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Abstract

Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite
recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various
experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined
subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in
transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range
interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two
chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can
be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects
of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-
independent measures for comparison to experimental data. In this Dynamic Loop (DL) model, the co-localization
probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes
folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological
densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus,
dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in
eukaryotic interphase nuclei.
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Introduction

The cell nucleus is a main constituent of eukaryotic organisms

and yet its complexity prevents detailed knowledge of its function.

The genome content is carried by the chromosomes: compactly

folded polymers consisting of DNA and histone proteins. While

during mitosis chromosomes are found in an extremely condensed

state, the chromatin fiber inside the interphase nucleus has a much

more decondensed organization. However, at this stage of the cell

cycle, highly coordinated processes such as transcription, replica-

tion and DNA repair take place, making a random folding of the

chromatin fiber very unlikely. A pivotal question is the connection

between genome organization and function, which could not be

answered in a satisfying way up to now. The organization of the

genome in the interphase nucleus of eukaryotic cells is done on

multiple scales of length and degrees of compaction. The basic

filament is the DNA double helix which is wrapped around histone

cores forming the nucleosome. The chromatin fiber is a complex

of nucleosomes and linker DNA forming a beads-on-a-string type

of filament with a diameter of about 11 nm [1]. In-vitro

experiments provide evidence that this structure in turn condenses

under certain salt conditions to an even more compact structure of

30 nm, but both its regularity and its existence in living cell nuclei

are still under debate [2–5]. Stunningly, even less is known about

the structural organization on a scale above 30 nm. Up to now,

experimental techniques are limited by the resolution of

conventional light microscopes of about 200 nm, requiring

indirect assays for investigating chromatin folding. Several

experimental techniques have been applied: Fluorescent labeling

of large parts of a chromosome yields results on structure, shape

and position of chromosomal regions [6] or even of entire

individual chromosomes [7]. Labeling two loci of a chromosome

with a fluorescent marker was successfully used to establish a

relationship between genomic distance g between these markers

and its mean square physical distance in yeast [8], drosophila

[9,10] and human cells [11,12].

There is now abundant evidence that genome function is tightly

related to chromatin folding on several length scales. The one-

dimensional distribution of genes along the chromosome is far

from being random: the Human Transcriptome Map [13] reveals

a clustering of active genes as well as inactive genes into certain

domains, which have been named ridges and anti-ridges [6].

Various experiments have shown that the 3D organization of

chromatin depends on transcriptional activity: Active genes tend to

be located in the nuclear interior while inactive genes are found

more often at the nuclear periphery [6,14,15], the converse

behavior is observed in some experiments [16]. Moreover, a

change in the transcriptional state of a gene can have direct

influence on its positioning inside the nucleus [17,18]. Transcrip-

tional active regions (ridges) were observed to have a more open
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structure than inactive regions (anti-ridges) [6]. Also, the

relationship between mean square distance (MSD) of two

fluorescent markers and their genomic separation has revealed

significant differences in compaction between ridges and anti-

ridges [12]. Further, these fluorescence in situ hybridization

(FISH) experiments displayed a leveling-off in the MSD for

genomic separations above 10 Mb (mega basepairs), the plateau

level being in the size range of 2 mm. On the scale of the nucleus,

chromosomes are separated into distinct chromosome territories

[7], whose relative positions and ellipsoidal shape varies from cell

to cell [19].

Intra-chromosomal as well as inter-chromosomal contacts or

loops have been intensively analyzed in the past few years both

experimentally and theoretically as a possible mechanism for

transcriptional regulation and genome folding. Yet, chromatin

loops seem to be an ubiquitous feature of genome organization

and genome function. Transcriptional regulation is often con-

trolled by regulatory motifs such as enhancers and silencers. These

can be located tens of kb apart from the target gene which they

regulate [20,21]. One possible interaction mechanism is spatial

proximity of regulatory element and target gene which requires

the looping out of intervening DNA. 3C experiments have

demonstrated that this is indeed the case in the b-globin locus [22].

One idea put forward to explain chromatin loops is the existence

of transcription factories or active chromatin hubs, where active

polymerases cluster and thereby co-locate genes and regulatory

elements [23,24]. 3C and 4C techniques have since then provided

evidence that indeed loops up to several Mb exist in interphase

cells [20,25]. However, the detailed mechanisms and driving

forces of looping are still under debate.

We present a polymer model, the Dynamic Loop model, where

functional loops are formed solely on the basis of diffusional

motion. Importantly, loops are assumed to be dynamic and the

sets of loop attachment points change during time. Thus, our loop

model is minimal meaning that we do not assume a priori long-

range forces and active transport mechanisms. Besides the new

motif of dynamic loop formation, this is a major advance with

respect to other chromatin models with loops [11,12,26–29].

Various other polymer models have been proposed [30,31] which

do not take into account chromatin looping. The assumptions of

our model arise from biological evidence: 4C experiments clearly

show that loops exist on length scales from several thousand

basepairs to tens of Mb [25]. Surely, if looping is related to

functional processes like transcriptional regulation and the

formation of transcription factories, the cell must be able to

control this looping dynamically. Large cell-to-cell variations in

FISH distance measurements [12,32] render such a dynamics a

necessary feature of any polymer model.

Our model makes testable predictions on a variety of observable

quantities. We predict that chromosomes fold into a confined

space and display a different fluctuation regime than non-dynamic

looping polymers or linear chains. Importantly, the formation of

large loops can be accomplished hierarchically mediated by many

loops on the short scale without the assumption of long-range

interactions. We demonstrate that the beads of the polymer display

sub-diffusive behavior in agreement with experimental data [17]

and that chromosome territories are constituted driven by looping;

the overlap between different chromosome territories (CTs)

depends on the local looping probabilities.

The chromatin model
Our model starts by initially assuming chromatin to consist of a

coarse-grained linear polymer chain. Loop formation is achieved

on the basis of diffusional motion of the monomers in the following

way: Whenever two segments co-localize by diffusional motion, a

chromatin loop is formed with a certain probability p between

these two sites. A certain lifetime is assigned to each loop, thus loop

attachment points dissolve again during the course of time.

Lacking experimental knowledge on the time scales over which

chromatin segments remain co-localized, e.g. in transcription

factories, different looping lifetimes are considered. Details are

described in Materials & Methods.

The stochastic nature of loop formation provides method to

effectively incorporate protein-chromatin and chromatin-chroma-

tin interactions. Looping is often thought to be mediated by DNA-

binding factors such as CTCF [33], Sat1B [34] or PcG [10] or by

regions of increased polymerase concentration, i.e. transcription

factories [24]. The probabilistic creation of functional chromatin

contacts mimics the effect of protein concentration (there being

either proteins binding DNA sites or not) and binding affinity. The

detailed nature of the binding affinity thus does not need to be

considered explicitely in our model. In the following we denote by

‘‘loop’’ a functional interaction between two parts of a chromatin

fiber existing for a certain time as created by the algorithm. In

contrast, a ‘‘contact’’ denotes two parts of the chromatin fiber

close together by thermal fluctuations without necessarily being an

interaction.

A typical human chromosome has a length of about 100 mega

basepairs (Mb), rendering a detailed description on the molecular

level computationally impossible. Typically, coarse-grained ap-

proaches are used, where a long stretch of chromatin is modeled as

an effective monomer. Polymer scaling theory [35] tells us that for

linear polymers such an approach is well justified above the scale

where bending rigidity plays a role. This length scale is established

by the persistence length lp, defining the transition from a rod-like

to a flexbile polymer. Estimates for the persistence length range

from lp~40{250 nm [36] but are often based on crude

approximations by fitting data to linear chain models [8,30].

Thus, it is reasonable to conduct computer simulations on a

coarse-grained scale where it can be securely assumed that the

fiber is flexible.

To study the impact of diffusion-based loop formation on the

conformational properties isolated from effects of the presence of

other chromosomes, we simulate single chromosomes in a dilute

solution. In fact, it has been argued that the disentanglement time

for the transition from interphase to metaphase chromosomes of

size 100 Mb is in the order of 500 years [37,38], thus requiring the

activity of DNA topoisomerase II. Rosa et al. reversed the

argument proposing that interphase chromosomes never equili-

brate [38]. We ask whether the observed confined folding already

arises from the experimentally confirmed loop formation without

invoking rather unprecise knowledge of time and length scales. If

loop formation turns out to cause confined folding, then the

presence of other chromosomes should not alter the conforma-

tional properties drastically. That is why we focus first on isolated

chains. In a coarse-grained approach we study chain lengths of size

N~64, 128, 256 and 512. We use Monte-Carlo simulations on a

cubic lattice employing the well-established bond fluctuation

algorithm [39]. The lattice size is chosen to be L~256. By using

periodic boundary conditions and keeping track of unfolded

coordinates we avoid forcing the polymers into a confined space.

While simulations of diluted chromosomes can be used to study

the effect of looping isolated from the presence of other chains,

simulations of polymers in a dense system are necessary to study

the formation of chromosome territories and to answer the

question whether density-related effects are observable. Thus, it is

a natural next step to perform simulations in a system with many

chromosomes. For our simulations we choose a linear simulation

Dynamic Looping of Chromatin
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box of width L~64 and a density of r~12:5%, which is similar to

the conditions in interphase nuclei. A total of 4096 monomers was

thus studied.

Most often, simulational studies map coarse-grained monomers

to physical length scales, e.g. by assuming a certain persistence

length [31,38]. Thus, a parameter-dependent comparison between

the physical distance of two markers with experimental data from

FISH measurements can be conducted. To obtain testable

quantitative predictions we follow another, more universal,

approach. We derive quantities which are independent on the

detailed mapping of the model fiber to the biological chromosome,

but can be easily evaluated both from simulational data as well as

from experimental data. Such quantities comprise dimensionless

higher-order moment ratios of the distance distributions as well as

scaling exponents. We show that these quantities do not depend on

the chosen level of coarse-graining, i.e. the chain length. Thus,

without assuming unknown time and length scales, a sensitive

comparison between theory and experiment is possible.

Results

Modeling chromosomes with complex interaction patterns

results in the need to dramatic simplifications in order to allow

sufficient relaxation of the fiber within a feasible computational

effort. Therefore, we study the looping dynamics for isolated

coarse-grained chromatin fibers first. Although such conditions are

not found in in-vivo experiments, the formation of loops and its

influence on the chromosome properties can be studied isolated

from density-related effects. In the next step, we present the results

of simulations of a system of several chromosomes at biological

densities. Since the looping results in confined structures, as will be

shown below, density-related effects are only minor and,

consequently, the formation of chromosome territories is observed.

Mean square distance between chromatin segments
We first show that the Dynamic Loop model is in agreement

with experimental data from FISH measurements [12,40], which

provide information about the relative physical distance between

two target sites. The mean squared distance value vR2
w

between those target sites in relation to genomic distance g
between them can be compared to polymer models. The random

walk (RW) and self-avoiding walk (SAW) polymer models predict

this mean squared distance to increase monotonically with the

distance between two FISH markers,

vR2
w*g2n ð1Þ

where n is a model-dependent parameter [41]. In principle, such a

scaling is only valid for the end-to-end distances, however, we

want to stress that in the absence of other interactions, equation (1)

is approximately valid for genomic separations g of interest much

larger than the persistence length lp of the chromatin fiber.

The confined space of the nucleus renders the random walk and

self-avoiding walk polymer model inadequate. A 100 Mb

chromosome with assumed Kuhn length of approximately

300 nm [8] in a 30 nm fiber packing (300 nm ^ 30 kb) would

extend on average to 17.3 mm in the random walk case, whereas

the average diameter of a nucleus is of the order of 10 mm. The

globular state model fails for other reasons [32]. Recent

experiments [12], however, clearly revealed that while the mean

square distance increases monotonically with genomic separation

on short distances up to a few Mb, a leveling-off is observed for

larger genomic separations. This confined folding is observed on a

scale of about 2 mm, far below the diameter of the nucleus but

consistent with the estimated size of chromosome territories [7].

The random loop model [12,42] explains the behavior by the

formation of random loops, without invoking a confined geometry

a priori.

We first considered the mean square distance between two

beads in the DL model for isolated chains. Given a chain of length

N with monomer positions denoted by ri (i~1, . . . , N), the

average is calculated over a set C of independent conformations as

well as over different reference points inside the chain

vR2
nw~

1

DCD
1

N{n

X

C[C

XN{n

i~1

ErC
izn{rC

i E2 ð2Þ

Fig. 1 shows the results of the model for a chain of length N~256.

The looping probability p is varied such that different values for

the average number of loops are obtained. Lacking knowledge of

the biological lifetime of the loops, results are shown for three

different values of t depending on the relaxation time of the

chromosomes tint (triangles [m] for t~0:01tint~t1, open

diamonds [e] for t~tint~t2 and filled circles [.] for

t~100tint~t3, see Materials&Methods). The model displays a

cross-over from self-avoiding walk behavior (small number of

loops) to a leveling-off in the mean square distance. Such a plateau

level is recovered if the average number of loops on a coarse-

grained chromosome is larger than about 80. This result is

independent of the lifetime of the loops as long as the average

number of loops remains the same, indicating that the lifetime has

no direct influence on the statistical equilibrium properties. These

findings clearly show that no long-range interactions are necessary

for forcing the polymer to collapse but a purely diffusional motion

together with chromatin-chromatin binding affinity suffices to

achieve this.

To quantitatively compare the model to experimental data, we

assume each bead to represent a 400 kb segment of chromatin

with an average extension of 480 nm (in agreement with

experimental data [12]). To ensure that the qualitative results

are not dependent on chain length, we studied the mean square

distance for N~128 and N~512 (see Figure S1). In all three cases

a leveling-off is observed, indicating that the observed results are

independent on scale and the applied coarse-graining is justified.

Self-organized formation of large loops
Loop formation is a central process for the transcriptional

regulation in higher eukaryotes. Several studies indicated that co-

localization of chromatin segments results in activation or

repression of genes [20]. Hypotheses of loop formation range

from the attachment to a structure called nuclear matrix [43] to

the formation of transcription factories [24], in which transcrip-

tionally active genes come together, forcing the intervening DNA

to loop out. It has been proposed that rossette-like loops arise in a

self-organized manner due to the heterogeneity of the fiber [44].

Recently it has been shown [28,29] that loops can promote

territory formation with a simple model using fixed loops.

However, such a kind of looping does not yield a correct

description for the relative positioning of two markers [12].

Rather, it has been shown by 4C experiments [25], that loops exist

on scales up to several Mb. 3C/4C/5C and the newly developed

Hi-C [45] techniques provide an experimental method to measure

loop probabilities and distributions. Therefore, we next investi-

gated how the model alters the distribution and frequency of genes

to become co-located. Again, we favor measures that do not

depend on the level of coarse-graining and parameters like

persistence length. One such measure is the decay of the contact
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probability and abundance with genomic separation g. Consider a

random walk polymer chain. Clearly, the probability that two

beads n1 and n2 come into contact decreases with the separation

Dn2{n1D. More precisely, we obtain a power-law behavior [35]

pc(Dn2{n1D)^Dn2{n1D{3=2: ð3Þ

Consider two genes separated by 10 Mb. Assuming a Kuhn segment

length of 300 nm [38] consisting of 30 kb chromatin, the probability

of co-localization is in the order of pc(10MB)^333{1:5*10{4.

How, then, does the cell nucleus manage to co-locate different

chromatin segments in a reasonable time? To answer this question,

we look at the formation of functional loops in our model and its size

distribution P(‘). Interestingly, the diffusional pathway to loop

formation results in a size distribution of functional loops P(‘) which

is quite different from the small random contact probabilities of a RW

or SAW model (Fig. 2C). Strikingly the probability of having a loop in

the size-range of the chain length is enhanced by over two orders of

magnitude. The increase in probability for large-scale loops in

contrast to small-scale loops can be explained on an intuitive basis:

Starting from a linear chain, the diffusional process will bring

monomers close together which are not so far away along the contour

of the chain. Loop formation will be dominated by small-sized loops

as equation (3) still holds. However, as more and more small loops

form, even parts of the polymer located further apart come closer

together (Fig. 2A), thus enhancing the probability of contact.

Figure 2B visualizes for one simulation run the average loop size

along the simulation time. We find that this average loop size

increases fast and then fluctuates around an equilibrium value.

Therefore diffusional looping seems to be a quite fast and effective

method of large loop formation.

To allow a comparison to experimental data from 4C and 5C

experiments we determine two measures. Firstly, the size-

distribution h(l) of random contacts (as n C experiments do not

only measure functional contacts) between two chromatin

segments. Secondly, the specific contact probability pc(Dn1{n2D)

that two segments at position n1 and n2 are in contact. From eq. (3)

we know that for a random walk the specific contact probability

has a power-law behavior depending on the length l~Dn1{n2D
given by pc(l)^l{b, b~1:5. A power-law behavior is also found

for the self-avoiding walk, where the exponent is determined in

Fig. 2D to b~2:10. In fact, scaling theory predicts [35] for self-

avoiding or random walk polymers that the contact probability of

the end-points of a polymer scales as pc(N)^N{3n&N{1:76. Our

analysis suggests that the contact probability for intra-chain

segments decreases more strongly. This is somehow expected, as

intra-chain segments have less entropic degrees of freedom and are

surrounded by a higher density of adjacent beads than the end

points, making contacts with beads further away less likely. Our

polymer model as well displays a power-law behavior of the co-

localization probability pc(l) (Fig. 2D). However, two different

regimes have to be distinguished. For genomic separations l in the

size range of the whole chromosome a different exponent is found

as in the size range below about 15% of the fiber length. In the

regime of probability-values p where leveling-off in the mean

square distance is observed, we find exponents of about

b1&0:8{1:1 for smaller genomic separations in the order of

10 Mb and b2&0:35{0:70 for large genomic separations in the

order of 100 Mb (table 1). Intriguingly, the probability of specific

contacts between far-apart chromatin segments is increased by

over two orders of magnitude compared to the self-avoiding walk.

Increasing the looping probability and thus the average number of

loops per chain results in smaller exponents b. Interestingly, this

result is in close agreement with recent results from Hi-C data [45]

where an exponent of b1&1:09 has been observed in a region

between 500 kb and 7 Mb (see inset of Figure 2D). For genomic

separations above 10 Mb we find a scaling exponent of b2&0:55,

consistent with the smaller scaling exponent found in our model.

Similar results are found for other chain lengths (Figure S2 and

Figure S3).

5C data provides a detailed map of interactions between

chromatin segments without a fixed reference point. Thus, it is

more natural to look at the relative abundance of contacts h(l) of

size l, encompassing all fragments of a certain length l found in the

Figure 1. Mean square distance vR2
w in relation to contour length for an isolated fiber. A. The mean square distance vR2

nw between
two beads separated by contour length n. Isolated polymers of length N~256 have been fully equilibrated for various looping probabilities p. These
probabilities are plotted with different colors depending on the resulting average number of loops per conformation. Simulations have been
performed using various lifetimes of loops, the results are displayed by different symbols (triangles [m] for t~t1, open diamonds [e] for t~t2 and
filled circles [.] for t~t3). The mean square distance displays a leveling off for average loop numbers beginning at a number of 80. B. Comparison of
the mean square distance to experimental data taken from Mateos-Langerak et al. [12]. Measurements have been performed on the q-arm of human
interphase chromosome 1 and 11. Each bead of the model fiber represents a 400 kb stretch of chromatin with an average extension of 480 nm.
doi:10.1371/journal.pone.0012218.g001
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data independent on their position on the genome. A crude power-

law fit h(l)^l{a can be conducted here, too (see Figure S4). We

find power-law exponents of a&0:7{1:2 in the range where

leveling-off in the mean square distance is observed (cf. Fig. 1).

The exponents both for the specific contact probability pc(l) as

well as the size-distribution h(l) are listed in table 1.

Fig. 3 shows contact maps similar to those obtained by 5C for a

N~256 polymer with different looping probabilities. Contacts

between any two beads are marked by a black square. For better

visibility, in each map contacts of 4 equilibrated conformations are

plotted. Clearly, the self-avoiding walk polymer model (Fig. 3A) only

has a few contacts between beads located far apart. Increasing the

looping probability (Figs 3B and C) results in a strong increase of

both the number of loops as well as the abundance of large loops.

Theoretically, the change in the scaling exponent can be

explained by the topological changes induced to the fiber on

introducing loops. For a polymer network, the looping probability

generally behaves like pc(l)*lc with the exponent c depending on

the specific topology, i.e. the vertices, of the network [46]. For

more complex networks, i.e. loop configurations, the exponent

decreases due to the less conformational degrees of freedom

available.

Cell-to-cell variation and dynamic fluctuations of the
distance distribution

While FISH measurements have been used to establish a

connection between the mean square distance of two markers and

genomic separation [8,12,40], a direct comparison to polymer

Figure 2. Size distribution of loops and random contacts. A. A sketch displaying the facilitated formation of large-loops under the existence of
small loops. For a linear polymer, the probability that two chromatin segments marked by red dots co-located by random diffusion is small (right
image). Once a small loop has formed in the model (blue dot, left image), the co-localization of the red markers becomes much more frequent. The
reason is that the formation of a loop decreases the average distance d1 between the red markers compared to the linear case d2. B. This figure
displays the average loop size of a conformation during the run. Starting from an equilibrated self-avoiding walk conformation (t~0), small loops
form by random collisions. This enhances the probability of segments further apart to come into contact, thus the average loop-size increases,
allowing even loop-sizes of the length of the chain. C. Shown is the size distribution of functional chromatin loops of model polymers with N~256
beads. Model polymers were fully equilibrated and the loop size distribution was determined for various looping probabilities p (for reasons of
comparison the average number of loops per conformation is displayed by a color code) and lifetimes t of the functional loops (t~t1 solid line, t~t2

dotted line, t~t3 dashed line). Looping lifetimes are chosen relative to the relaxation time, see eq. 6. In an intermediate region, away from the chain
ends, the curve can be roughly fitted to a power-law P(‘)*‘{b. Increasing the loop number results in a markedly smaller exponent, leading to a high
probability for large loops. D. The contact probability pc(l) for two specific sites with genomic separation (contour length) l to become co-localized.
Shown are the results for equilibrated model polymers with N~256 beads and various looping probabilities p. The contact probability decreases as a
power-law l{b with genomic separation for separations n *> 30, the exponent strongly depending on looping probability. The grey line represents the
self-avoiding walk. Again, the co-localization probability is strongly increasing due to diffusion-based looping. The inset shows recent Hi-C data [45]
(average signal vs. loop length). Similar to the model, the data shows two regimes with different exponents.
doi:10.1371/journal.pone.0012218.g002
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models requires parameters to map one model bead to physical

units like nanometers and base pairs. As these parameters are

unknown or based on crude estimates [8,30], it is desirable to

introduce dimensionless quantities not dependent on length scale

parameters.

For the the random walk (RW), self-avoiding walk (SAW) and

the globular state (GS) model, the following higher-order moments

of the distance distribution between two markers turned out to be

basically independent of genomic separation [32].

c2~
vR2

w

vRw
2

, c3~
vR3

w

vRw
3

, c4~
vR4

w

vR2
w

2
ð4Þ

An intrinsic advantage of these measures is that they are

dimensionless, i.e. both experiments and models yield a numeric

value. Even more important, the ratios carry information about

the fluctuations, i.e. the cell-to-cell variation of the measurements.

One prominent feature of FISH measurements in interphase

chromatin is that the fluctuations of the distance distributions are

larger than expected from a random walk or self-avoiding walk

polymer model [42]. Recently it has been shown that this holds

true for the case of compact polymers as well [32], where the

fluctuations are even smaller. The ratios given in eq. (4) for

experimental data sets from Mateos-Langerak et al. [12] as well as

Jhunjhunwala et al [27] are presented in Fig. 4A. The figure

contains FISH data from human chromosomes 1 and 11 [12],

separately measured for ridges (green squares) and anti-ridges (red

squares) as well as data from the murine Igh locus [27], which was

kindly provided by K. Murre.

The results for the model treated in this paper are shown in

Fig. 4B. Model polymers of different length (N~64, 128, 256 and

512) have been equilibrated and averaged over a huge ensemble of

conformations encompassing various configurations of loop

attachment points. The data is plotted against the average number

of loops per monomer to allow for a comparison between different

chain lengths. For small looping probabilities, i.e. small average

number of loops, the self-avoiding walk behavior is recovered,

whereas increasing the looping probability leads to a strong

increase in the fluctuations of the system. The higher-order

moment ratios markedly exceed the random walk value in the

range of loop numbers between 0:15N and 0:65N . One would

expect for a random-walk polymer to have larger fluctuations than

a polymer constraint to excluded volume interactions and

topological constraints. In our model, the large fluctuations are

induced by the dynamic formation of loops, which thus seems to

be an important characteristics of chromatin organization.

However, it has to be noted that the fluctuations of the model

are still too small to explain the moment ratios of most of the

experimental data. We will discuss this in more detail in the

discussion section.

The dynamics of looping chromosomes
Finally we study the dynamics of the looping chromatin fibers.

The center-of-mass motion of a polymer is measured by

g3(t)~S RCM (t){RCM (0)ð Þ2T. For a self-avoiding walk polymer

it shows normal diffusion behavior, i.e. g3(t)*t. As can be seen in

Fig. 5 the chromatin model shows subdiffusive motion

g3(t)*ta (0ƒav1) on time scales smaller than the relaxation

time of the polymer. The actual diffusion exponent a depends on

the looping probability p. For times larger than the relaxation time

one recovers diffusive motion, i.e. g3(t)*t, however, this motion is

slower than for a normal self-avoiding walk (Figure S5). This is

consistent with experimental results showing that chromosome

territories do not move significantly [47].

It has to be noted that the regime of large times is not very

sensitive for a comparison to experimental data as here the

confinement by other polymers comes into play which is not

incorporated into the simulations of a single polymer. It is more

instructive to look at the motion of the central monomers of a chain

on short time scales. The mean square displacement

g1(t)~S rN=2(t){rN=2(0)
� �2T displays a distinct behavior for three

different time regimes, which are related to the relaxation time tint

of a chromosome. For t%tint there is a pronounced subdiffusive

behavior. The anomalous diffusion exponents range from

a&0:22{0:4 in the regime where leveling-off is observed for the

mean square displacement (cf. Fig. 1). For t&tint the predictions of

classical polymer dynamics become valid again and we find

g1(t)*t0:59 similar to the self-avoiding walk. On large time scales

(t&tint), the monomer motion follows the motion of the center of

mass, displaying normal Brownian motion with g1(t)*t.

While at intermediate and large time scales the motion can be

described by classical polymer theory, i.e. Rouse dynamics [41],

Table 1. Decay exponents of the random contact probabilities with genomic separation for direct comparison to 4C and 5C
experiments.

number of loops loop lifetime t symbol exponent a exponent b1 exponent b2

19.0 t2 dark-red e 2.01 1.78 1.66

19.0 t1 dark-red m 2.00 1.76 1.68

19.1 t3 dark-red . 2.05 1.79 1.64

59.2 t2 red e 1.19 1.24 0.70

87.0 t1 blue m 0.95 1.09 0.43

87.2 t3 blue . 0.92 1.11 0.38

112 t2 light-blue e 0.84 1.00 0.30

131 t1 light-blue m 0.81 0.94 0.35

247 t1 yellow m 0.70 0.79 0.35

Shown are the resulting exponents a of a power-law fit to the size distribution of random contacts h(l)*l{a . A fit to the specific contact probability pc(l)*l{b has been
performed both in the region of small genomic separations ( 10Mb) and in the region of genomic separations up to the complete chromosome (l *> 10 Mb), yielding
different exponents b1 and b2 respectively. These exponents can be compared to results from 5C and 4C experiments. Data is displayed for equilibrated chains of length
N~256 for various looping probabilities p, corresponding to different average numbers of loops, and different lifetimes t of functional loops. For comparison with Fig. 1,
the corresponding symbols are listed.
doi:10.1371/journal.pone.0012218.t001
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the scaling exponents on the short time scale t%tint are

unexpected. Following the argument in Refs. [37,38], this time

scale is the prevailing one concerning interphase chromosomes.

Clearly, such exponents arise due to the constraints induced by

looping, which temporarily slows down the motion of chromatin

segments at the loop attachment points. Although experimental

data is rare, this is consistent with findings of Cabal et al. [17] in

yeast. This study showed that the motion of a labelled spot scales

like g1(t)*t0:41 up to g1(t)*t0:47. Interestingly they found the

exponent to depend on the transcriptional state of the GAL genes.

This is in support of our conjecture put forward in another

publication [12] that the local looping probability may be related

to transcriptional activity.

The formation of aspherical chromosome territories
Polymer theory predicts that equilibrated polymers with a large

molecular weight in a semi-dilute solution are strongly intermin-

gling [35]. Various studies, however, indicate that chromosomes

occupy discrete functional domains [7,48,49]. It was shown above

that our model polymers adopt a confined structure by virtue of

dynamic looping. Amazingly, this result was obtained without

subjecting the system to a confined space (in contrast to Refs.

[30,31]) and without introducing long-range interactions (in

contrast the polymer models in Refs. [11,42,50]).

Surely, simulating isolated chromatin fibers does not yield

complete information about the folding in a dense system as in the

nucleus, e.g. the formation of chromosome territories (CTs). To

investigate whether probabilistic loops are the reason for the

formation of chromosome territories, we set up simulations of

chromosomes in a box of width L~64 lattice units and a length of

N~128. The density of the system r~0:125 was chosen close to

the estimates of chromatin in cell nuclei. Similar values were used

in other publications [28].

An established measure of territory formation is the number of

contacts displayed in the contact map [28]. Figure 6 shows such

contact maps for different looping probabilities p. Each map

displays contacts between the beads of a subset of 10 model

chromosomes out of the system. The beads are numbered

consecutively, i.e. bead 0 to 127 belong to chain 1, bead 128 to

256 belong to chain 2 etc. Subsequent chains are alternatingly

marked by black and white bars. We find that linear self-avoiding

walks (Fig. 6A) without loops display a relatively large number of

inter-chromosomal in comparison to intra-chromosomal contacts:

15.4% of the contacts are found to be with other chromosomes.

With increasing looping probability p, the percentage of contacts

between different chromosomes decreases. Fig. 6B displays chains

with an average number of 45 loops (blue triangle in Fig. 7A).

Here we find that only 1.8% of the contacts are inter-

chromosomal and in Fig. 6C (92 loops per chain on average,

green triangle in Fig. 7A) this value reduces further to v1%. Thus,

the level of intermingling between CT’s strongly depends on the

local looping probabilities. As different local looping probabilities

seem to play a dominant role in chromatin organization, this

finding could explain different levels of intermingling found in

several studies [51,52]. Branco et al. [51] found out that about

20% of the chromosomes are in contact with other chromosomes.

To be able to compare these experiments with our model, we

determined the fraction of monomers of one chromosome which

are close to neighbouring chromosomes. For linear chains without

loops (Figure 6A), we find an overlap fraction of about 50%, i.e.

the polymers intermingle strongly. For chromosomes with 45 loops

per chain on average (Figure 6B), the overlap fraction is about

15%, i.e. slightly smaller than the average observed for

chromosomes. Branco et al. indeed observed different overlap

fractions dependent on chromosome activity, thus different local

levels of looping might indeed mediate such different overlap

fractions.

Thus, a disentangling of the fibers, which has been estimated to

require a huge amount of time or the action of topoisomerase II

[37] is not necessary. Rather, loop formation alone induces a

strong repulsive interaction between different chromosomes; a

finding which has been quantified for ring polymers [53] and

rosette structures [54]. In mitosis, chromatin adopts a compact

state, where different chromosomes are unentangled and well-

separated. At the onset of interphase, the loop formation forces the

chromosomes to a more open, but confined structure, which

results in the formation of CTs without requiring the assumption

of unequilibrated polymers [38].

We find that the predictions from the study of isolated model

chromosomes are still valid for a dense system of chromatin.

Amongst others, this is a direct consequence of loop-based

segregation observed in Fig. 6. Fig. 7A shows the mean square

Figure 3. Intra-chromosomal contacts of isolated model
polymers. Shown are the results for equilibrated fibers of length
N~256 with different looping probabilities. For each parameters set (A.
linear chains (no loops), B. on average 19 loops per conformation and C.
on average 130 loops per conformation) co-localized beads were
determined and marked by a black square. For each image, the contacts
of 4 independent polymer conformations are plotted. Linear chains (A)
have not so many contacts between beads which are widely separated
along the contour of the polymer. Increasing the probability of
functional loops (B and C) results in a boost of contacts both between
close-by segments as well as between segments having a large
genomic separation.
doi:10.1371/journal.pone.0012218.g003
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distance between two model beads in relation to contour length n
(in biological terms: genomic distance g). Similar to the results of

Fig. 1, the mean square distance displays a leveling-off for average

loop numbers larger than about 45 loops per coarse-grained

monomer. Obviously, for small looping probabilities p (red curve)

or self-avoiding walks (p~0, not shown), polymers do not level off,

thus they do not form separate territories. The behavior of

territory formation and segregation is a distinct result of loop

formation.

While the mean square distance vR2
nw displays a leveling-off

for several polymer models (e.g. globular state [31,32], random

walk in a confined space [30], etc.), a more sensitive measure are

again the dimensionless ratios of higher order moments given by

eq. (4). As the fluctuation regime could possibly change under the

transition from isolated polymers to a dense system, we investigate

the ratio c4~vR4
w=vR2

w
2. Fig. 7B shows that fluctuations

are larger than predicted by the random walk, self-avoiding walk

or globular state model. In the regime where a leveling-off is

obtained in Fig. 7A, i.e. the average loop number is larger than

about 45, the moment ratios are approximately in the range

c4&1:75{1:85.

The relative abundance of contacts h(l) is displayed in Fig. 7C

for polymers in a dense system. Again, the co-localization

frequency is greatly enhanced by the formation of functional

loops. A crude power-law fit h(l)*l{a results in exponents of

a&1 and smaller in the region where a leveling-off is observed in

the mean square distance. Similar results are found for the specific

contact probability pc(l) (Fig. 7C), which display a biphasic

behaviour already observed in the case of isolated chromosomes

(Fig. 2). In the size range of large genomic separations in the order

of the entire chromosome, the contact probability decreases with a

power-law pc(l)*l{b with exponents starting from b~1:5 in the

self-avoiding walk model to b~0:35 in the parameter range where

leveling-off is observed. On intermediate scales ( 10 Mb), for

biologically relevant looping probabilities, an exponent of b~1:1
is found. Amazingly, a similar value of b~1:08 has been recently

found by Hi-C experiments [45] on a scale between 500 kb to

7 Mb.

Isolated model chromosomes displayed a pronounced confor-

mational asphericity (Figure S6). A similar behavior is also found

for chromosomes in a dense system. In fact, deviations from a

sphere-like shape are expected for the self-avoiding walk as well as

the random walk model [55], however, not for a compact globular

state polymer [32]. Whereas looping polymers can adopt a highly

compacted state, their properties differ clearly from a globular

state. Indeed, the shape of simulated chromosomes territories is

Figure 4. Higher-order moments of the distance distributions for experimental data (A) and for the chromatin model (B) according
to eq. (4). A. The following experimental data is shown: Human fibroblasts Chr1 [12]: red & anti-ridge region, green & ridge region, 0 long distance
measurements; Human fibroblast Chr 11 [12]: . long distance measurements; Murine Igh locus [27]: dark blue X pre-pro-B cells, light blue X pro-B
cells. The data displays strong deviations towards larger fluctuations in comparison to the random walk (RW), self-avoiding walk (SAW) and globular
state (GS) polymer model. B. Results are shown for simulated polymers of various length (N~64, 128, 256 and 512) in relation to the average number
of loops per monomer, which is related to the looping probability but allows for a better comparison. Although incorporating full excluded volume
interactions, fluctuations exceed the random walk value due to probabilistic looping.
doi:10.1371/journal.pone.0012218.g004
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not spherical as one would expect for compact polymers, rather we

find that the gyration ellipsoid has a prolate shape. The ratios of the

gyration tensor’s eigenvalues are listed in table 2. In the parameter

range where the mean square distance displays a leveling off, we

find ratios of the eigenvalues vl3w : vl2w : vl1w in the

regime between 5 : 2:0 : 1 and 3:2 : 1:7 : 1. These values are

smaller than those of Rosa et al. [38] for ring polymers and

consistent with those of looping polymers [28]. A non-spherical

shape of CTs has also been found in experimental studies [56,57].

Mouse chromosomes exhibit an aspherical shape approximated by

ellipsoids with axis ratios 4:5 : 2:9 : 1. A one-to-one correspon-

dence of these numbers with results from the shape of the gyration

ellipsoid, however, can not be established.

Discussion

In this study, a polymer model was presented where loops form

dynamically on the basis of diffusional collisions. We use Monte

Carlo simulations to demonstrate the effect of such a kind of loop

formation. While loops have been recognized as an ubiquitous

feature in transcriptional regulation, the pathways of its formation

remained unclear and most polymer models proposing loops so far

did not explain the transport mechanisms by which two parts of

chromatin become co-located. Our results suggest that even large

loops can arise without active transport mechanisms. Our model

neither assumes a confined geometry nor any long-range

interactions. Loop formation is based on the diffusional motion

of the fiber. Collisions lead to a probabilistic chromatin-chromatin

interaction which forces the participating regions to be co-located

for a certain time. The probabilistic nature of the interactions is

meant to mimic the effect of chromatin binding factors on

chromatin-chromatin interactions. Although this Dynamic Loop

model is kept minimal, it reproduces many experimental results

quantitatively, highlighting the possibility that chromatin folding is

tightly related to function through the loop formation process.

One of our major results is that dynamic loop formation drives

chromosomes into an entropically segregated state. Indeed, linear

polymers intermingle freely (Fig. 6A) in agreement with polymer

theory [35]. Looping polymers, in contrast, fold into a confined

space (Fig. 1). Such a confinement is also observed for the globular

state polymer model, which, however, displays a markedly

different fluctuation regime than the experimental data [32].

The importance of looping on the formation of chromosome

territories has been investigated recently by Cook et al. [28]. In

their qualitative study, rosette-structures with fixed loop attach-

ment points are used. While this model can be used as a simple

model for studying entropic effects of looping, it does not explain

fluctuations in FISH data [12,42].

The second important result of this study concerns the pathway

of the formation of large loops. Results from 3C/4C/5C

experiments reveal that loops are abundant on the short scale

[58]. Nevertheless, functional loops on the scale of several mega

basepairs have been detected in 4C experiments [25]. While the

probability of specific random contacts pc(l) decreases strongly

with site separation l for linear polymers (given by a power-law

behavior l{2:10), the contact probability is increased by over two

orders of magnitude when introducing loops (Fig. 2). Obviously,

small functional loops which can easily co-localize by diffusional

motion strongly support the formation of long-distance contacts.

The contact distribution h(l)*l{a displays power-law exponents

of a~0:7{1:2, the contact probability pc(l)*l{b exponents in

the size range between b&0:3{0:7. This is in agreement with

recent experimental data by Lieberman-Aiden et al. [45], however,

their interpretation in terms of a fractional globule differs from

ours. Clearly, a fractional globule, where the physical distance

between two loci scales with s1=3 [59], is in contrast to

experimental findings from FISH data [12].

The impossibility to perform Monte-Carlo simulations on a very

detailed scale requires a coarse-graining procedure. Looking at

large-scale features above the persistence length lp, such an

approach is well-justified [35]. For linear polymers, scaling laws

provide a simple way of rescaling a polymer. For a model with

loops, the connection between chain length, bond length and

looping probability p is non-trivial. In fact, even for chromatin

models using linear chains (see Refs. [30,31,38]), the establishment

of a correspondence between simulational units and biological

units requires the knowledge of the persistence length of

chromatin. The latter has been estimated by fitting a random

Figure 5. Dynamics of the center of mass and the central
monomers. The upper figure shows the motion of the center of mass
g3(t) for different parameters for a chain of length N~128. The
movement of the polymers’ central monomer g1(t) is displayed in the
lower figure. The color indicates the average number of loops per chain
(see color bar), the point type indicates the loop lifetime (triangles [m]
for t~t1, open diamonds [e] for t~t2 and filled circles [.] for t~t3).
We find subdiffusive behavior with different exponents dependent on
looping probability for time scales below the relaxation time of the
polymer. For reasons of readability curves are shifted along the y-axis
relative to each other.
doi:10.1371/journal.pone.0012218.g005
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walk model [30] or a worm-like chain model [8] to FISH data.

Estimates on the persistence length range from 40–220 nm [36].

For a quantitative comparison to experimental data we derived

measures independent on both the level of coarsening and

unknown biological parameters. These can be easily evaluated

both for experimental data as well as polymer models. Amongst

others, these measures comprise the power-law exponent of the

contact distribution (Fig. 2 and table 1), the dimensionless higher-

order moment ratios of the distance distribution between two

FISH markers (Fig. 4), the asphericity of chromosomes and finally

the diffusion exponents (Fig. 5).

The DL model studied here displays a pronounced aspherical

elongated shape (table 2) which is also found in experiments [6].

Consistent with experimental data in yeast, the motion of single

monomers is subdiffusive (Fig. 5); the actual subdiffusion

exponent depends on the looping probability, which was

suggested to be closely related to transcriptional activity [12]. A

good agreement with experimental data is obtained for the

higher-order moments of the distance distribution. Surprisingly,

the moment ratios (given in eq. (4)), which display fluctuations of

the distance distributions, exceed the random walk value for

looping probabilities p in the range where a leveling off in the

mean square distance is observed. This is not necessarily expected

for a model with excluded volume which restricts the degrees of

freedom and therefore shows less fluctuations. The increase of the

fluctuations with respect to the self-avoiding walk is due to the

dynamic formation of loops. However, several independent

experiments [12,27] consistently show even larger fluctuations.

We suspect two major reasons for this: First, the chromatin fiber

is not a homogeneous polymer and there is evidence that looping

probabilities vary depending on the transcriptional state [12].

Secondly, inside the nucleus, topoisomerase-II might effectively

counteract excluded volume interactions, resulting in an under-

estimate of the fluctuations in our model.

While our model suggests that chromosome segregation might

be driven by the diffusional formation of loops, Rosa and Everaers

suggested [38] that segregation is a consequence of large

entanglement times. The entanglement times, however, might be

strongly reduced by the effect of topoisomerase-II [60]. Notwith-

standing that time-scales play an important role, this study reveals

that loop formation provides a complementary and fully sufficient

mechanism for CT formation.

Figure 6. Contact maps and illustrations of chromosomes with different looping probabilities. Simulations were performed in a system
with density r~12:5% and chains with a coarse-grained length N~128. Any contact between two beads is represented by a square in the contact
map. Statistics is taken over 5 independent conformations. Not the complete contact map is shown, but only contacts between 10 chains. Linear
chains (A) display a lot of intermingling and have abundant contacts with other polymers. The fraction of inter-chromosomal contacts is 15.4%.
Increasing the loop-size (B and C) results in more and more confined structures, which are depleted of inter-chromosomal interactions. In (B) chains
have on average 45 functional loops (blue m in Fig. 7A), the fraction of inter-chromosomal contacts is reduced to 1.8%. This value decreases even
more for chains with an average of 92 loops per conformation (v1%, green m in Fig. 7A).
doi:10.1371/journal.pone.0012218.g006
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Importantly, the Dynamic Loop model displays a distinctly

different behaviour than the equilibrium or fractal globular state

(GS) models, which have been proposed for chromatin

organization [31,45]. First, the GS model does not explain the

large fluctuations observed in several experiments (Figure 4),

rather it predicts fluctuations being even smaller than for a

random walk or self-avoiding walk model. Second, the

equilibrium globular state predicts contact probabilities to

behave as pc(l)*l{1:5 [61], while Hi-C data shows pc(l)*l{1,

consistent with our model. On the other hand, the fractal

globular state predicts the correct contact probabilities but not

the leveling-off in the mean square displacement. Third, the

globular state predicts rather spherical territories, while our

model as well as experimental data shows aspherical chromo-

some territories. The differences indeed arise by the introduction

of probabilistic loops which among others leads to the large

fluctuations [42] observed in experiments.

Clearly the chromatin model proposed here does not capture all

details of the complex nuclear organization. For reasons of

simplicity we neglect the heterogeneity of the chromatin fiber here

and assume the same looping probability and chromatin affinity

along the complete chromosome. Using such a simple model

allowed us to derive the basic properties of chromatin fibers

without introducing unnecessarily many parameters. However,

experiments clearly show that loop formation is strongly

dependent on the differentation state of the cell [25] as well as

gene activity [12]. In future work such differences might be

incorporated into our model either by adjusting the looping

probabilities locally or by distributing specific binding sites along

the chromosomes.

Figure 7. Properties of looping polymers in a dense system. Coarse-grained polymers of length N~128 are equilibrated in a system of
density r~12:5%. Results are shown for various looping probabilities, which are indicated by the color-coded average number of loops. A.
Relationship between mean square distance vR2

w and genomic separation (contour length n). Polymers with small looping probabilities (dark red
curve) show a continuous increase of mean distance between two markers with their separation n. Thus, these polymers do not form discrete
territories but intermingle strongly. If the average number of functional loops exceeds 40–50 loops per monomer, a leveling-off is observed and the
chromosomes fold into a confined space. B. The ratio between higher-order moments cr~vR4

w=vR2
w

2 indicates a regime of larger fluctuations
than in the random walk case for polymers with p-values in the range where leveling-off occurs. The values found are in the size range of
c4&1:75{1:85. Such large fluctuations, i.e. cell-to-cell variation, are an intrinsic feature of chromatin organization (Fig. 4A), represented in our model
by the dynamic formation of probabilistic loops. C. The size distribution of random contacts h(l) demonstrates that diffusion-based looping facilitates
the formation of large loops. Instead of decreasing with l{2 as in the case of linear chains, looping polymers in the parameter range where leveling-
off is observed (cf. A) show a power-law behavior of approx. h(l)*l{1 . D. The probability pc(l) that specific loci on one chromosome co-localize as
measured in 4C experiments displays approximately a biphasic power-law behavior. On the scale of the whole chromosome, the contact probability
decreases with pc(l)*l{0:35, the exact exponent depending on the looping probability. On intermediate length scales a power-law of pc(l)*l{1:1 is
found in agreement with experimental data [45]. Again, the co-localization probability is greatly enhanced by the formation of functional loops.
doi:10.1371/journal.pone.0012218.g007
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Materials and Methods

The biological model is implemented using Monte Carlo

simulations [62]. These Monte Carlo simulations are performed

on a lattice in order to simplify the handling of excluded volume.

Calculation of excluded volume interactions thereby is reduced to

checking whether one lattice site is already occupied or not.

Instead of using a simple local-move algorithm on a cubic lattice

we employ the bond-fluctuation method introduced by Carmesin

[39]. This method has the advantage over other lattice models of

allowing 108 different bond vectors; the length of a bond can take

the values 2,
ffiffiffi
5
p

,
ffiffiffi
6
p

, 3,
ffiffiffiffiffi
10
p

[63]. The bond-fluctuation model is

especially suited for dense and compact systems where a lattice

algorithm would no longer be feasible due to high rejection rates

during the Monte Carlo process. It has successfully been applied to

several studies on the static and dynamical properties of polymer

systems [63–66]. The simulation method fulfills the following

important features: (i) it produces unbiased results, i.e. each

possible conformation out of the ensemble is sampled with equal

probability, (ii) it takes into account excluded volume interactions,

i.e. two monomers are not allowed to occupy the same region in

space and (iii) using some restrictions on the moves and bond

vectors it ensures that no bond crossings can occur during a Monte

Carlo step, i.e. it preserves the topological state of the

conformation. The algorithm conducts only local moves in order

to resemble the dynamics of real polymers [39]. Using a coarse-

grained lattice approach is reasonable as we are only interested in

features of looping chromatin independent on local structure.

Coarse-graining allows us to abstract from the complex environ-

ment and highlight the main driving forces and effects of

chromatin folding.

Simulations for single polymers are performed on a lattice of

size 256 | 256 | 256. Periodic boundary conditions are used,

but the algorithm always keeps track of unfolded coordinates, such

that the polymer does not feel any confined volume. The lattice

size L~256 is chosen larger than the radius of gyration vR2
gw of

the chains studied such that effects of the backfolding are

negligible.

A dense system of model chromosomes is simulated in a system

of size L~64 and chain length N~128. The total number of

monomers is 4096, the density r~12:5%.

In order to obtain thermodynamical equilibrated conformations

we perform the Metropolis Monte Carlo method. Chromosomes

are initially equilibrated as self-avoiding walks using local moves of

a monomer to one of the nearest neighbors on the lattice. After the

initial equilibration steps, the Monte Carlo algorithm allows for

the formation of loops. After each Monte Carlo trial move, one

monomer is selected at random. It is then checked whether

another monomer on the same chain is in the neighborhood, i.e.

co-localized. The co-localization condition is fulfilled whenever the

distance between the monomers is less than 3 lattice units. If the

two monomers are co-localized, then a loop is formed with a

certain probability p. If the loop i<j is created, it is assigned a

certain lifetime tloop which is drawn from a Poissonian distribution

P(tloop; t)~
t

tloop

tloop!
e{t ð5Þ

where the parameter t determines the average lifetime of the

loops. In the simulations we use three different values of t:

t1~0:01tint t2~1tint t3~100tint ð6Þ

where tint is the integrated autocorrelation time (see below) of the

squared radius of gyration for the corresponding self-avoiding walk

system. Loop lifetimes are chosen relative to the relaxation time to

make results for different values of the other parameters

comparable. As an example, we want to give a few numbers

here. For a single chain of length N~256, the equilibration time is

tint~443244 MCS; thus, one corresponding loop lifetime would

be t1~44324 MCS. A looping probability of p~1|10{4 yields

an average number of 19 loops per chain, a looping probability of

p~3|10{4 yields an average number of 131 loops per chain.

Since subsequent conformations in the Markov chain created by

the Monte Carlo algorithm are highly correlated, one has to

perform a certain number of Monte Carlo steps to obtain two

independent conformations. For each set of parameters (chain

length N, looping probability p and lifetime of loops t) we

determine the autocorrelation function C(t) (see e.g. Ref. [67]) of

the squared radius of gyration A(t)~R2
g(t)

R(t)~
1

N{t

XN{t

i~0

(A(izt){vAw)(A(i){vAw)

C(t)~
R(t)

R(0)

To obtain a reasonable result for the integrated autocorrelation

time we have to sample about 1000tint Monte Carlo steps. Then

tint itself is approximated by the following algorithm, which is

often called the windowing procedure and was introduced by

Sokal [68].

Table 2. Shape parameters of simulated chromosomes.

number of loops loop lifetime symbol eigenvalue ratios axis ratios

10.5 t1 red m 10.2 : 2.6 : 1 3.2 : 1.6 : 1

45.9 t1 blue m 4.9 : 2.0 : 1 2.2 : 1.4 : 1

45.9 t3 blue . 5.0 : 2.0 : 1 2.2 : 1.4 : 1

92.1 t1 green m 3.3 : 1.7 : 1 1.8 : 1.3 : 1

93.0 t3 green . 3.2 : 1.7 : 1 1.8 : 1.3 : 1

Shown are the results for equilibrated coarse-grained polymers of length N~128 in a melt of density r~12:5%. Results have been calculated using various looping
probabilities and lifetimes of the loops. Correspondence to Fig. 7A is established via the symbol, which is shown in the third column. The shape is parameterized by the
ratios of the eigenvalues of the gyration ellipsoid, corresponding to the squares of its axis lengths. The axis ratios a : b : c are listed for comparison with other studies
(e.g. Cook et al. [28]).
doi:10.1371/journal.pone.0012218.t002
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1. Determine tint(T)~
1

2
z
XT

t~1
C(t).

2. Choose M to be the smallest integer such that M§10tint(M).
Then tint(M) is supposed to be the best approximation of the

autocorrelation time.

Another criterion to ensure the uncorrelatedness of subsequent

conformations is given by the motion of the center of mass. This

method has been used for example by Mueller et al. in his study on

ring polymers [65]. Here we determine the function

g3(t)~S RCM (t){RCM (0)ð Þ2T

The time of interest, trep, after which the center of mass has moved

at about one radius of gyration, is defined by

g3(trep)=vR2
gw~1 ð7Þ

We consider two subsequent conformations as uncorrelated after

5tint Monte Carlo steps. Actually, for each set of parameters

considered here, we found that after this time the center of mass has

moved on average at least by one radius of gyration, i.e. 5tintwtrep.

Simulations of even small polymers are very time-consuming

due to the looping interaction and the resulting compactness of the

polymers. Furthermore, simulation runs have to be quite long to

capture the dynamics of loop formation. We have used the

Helics2- and bwGrid parallel computing facilities at the Interdis-

ciplinary Center for Scientific Research (IWR) at the University of

Heidelberg. For each set of parameters (N, p, ti) we created

10 000–100 000 independent conformations. We study polymers

of lengths N~64, 128, 256 and N~512. The looping probabil-

ities are chosen such that the average number of loops in the

resulting conformational ensemble is between zero and N. The

lifetimes of the loops are chosen from the set given in eq. (6).
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