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Abstract

Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the
development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly,
CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction
and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs.
The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the
full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-c was diminished following
co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of
the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+

hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function.

Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs
development and may contribute to impaired host T cell responses.
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Introduction

Hepatitis C Virus (HCV) is problematic for worldwide human

health, resulting in the development of chronic liver disease and

liver cancer. HCV is highly efficient at establishing persistent

infection, as 70–80% of infected individuals develop chronic HCV

infection. Impaired antiviral CD8+ T cell and lack of CD4+ Th1

responses are associated with the persistence of HCV infection [1].

Although the failure of CD8+ T cell responses might occur as a

result of mutation [2,3] and the upregulation of negative

costimulatory PD-1 and CTLA-4 pathways [4,5], little is known

about how HCV infection leads to inhibition of CD4+ T cell

responses. Clinical studies suggest that CD4+CD25+FoxP3+

regulatory T cells (Tregs), cells known to maintain immune

homeostasis and control excessive immune responses, participate

in suppressing anti-viral T cell immunity against HCV infection.

Indeed, an increase in the number and functionality of Tregs has

been detected in chronic HCV patients as compared to those

whose infection resolve [6,7] [8].

The increased frequency of Tregs observed in chronic HCV

patients might arise from the expansion of thymic-derived natural

Tregs or from the de novo induction from naı̈ve T cells. The

mechanism underlying induction of Tregs during HCV infection

remains undefined. The immunoregulatory cytokines, TGF-b and

IL-10, are crucial for induction and maintenance of Tregs: TGF-b
is involved in the generation of inducible Tregs and maintenance

of Treg function [9,10] and IL-10 is a critical factor for sustaining

FoxP3 expression [11]. In addition, the production of these

cytokines have been reported to be elevated during HCV

infection, play a critical role in impairing HCV-specific T cell

responses and have polymorphisms that correlate with HCV

clearance[12]. Intracellular expression of HCV core has been

demonstrated to enhance TGF-b mRNA production by the

hepatoma cell line HepG2 [13] [14]. Additionally, a recent paper

has identified an HCV-dependent increase in TGF-b that may be

due to the production of reactive oxygen species[15]. However,

another study found that HCV core expression within hepatoma

cells resulted in a reduction in TGF-b promotor activity[16].

Therefore, the analysis of cytokine production by hepatocytes

expressing the complete HCV genome and their immune

modulatory function will be helpful to elucidate the regulation of

host immune responses by HCV.

The primary site of HCV viral replication is within hepatocytes.

Lymphocytes and hepatocytes have ample opportunity to contact

one another due to the fenestrated structure of hepatic sinusoids,

combined with the lack of basal membrane and the low velocity

blood flow [17]. Although hepatocytes are not traditionally

regarded as key players in the immune response, recent studies
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highlight the role of hepatocytes in the regulation of host immunity

by soluble factors. Huh7 cells and primary hepatocytes are capable

of producing lymphocyte regulating cytokines and chemokines

such as IL-7, IL-15, TGF-b, TNF-a, IL-1b, RANTES, MIP-1a
and IL-8 [18], [19], [20]. Although HCV proteins mainly remain

within the hepatocyte, they may be able to modulate lymphocytic

activity by the alteration of expression of these cytokines.

In this report, we examined whether HCV protein expression

within hepatocytes alters the function of CD4+ T cells and could

contribute to the development of Tregs. By using an HCV

expressing hepatoma line, Huh7.5-FL, we evaluated the contri-

bution of infected hepatocytes on CD4+ T cell dysfunction. CD4+

T cell responsiveness, as measured by IFN-c production, was

diminished in co-culture with Huh7.5-FL compared to controls.

Importantly, CD4+ T cells in contact with Huh7.5-FL adopted a

Treg phenotype (CD25+FoxP3+CTLA-4+LAP+) and developed

the ability to suppress effector T cell proliferation. The role of

hepatocytes in Treg development was clarified by the finding that

Huh7.5-FL produced more TGF-b than control hepatocytes.

Further, blockade of TGF-b production impaired the development

of Tregs. These results suggest that the site of HCV infection (i.e.

hepatocytes) plays a pivotal role in impairing the antiviral T cell

response by the induction of Tregs.

Results

HCV+ hepatocytes inhibit IFN-c production by CD4+ T
cells

As hepatocytes are the primary site of HCV infection and the

establishment of persistent HCV infection is associated with a

weak CD4+ antiviral response, we investigated the possibility

that HCV-infected hepatocytes directly modulate CD4+ T cell

responsiveness. To this end, we established a CD4+ T cell/

hepatocyte co-culture using a human hepatoma cell line (Huh7.5),

stably transfected with the full HCV genome (Huh7.5-FL) or a

subgenomic region of HCV (Huh7.5-SG). To examine CD4+ T

cell function, we assessed the production of the key antiviral Th1

cytokine, IFN-c. Huh7.5 co-culture resulted in an increase in IFN-

c by CD4+ T cells as compared to no hepatocyte treatment. IFN-c
production can be attributed to the CD4+ T cells, as no IFN-c was

produced by the hepatocytes. Interestingly, activated CD4+ T cells

produced less IFN-c when co-cultured with Huh7.5-FL as

compared with Huh7.5 or Huh7.5-SG (Fig. 1A). Despite blood

donor variability, IFN-c suppression was statistically significant

(Fig. 1B). CD4+ T cells co-cultured with HCV-infected primary

hepatocytes also demonstrated decreased IFN-c production as

compared to co-culture with hepatocytes exposed to control serum

(Fig. 1C). These results suggest that complete HCV genomic

expression within hepatocytes has an immunoregulatory effect on

CD4+ T cell function.

HCV+ hepatocytes increased the Treg population within
the co-cultured CD4+ T cells

Human CD4+ T cells have been found to maintain plasticity

after activation. Recent studies support the possibility that after the

initial activation of naı̈ve CD4+ T cells in the lymph nodes, CD4+

T cells are skewed away from a productive antiviral Th1

phenotype [21] and toward a regulatory phenotype in the liver.

Regulatory CD4+ T cell development can occur as late as 72 hours

after TCR engagement [22]. Therefore, the decreased IFN-c
production by CD4+ T cells co-cultured with Huh7.5-FL may

result from the development of Tregs. Treg development was

assessed by the expression of CD25 and Foxp3 in CD4+ T cells co-

cultured with Huh7.5, Huh7.5-SG or Huh7.5-FL. As shown in

Fig. 2A and Fig. 2B, the intracellular CD25 and Foxp3 staining

demonstrated a significant increase in CD25+Foxp3hi populations

among CD4+ T cells co-cultured with Huh7.5-FL. Since Foxp3

expression in humans appears to be associated with activation in

addition to a regulatory phenotype, we also examined the

expression of T cell activation marker, CD69, to determine if

Huh7.5-FL merely modulated T cell activation status. CD69 was

not upregulated on T cells co-cultured with Huh7.5-FL in

comparison to Huh7.5. Rather, CD69 expression decreased with

Huh7.5-FL (data not shown). CTLA-4 and LAP (a TGF-b binding

protein) have been reported to serve as additional markers for

functional CD4+ Tregs [23,24]. Further characterization of the

CD25+Foxp3hi population supported the notion that these were

regulatory cells as they also up-regulated both CTLA-4 and LAP

(Fig. 2C).

It is possible that co-culture with Huh7.5-FL enhanced the

expansion of naturally occurring regulatory cells present in the

CD4+ T cell population rather than inducing the development of

Tregs. To address this possibility, CD25+ cells were depleted from

the CD4+ T cell population prior to activation, eliminating this

pre-existing Treg population. The IFN-c reduction demonstrated

with Huh7.5-FL co-culture was maintained when CD25+ cells

were depleted, suggesting that Treg enhancement is due to an

induction of a Treg population from CD25-CD4+ T cells (Fig. 2D).

To more fully address phenotypic changes that occurred with

hepatocyte/CD4+ T cell co-culture, we expanded our studies to

examine cytokine production. We found no alteration in Th2 or

Th17 cytokines, IL-5 or IL-17. IL-10 production was relatively low

and slightly decreased in Huh7.5-FL co-cultures. There was,

however, a significant increase in the characteristic Treg cytokine,

TGF-b, in Huh7.5-FL co-cultures (Fig. 3A). Intracellular staining

confirmed the enhanced TGF-b expression by CD4+ T cells in co-

culture with Huh7.5-FL (Fig. 3B). These results suggest that the

enhanced CD25+Foxp3hi cells are inducible Tregs commonly

referred to as Th3 cells and characterized by TGF-b production.

Tregs induced by Huh7.5-FL are capable of suppressing
the proliferation of effector T cells

In addition to surface marker expression and production of anti-

inflammatory cytokines, Tregs are characterized by the ability to

suppress effector T cell proliferation. We first examined the

proliferative responses of CD4+ T cells in contact with Huh7.5,

Huh7.5-SG or Huh7.5-FL by monitoring the dilution of CFSE-

labeled CD4+ T cells (Fig. 4A). Consistent with published results

using other hepatoma lines [19], Huh7.5 enhanced the prolifer-

ation of previously TCR-activated CD4+ T cells. Although

proliferation of CD4+ T cells co-cultured with Huh7.5-FL

compared to Huh7.5 alone or Huh7.5-SG was not significantly

different, there was a trend toward a reduction in proliferation

with Huh7.5-FL co-culture.

In order to more directly test the ability of Huh7.5-FL-induced

Tregs to suppress proliferation of effector T cells, suppression

assays were conducted using autologous CFSE-labeled responder

cells. In the suppression assay, activated responder T cells

proliferated less when stimulated in the presence of CD4+ T cells

co-cultured with Huh7.5-FL as compared to Huh7.5 (Fig. 4B).

Huh7.5-FL-induced Tregs suppressed effector CD4+ T cell

proliferation in 7 of the 7 CD4+ T cell donors tested (Fig. 4C).

The addition of isolated CD25+CD4+ T cells reduced effector cell

proliferation in a dose dependent manner (Fig. 4D). These findings

in conjunction with the previous phenotypic changes suggest that

there was an enhancement of functional regulatory CD4+ T cells

within Huh7.5-FL co-cultures.

HCV+ Hepatocyte Treg Induction
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TGF-b produced by HCV+ hepatocytes contributes to the
induction of Tregs

TGF-b is known to be a potent inducer of Foxp3 expression

and Treg development [9]. Therefore, we examined the ability of

a TGF-b blockade to prevent Treg induction in hepatocyte co-

culture. As demonstrated in Fig. 5A and 5B, blockade of TGF-b
activity resulted in decreased expression of Foxp3. We next

evaluated if blockade of TGF-b resulted in recovery of the

antiviral response by assessing IFN-c production in the presence

of TGF-b blocking antibody. TGF-b blockade resulted in a

partial recovery of IFN-c production in 6 out of 7 CD4 donors

(Fig. 5C).

Given the crucial role of TGF-b in induction of Tregs and the

ability of HCV core protein to induce TGF-b mRNA expression

in other hepatocyte cell lines[13,14], we next determined if the

Huh7.5 cell lines were contributing TGF-b to the co-culture.

Intracellular TGF-b staining confirmed that Huh7.5-FL produced

more TGF-b than did Huh7.5 or Huh7.5-SG (Fig. 6A). This data

was also confirmed by western blot analysis (Fig. 6B).

To directly isolate the contribution of hepatic TGF-b
production to CD4+ T cell immunosuppression, siRNA knock-

down of TGF-b was conducted. Two TGF-b targeting siRNA

constructs produced a significant reduction in Huh7.5-FL TGF-b
production (Fig. 6C). When TGF-b was reduced to the level of

Huh7.5 in Huh7.5-FL cells, IFN-c was present at concentrations

comparable to that found in Huh7.5 co-cultures (Fig. 6D). These

studies supported the important contribution of hepatic TGF-b to

CD4+ T cell immunosuppression.

Discussion

In this report, we demonstrated the contribution of HCV+

hepatocytes to regulatory CD4+ T cells development. Numerous

studies have reported an increased frequency of circulating Tregs

during chronic HCV infection [6,7]. These Tregs are shown to

suppress the antiviral activity of CD8+ and CD4+ T cells and

facilitate the establishment of chronic HCV infection. However,

the mechanism of Treg induction during HCV infection is

unknown. Given the identification of a local TGF-b production as

Figure 1. HCV+ hepatocytes decrease IFN-c production by CD4+ T cells. A, B) Plate-bound anti-CD3/CD28 activated CD4+ T cells were co-
cultured with Huh7.5 cells, as well as Huh7.5 cells stably transfected with the non-structural portion of the HCV genome (Huh7.5-SG) or the full HCV
genome (Huh7.5-FL). The cells were cultured for 48 hrs in media containing 10 U/ml rhIL-2 at a ratio of 1:1. The supernatant was analyzed by ELISA.
IFN-c production is presented relative to a no hepatocyte control. Data is representative of 10 healthy CD4+ T cell donors examined. C) Primary
hepatocytes were cultured on matrigel and exposed to control serum or serum from genotype 1 HCV+ patients for 24 hrs. Following infection, cells
were washed with media and allowed to proceed with infection for 5 days. RT-PCR analysis of HCV genome was performed to ensure infection had
occurred. 5 days after infection, activated CD4+ T cells were added to the hepatocyte culture. Supernatant was removed and analyzed by ELISA after
48 hrs of co-culture. ELISA data is representative of 3 separate blood and liver donors.
doi:10.1371/journal.pone.0012154.g001

HCV+ Hepatocyte Treg Induction
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a key determinant of Treg development in mucosal immunity

[25], local production of TGF-b in the liver may contribute to the

development of Tregs during HCV infection. Indeed, our work

supports this possibility by demonstrating a novel mechanism of

CD4+ Treg development mediated through TGF-b production by

HCV+ hepatocytes. Other studies support the finding that HCV

proteins can induce the production of TGF-b[13][14] [15]. These

findings have clinical relevance as enhanced TGF-b has been

identified in HCV infection [26], and appears to influence disease

progression as polymorphisms that reduced TGF-b production

correlate with HCV clearance[12]. Additionally, a dramatic

decrease in TGF-b production is seen in patients that respond to

HCV antivirals[27].

This is the first report to show hepatocyte-mediated induction of

regulatory T cells to suppress effector cell proliferation and antiviral

activities. Hepatocyte-mediated immune regulation appears to

Figure 2. Huh7.5-FL contact results in an increased abundance of regulatory T cells by phenotype. A) Representative flow cytometry
analysis of CD25 and Foxp3 staining following CD4+ T cell/hepatocyte co-culture. Rectangles show double positive gating and numbers reflect
percentage of cells in that gate. B) CD25+Foxp3hi data was compiled from 8 healthy CD4+ T cell donors. C) Expression of CTLA-4 and LAP in the total
CD4+ T cell and CD25+Foxp3hi populations was assessed from CD4+ T cells co-cultured with Huh7.5-FL. Data is presented in histogram with total CD4+

T cells represent in solid grey and CD25+Foxp3hi cells as the black line. Compiled mean fluorescence intensity (MFI) is shown from experiments with 8
CD4+ T cell donors. D) CD4+ T cell/hepatocyte co-culture was conducted using CD25-depleted CD4+ T cells. IFN-c production is presented relative to
no hepatocyte control. Data are compiled from 7 CD4+ T cell donors.
doi:10.1371/journal.pone.0012154.g002
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require full HCV genome or the structural portion to exert maximal

effect. Although partial genomic expression by Huh7.5-SG does

exert a partial increase in TGF-b expression, the strongest effect

requires the portion of the genome containing the structural

proteins. Previous work may suggest that this difference is due to

HCV core expression in Huh7.5-FL [13,14]. Further analysis of

genomic expression is necessary in order to define which HCV gene

product(s) contribute to the production of TGF-b.

Reduction of TGF-b by antibody or siRNA treatment reveals

the important contribution of TGF-b to Treg induction and

immunosuppression. Although no virions are produced from

Huh7.5-FL cells [28], we cannot discount the possibility that a

small amount HCV viral protein may be released and directly

interacting with the CD4+ T cells. Previous work from our lab

demonstrates the ability of HCV core protein to interact with

gC1q receptor on the surface of T cells to disrupt TCR signaling

and reduce cell proliferation by interfering with early signaling

events in naı̈ve T cell activation [29]. Thus, it is unlikely that this

mechanism is at work in the hepatocyte/CD4+ T cell co-culture as

the fully activatedCD4+ T cells are exposed to the hepatocyte.

Additionally, IFN-c reduction without a pronounced reduction in

proliferation is observed by the CD4+ T cells in this co-culture.

Figure 3. Huh7.5-FL induction of a T regulatory phenotype is associated with an increase in CD4+ T cell TGF-b production.
A) Cytokines produced by CD4+ T cells in hepatocyte co-culture were measured by ELISA (TGF-b and IL-10) or by bead multiplex (IL-17 and IL-5).
B) Intracellular TGF-b levels were examined by flow cytometry after hepatocyte co-culture. Gating shows the percentage of TGF-b containing, CD25+

T cells. Data are reproducible in 3 independent experiments.
doi:10.1371/journal.pone.0012154.g003

HCV+ Hepatocyte Treg Induction

PLoS ONE | www.plosone.org 5 August 2010 | Volume 5 | Issue 8 | e12154



Studies of HCV-infected patients have found an increase in

HCV-specific Tregs in addition to an increase in Tregs specific for

other pathogens such as influenza and tetanus [30–31]. Our study,

identifying an enhancement of TGF-b production by HCV+

hepatocytes, suggests that induction of Tregs of many specificities

could occur as they travel through the liver. There may be a

relative enhancement of Tregs that react to antigen within the liver

due to local sequestration. Although HCV is not considered to be

an immunosuppressive virus such as HIV, there is growing

evidence that HCV infection predisposes one for a poor response

to vaccinations [32], [33] and increased susceptibility to infection

with opportunistic pathogens [34,35]. This could be due in part to

the general enhancement of the Treg population.

Hepatic TGF-b production can also account for immunosup-

pression of other cell types. It is documented that TGF-b can

inhibit proliferation and cytokine secretion or can induce a

suppressive phenotype in CD8+ T cells depending on the strength

of the costimulation [36]. This method of CD8+ T cell functional

suppression is supported by our recent studies that Huh7.5-FL

reduced IFN-c production by activated CD8+ T cells (R. Kassel,

unpublished). Furthermore, Huh7.5-FL TGF-b production may

dampen the immune response by inducing IL-10 production by

macrophages [37] or by preventing the maturation of DCs [38].

Further studies are necessary in order to determine the full

impact of HCV-infected hepatocytes on regulation of host

immunity.

Multiple mechanisms for Treg-mediated suppression of effector

T cell functions have been recently reported. Tregs can modulate

the activity of T effectors by the production of the immunosup-

pressive cytokines IL-10 and TGF-b. TGF-b reduces IFN-c
production by activated CD4+ T cells and can also induce the

expression of IL-10 [39]. This mechanism likely contributed to the

reduction in IFN-c, as the CD4+ T cell TGF-b production was

substantially enhanced in the Huh7.5-FL co-culture. Tregs can

also directly kill effector cells in a cell contact dependent manner.

Recent studies report that natural Tregs mediate apoptosis by

perforin or granzyme release [40] whereas inducible Tregs require

Fas/FasL interaction to induce cell death [41]. Indeed this

mechanism could contribute to local immunosuppression as FasL

was upregulated and apoptosis enhanced with Huh7.5-FL co-

culture (data not shown). Therefore, multiple suppressive pathways

may contribute to the reduction in IFN-c in our system.

The appearance of Tregs generated during this model of HCV

infection is contradictory to the development of liver inflammation

and cirrhosis during later stages of disease progression. This conflict

could be explained by the contribution of other inflammatory

cytokines counteracting the TGF-b produced by the infected

hepatocytes. One potential cytokine is IL-6 which accumulates in

Figure 4. Regulatory T cells developed in Huh7.5-FL co-cultures have suppressive function. A) CFSE-labeled cell CD4+ T cells were used in
the CD4+ T cell/Huh7.5 co-culture in order to examine proliferative response. Cells considered to have divided demonstrate CFSE dilution. Data was
compiled from 5 CD4+ T cell donors. B, C) Equal numbers of CD4+ T cells were removed after co-culture with Huh7.5 or Huh7.5-FL and placed in co-
culture with CFSE-labeled CD4+ T cells at a ratio of 1:1 in the presence of plate-bound anti-CD3/CD28. Data were compiled from 7 CD4+ T cell donors.
D) Isolated CD25+ cells from CD4+ T cell/Huh7.5-FL co-culture were incubated with CFSE-labeled T effector responder cells. Data are reproducible in 3
independent experiments.
doi:10.1371/journal.pone.0012154.g004

HCV+ Hepatocyte Treg Induction

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12154



the liver during chronic liver disease [42]. Importantly, high

concentrations of IL-6 are able to block TGF-b mediated Treg

development and enhance the development of a Th17 population.

Enhancement of Th17 cells has been noted in the livers of chronic

HCV patients [43]. Additionally TGF-b is known to contribute

directly to the induction of fibrosis by stimulating collagen

production [44]. A balance of pro- and anti-inflammatory cytokines

is likely to contribute for both CD4+ T cell phenotype and antiviral

activity during the course of HCV infection.

Previous clinical studies of HCV infections have clearly

demonstrated the importance of Tregs to the suppression of an

effective immune response. Our work establishes the capability of

HCV+ hepatocytes to induce Tregs from activated CD4+ T cells.

siRNA data suggests that the hepatocytes are able to affect this

change in part by producing the immunosuppressive cytokine,

TGF-b. This immunosuppressive influence of HCV+ hepatocytes

can contribute to a weak immune response and the development

of chronic infection.

Materials and Methods

Hepatocyte cell line culture and stimulation
Apath LLC (St. Louis, MO) provided parental Huh7.5 cells.

Huh7.5 cells harboring full-length (Huh7.5-FL) and subgenomic

(Huh7.5-SG) replicons as previously described [28] were a gift

from Dr. Charles Rice (Rockefeller University, New York, NY).

Huh7.5-FL and Huh7.5-SG were cultured in media containing

750 mg/ml G418 (Invitrogen, Carlsbad, CA) to maintain the viral

mRNA. Prior to co-culture, hepatocytes were serum starved for 18

hr, then activated with 0.1 mg/mL rhIFN-gamma (R&D Systems,

Minneapolis, MN) for 48 hours.

Primary hepatocyte culture
Primary hepatocytes (CellzDirect, Pittsboro, NC) were cultured

on Matrigel (BD Biosciences, San Jose, CA)-coated six-well plates in

Williams E media without phenol red (Sigma-Aldrich, St. Louis,

MO) supplemented with L-glutamine, penicillin/streptomycin,

HEPES (4-(2-hydroxyethyl)-1-peperazine ethanesulfonic acid)

(Gibco BRL, Gaithersburg, MD), hydrocortisone (Sigma-Aldrich),

and Insulin Transferrin Selenium (ITS+; BD) at 37uC with 5%

CO2. Adhesion media was additionally supplemented with 5% vol/

vol fetal bovine serum (CellGro; Mediatech, Manassas, VA).

Infection of primary hepatocytes was conducted exposing hepato-

cytes to infectious serum (MOI 0.15–0.05) from HCV-infected

patients for 18 hours. HCV serum was provided by Dr. Timothy

Pruett. The hepatocytes were washed and incubated for 4 days.

Isolation and activation of CD4+ T cells
PBMC were isolated from buffy coats (Virginia Blood Services,

Richmond, VA) (IRB#8233) using Lympholyte-H (Cedarlane

Laboratories, Ontario, Canada). All T cell selection was done

using CD4 and CD25 positive selection microbeads (Miltenyi

Biotech, Bergisch Gladbach, Germany). CD4+ T cells were

subsequently plated in RPMI supplemented with 1% L-glutamine,

0.1% penicillin/streptomycin, 10% FBS and 10 U/ml rhIL-2 on

plates coated with anti-CD3 clone HIT3a (0.5 mg/ml) and anti-

CD28 clone CD28.2 (5 mg/ml) (eBioscience, San Diego, CA).

CD4+ T cells were activated for 72 hrs prior to hepatocyte co-

culture.

Co-culture conditions
Activated hepatocytes were removed from plates by 0.05%

trypsin-EDTA (Gibco BRL) and were then plated at 36105 cells/

Figure 5. TGF-b contributes to increased regulatory T cell development. TGF-b blocking antibody (0.1 mg/mL) was added to the co-culture
in order to monitor impairment of Treg development by (A, B) percentage developing a Treg phenotype or (C) IFN-c production within the co-
cultures. Percent suppression is calculated as ((Huh7.5-Huh7.5-FL)/Huh7.5)*100. Data are compiled from 7 CD4+ T cell donors.
doi:10.1371/journal.pone.0012154.g005

HCV+ Hepatocyte Treg Induction
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well in a 24 well plate in DMEM media (+/2 mitomycin C at

6.25 mg/ml (Sigma-Aldrich)). Mitomycin was used only in

Figures 1A and 1B in order to control for variability of hepatocyte

proliferation. However, further experiments were conducted

without mitomycin as it had no effect on the outcome of the co-

culture. If treated with mitomycin C, hepatocytes adhered to the

plate for 90 min and were subsequently washed to remove

mitomycin C. Previously activated CD4+ T cells were added to the

adherent hepatocytes in RPMI media containing rhIL-2 (10 U/

ml) at a concentration of 36105/well. Hepatocyte and CD4+ T

cell co-cultures proceeded for 48 hrs.

ELISA cytokine analysis
Supernatants from the co-cultures were collected after 48 hrs

and stored at 280u C until analyzed by ELISA for IFN-c, TGF-b

and IL-10 (eBioscience). MIP-1a, IL-1b, IL-5, IL-6, IL-10, IL-17,

RANTES and TNF-a were assessed using a cytokine multiplex kit

according to manufacturer’s instructions (R&D Systems).

Flow cytometry
CD4+ T cells were collected from the co-culture and stained for

surface molecules CD4, CD25, CD69, CTLA-4(eBioscience) and

LAP (R&D systems). Intracellular staining was performed using

cytofix/cytoperm (BD Bioscience) and an anti-FoxP3 antibody

(eBioscience). Intracellular TGF-b (IQ Products, Netherlands) was

stained similarly, with the addition of Golgistop (BD Bioscience)

pre-treatment for 3–6 hrs. A cytokine not expressed by

hepatocytes, IL-12 (eBioscience), was used as a negative control.

Proliferation assays were performed by staining activated T cells

with CellTrace CFSE cell proliferation dye (2.5 mM) (Invitrogen).

Figure 6. HCV+ hepatocytes cause immunosuppression of CD4+ T cells due to enhanced TGF-b production. A, B) Hepatocyte TGF-b
production was assessed by intracellular flow cytometry (A) and by Western blot (B). Data are reproducible in 3 independent experiments. C, D) TGF-b
siRNA knockdown was conducted in hepatocytes using 2 different siRNAs targeting TGF-b and a random RNA sequence not found in the human
genome as a control. (C) siRNA knockdown was confirmed by intracellular flow staining of TGF-b. (D) IFN-c production was assessed by ELISA. Data
are compiled from 4 CD4+ T cell donors.
doi:10.1371/journal.pone.0012154.g006
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Flow cytometry was performed using FACS Calibur, FACSCanto

(BD Bioscience) and Flowjo software (Treestar inc, Ashland, OR).

Suppressor function assay
CD4+ T cells were magnetically isolated as previously described

and labeled with CellTrace CFSE cell proliferation dye. CFSE-

labeled CD4+ T cells were plated on CD3/CD28 coated plates.

CD4+ or CD4+CD25+ selected T cells were added as suppressor

cells directly after hepatocyte co-culture. Treg suppressive function

was assessed at 72 hrs.

TGF-b blockade experiments
For blockade of TGF-b, a neutralizing antibody against TGF-b

or control antibody was added at a concentration of 0.1 mg/ml

(R&D Systems).

Western blot
Hepatocytes were treated for 48 hrs with 0.1 mg/mL rhIFN-

gamma (R&D Systems) prior to cell lysis in lysis buffer (20 mM

Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,

1% TritonX-100, 2.5 mM pyruvic acid, 1 mM sodium orthova-

nadate, 1 mM NaF, and Protease Inhibitor Cocktail Set V

[Calbiochem]). The lysates were cleared of debris by centrifuga-

tion and suspended in 5X sample buffer (125 mMTris-HCl

pH 6.8, 10%Glycerol, 2% SDS, 0.00125% Bromophenol Blue

[Sigma], 20% b-Me). Samples were then boiled for 5 min and

centrifuged for 1 min at 10,000xg. Equal amounts of cell lysate

were subjected to SDS-PAGE analysis and transferred to 0.2 mm

nitrocellulose paper. Western blot analysis was performed using a

rabbit polyclonal Ab against TGF-b (Cell Signaling Technology)

or actin-HRP (Santa Cruz Biotechnology, Santa Cruz, CA). Goat

anti-rabbit Ig HRP (Cell Signaling Technology) and ECL Plus

(Amersham Biosciences, Piscataway, NJ) were used for chemilu-

minescent detection.

TGF-b siRNA knockdown
Hepatocytes were plated 24 hrs before the addition of 50 nM

siRNA/Lipofectamine 2000 (Invitrogen) complex according to

manufacturer’s specifications. The siRNA targeting TGF-b
(HsTGFB1(5), HsTGFB1(6)) and a negative control siRNA

(CtrlAllStars1) were purchased from Qiagen (Germantown,

MD). After 72 hrs of siRNA treatment and washing of residual

siRNA complexes, activated CD4+ T cells were added to siRNA

treated hepatocytes at a 1:1 ratio. TGF-b knockdown was verified

using intracellular flow cytometry.

Statistical Method
All data were analyzed using GraphPad Prism (GraphPad

Software, San Diego, CA). Paired and unpaired T tests were used

to compare different conditions. P values less than 0.05 were

considered significant.
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