table S6 14 published lung cancer gene signatures evaluated in

GSEA.

Found at: doi:10.1371/journal.pone.0012222.s006 (0.05 MB

DOC)

Table S7 Summary of gene selection and classification methods

of molecular classifiers compared in Fig. 5. Gene signatures A-N

were reported in (Shedden et al, 2008).

Found at: doi:10.1371/journal.pone.0012222.s007 (0.05 MB

DOC)

Table S8 Machine learning algorithm and genes used in

chemoresponse prediction using 12-gene signature.

Found at: doi:10.1371/journal.pone.0012222.s008 (0.05 MB

DOC)

Table S9 Sensitivity and specificity of the 12-, 15- and 16-gene

prognostic models.

Found at: doi:10.1371/journal.pone.0012222.s009 (0.05 MB

DOC)

Figure S1 Gene set enrichment analysis of the 12-gene signature

along with 14 published gene signatures for NSCLC. A summary

of the 14 gene signatures analyzed is listed in Table S6.

Found at: doi:10.1371/journal.pone.0012222.s010 (0.10 MB TIF)

Figure S2 Evaluation of the 15-gene, 12-gene, and 16-gene

prognostic models with molecular prognostic models presented by

Shedden et al (2008). Hazard ratio (A, C) and concordance

probability estimate (CPE) (B, D) were compared on patients in all

stages (A, B) and stage I (C, D) of lung cancer. Error bars in (A)

and (C) represent 95% confidence interval of hazard ratio.

Found at: doi:10.1371/journal.pone.0012222.s011 (0.15 MB TIF)

Figure S3 Comparison of gene expression patterns of the 15-

gene signature measured with DNA microarray and RT-PCR

microfluidic low density arrays (LDA). Gene expression fold

change in lymph node positive (LN+) patients vs. lymph node

negative (LN2) patients was compared (A). Samples included in

the fold change comparison are summarized in (B). On patient

with follow-up information, gene expression fold change in high-

risk patients vs. low-risk patients at 3-year period after surgery was

also compared (C). The RT-PCR data were normalized with

POLR2A in a sample-wise manner. DNA microarray data were

obtained from Shedden et al (2008). Red asterisk (*) above the bar

indicates the gene was differentially expressed t-test (P,0.05).

Found at: doi:10.1371/journal.pone.0012222.s012 (0.22 MB TIF)
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