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Abstract

Background: DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions
between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied,
yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory
activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs).

Methodology/Principal Findings: Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and
AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively
activated by the odors indole (AaOR2) and (R)-(2)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host
animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2;
IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while
2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs.

Conclusions/Significance: These data demonstrate that repellents can act as olfactory agonists or antagonists, thus
modulating OR activity, bringing concordance to conflicting models.
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Introduction

The exact modes of action and molecular targets of the active

ingredients found in insect repellents are poorly understood.

Addressing this gap in our knowledge has become an urgent

matter in order to understand how to improve the effectiveness of

repellents and to develop a novel generation of olfactory disruptive

compounds. Currently, most insect repellent products include the

active ingredients N,N-diethyl-3-methylbenzamide (DEET), Insect

Repellent 3535 (IR3535), and more recently Picaridin and 2-

undecanone (2-U) (Fig. 1). In the current study, we investigate the

molecular action of these repellents on two isolated odorant

receptors (ORs) of the yellow fever mosquito Aedes aegypti.

Since its development by the military and the USDA in 1946

[1], the synthetic compound DEET has been the gold standard of

insect repellents and has been used by both military and civilian

populations alike. In addition, DEET may directly target insect

acetylcholinesterases [2], mosquito ORs [3,4] and it may

chemically sequester a mosquito attractant [5]. In practice, DEET

reduces bites from mosquitoes, ticks and other blood feeding

arthropods [6] which may vector pathogens that cause diseases

including malaria, yellow fever, West Nile virus, Lyme disease and

dengue. IR3535 and Picaridin (also known as KBR 3023,

Icaridine, and Bayrepel) were developed in the 1970s and 1990s

[7], and are also of synthetic origin. 2-U is a naturally occurring

compound produced by the glandular trichomes of wild tomato

plants as part of a plant defense mechanism against herbivorous

insects [8] and was shown to have mosquito repellent properties at

high concentrations [9]. In 2007, 2-U was incorporated in the

insect repellent BioUD (HOMS LLC, Clayton, NC) for its

repellent properties on various arthropods including mosquitoes

[10] and ticks [11]. Additionally, 2-U was identified from

Bermuda grass infusions and was shown to elicit electrophysio-

logical responses from Culex antennae [9].

DEET, 2-U, IR3535 and Picaridin are broad spectrum

arthropod repellents and exhibit similar efficacies [6] when used

in large amounts. Commercial formulations are characterized by

high concentrations of active ingredients, e.g., DEET formulations

typically contain 5% to 100% DEET [12] while 2-U, IR3535 and

Picaridin formulations range from 5% to 20% [6,10]. There is

evidence that the repellent and deterrent activities of DEET and

Picaridin involve olfactory sensing in mosquitoes [13,14,15] and

ticks [16] via their interactions with ORs [3,4].

Insect ORs belong to a highly divergent gene superfamily, with

little sequence similarity at the amino-acid level both within and

between species. It is therefore important to recognize that these

repellents may carry out their effects on arthropod behaviors via

widely differing actions. Recent studies have characterized the

mode of action of DEET on isolated ORs [3,4] and olfactory

sensory neurons (OSNs) of mosquitoes [5]. In one study, DEET
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was shown to inhibit the odorant-dependent activity of specific

ORs [4]. In other studies, DEET was shown to directly activate a

larval OR [3] sensitive to fenchone and stimulate a specific OSN

known to be responsive to repellents [5] in adults. These opposite

activities are consistent with previous behavioral and physiological

observations: DEET has been shown to reverse the effect of

otherwise attractive odorants (i.e. induce a repellent effect) in ticks

[16], moths [17] and mosquitoes [7,18]; DEET presented alone

has been shown to act as either a repellent [5] or an attractant [19]

in mosquitoes. In Aedes aegypti, DEET’s inhibitory activity against

attractive odorants was shown to be a result of a reduction in the

sensitivity threshold of the OSNs to lactic acid [19,20] or to the

oviposition attractant ethyl propionate [21]. Similar to DEET, 2-

U may have multiple effects on Ae. aegypti’s behavior: acting both as

an attractant [22] and a repellent at high concentrations [10]. In

female Culex quinquefasciatus, 2-U was shown to activate antennal

OSNs responding to carboxylic acids and monoterpenes [23].

In our study, we investigate the action of 4 insect repellents on

the activities of two Ae. aegypti ORs, AaOR2 and AaOR8,

respectively, expressed in Xenopus oocytes together with AaOR7.

Mosquito ORs govern odor specificity, but form obligate hetero-

complexes with the common co-receptor OR7 [24,25,26,27,

28,29]; OR7 is the ortholog of Drosophila melanogaster OR83b

[30,31]. Ditzen et al. (2008) previously characterized DEET

Figure 1. Compounds identification and repellent effectiveness on AaORs. (A) Structural formulas of odorants and (B) half maximal
inhibitory concentrations (IC50) of insect repellents. Asterisks indicate chiral centers.
doi:10.1371/journal.pone.0012138.g001
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interactions with Anopheles gambiae ORs co-expressed with AgOR7;

activation of AgOR2 by 2-methyl phenol and AgOR8 by racemic

1-octen-3-ol was differentially inhibited by DEET suggesting that

DEET selectively inhibited the different odor-specific subunits

(OR2 and OR8) rather than the common co-receptor (OR7) [4].

AgOR2 was more recently shown to be 100-fold more sensitive to

the oviposition attractant indole relative to 2-methyl phenol [32].

We recently showed that Ae. aegypti AaOR8, the ortholog of

AgOR8, is sensitive to 1-octen-3-ol and enantioselective, 1006
more sensitive to (R)-(2)-1-octen-3-ol (henceforth termed octenol

in following text and figures) than to (S)-(+)-1-octen-3-ol [33]. We

have also shown that Ae. aegypti AaOR2, the ortholog of AgOR2

[34] and CxOR2 [35], exhibits similar sensitivity to indole (Fig.

S1).

Here we report the influence of the repellents DEET, 2-U,

IR3535 and Picaridin on the responses of AaOR2 and AaOR8 to

their respective agonists indole and octenol. AaOR2 and AaOR8

were expressed in Xenopus oocytes along with their hetero partner

AaOR7, and activities were characterized using two electrode

voltage-clamp electrophysiology. Our results provide further

evidence that DEET interacts with mosquito ORs. More

importantly, they clarify previous observations that DEET and

other insect repellents can have multiple effects on different ORs,

which should interfere with mosquito OSNs, leading to behavioral

disruption and reduced vectorial capacity.

Results

Stimulatory effects of odorants alone on AaOR2 and
AaOR8

We first characterized the stability of our OR-Xenopus expression

system to repeated odor stimulations (Fig. S2). AaOR2 and

AaOR8 were individually expressed in Xenopus oocytes along with

AaOR7, as in all subsequent studies, and repeatedly stimulated

with 1027 M indole (OR2) or octenol (OR8) under otherwise

identical conditions (Fig. S2A). We chose concentrations of agonist

in the lower portion of the dose-response dynamic ranges for

AaOR2 (Fig. S1) and AaOR8 [33] in order to minimize signal

desensitization, which tends to increase at higher concentrations.

For both ORs, repeated odorant stimulations induced only a

minor linear reduction of odorant-evoked inward currents (Fig.

S2B). Between stimulations, oocytes were allowed to return to their

membrane resting potential (recovery time) by washing out the

odorants using pure Ringer’s solution. Recovery times for AaOR2

(1.7060.07 min, n = 40) and AaOR8 (1.7860.05 min, n = 80) did

not vary significantly across stimulations (P.0.05; t-test). In

general, AaOR8 injected oocytes exhibited higher inward current

responses than AaOR2 preparations (Fig. S2A). These results

indicated that the preparations should be stable throughout the

time courses of subsequent studies.

Stimulatory effects of repellents alone on AaOR2 and
AaOR8

We next characterized the OR response to repellents alone, in

the absence of applied odorants (Fig. 2). AaOR2 was activated by

DEET in a concentration-dependent manner, producing minimal

inward currents at 1024 M that increased with DEET concentra-

tions up to 1022 M (Fig. 2A and 2E); AaOR2 showed no response

to 2-U, IR3535 or Picaridin at concentrations up to 1022 M

(Fig. 2B–D). In contrast, AaOR8 was activated by 2-U in a

concentration-dependent manner, producing minimal inward

currents at 1024 M that increased with 2-U concentration up to

1022 M (Fig. 2G and 2J); AaOR8 showed no response to DEET,

IR3535 or Picaridin at concentrations up to 1022 M (Fig. 2F, 2H

and 2I). None of the repellents elicited currents in oocytes in the

absence of ORs (water injected controls) (Fig. S3). These results

show that AaOR2 and AaOR8 are differentially sensitive

(activated) to DEET and 2-U in the absence of applied odorant.

Inhibitory effects of DEET on AaOR2 and AaOR8
responses to odorants

AaOR2 and AaOR8 were exposed to a range of DEET

concentrations (1027 M21022 M) in presence of their respective

odorants indole and octenol (both at 1027 M) (Fig. 3A and 3B).

DEET inhibited the response to odorants for both ORs (Fig. 3A),

however, at different sensitivities. AaOR8 response to octenol was

strongly and significantly inhibited by DEET at 1023 M (activity

reduced to 30%); activity was entirely abolished at 1022 M

(Fig 3B). In contrast, AaOR2 response to indole was only slightly

inhibited by DEET; inhibition did correlate (r2 = 0.905) with

DEET concentration, but was only significant at 1022 M DEET

(ANOVA; P,0.01, Bonferroni posttest) (Fig. 3A and 3B). In all

cases, the inhibitory effects of DEET on AaOR8 and AaOR2 were

reversible using a final exposure of 1027 M octenol or indole,

respectively (Fig. 3A).

Similar amounts of octenol are extracted from
physiological solutions with or without DEET

One possible explanation for the inhibitory effects observed for

DEET on responses of AaOR8 to octenol is that DEET might

reduce the amount of ligand available for delivery to the receptor.

This reduction in the amount of the proper ligand might be

accomplished by diminishing the amount of octenol present in the

solution due to the reactivity of the amide and carbonyl moieties

present in the DEET molecule with octenol. Extracts of

physiological solutions containing DMSO and octenol with or

without DEET revealed nearly identical quantities of both

compounds (Fig. 4). Thus, octenol did not appear to be reacting

with DEET as quantities of octenol remained the same and no

additional compounds were present in significant amounts in

either of the solutions.

Inhibitory effects of 2-U on AaOR2 and AaOR8 responses
to odorants

AaOR2 and AaOR8 were exposed to a range of 2-U

concentrations (1027 M21022 M) in the presence of their

respective odorants indole and octenol (both at 1027 M) (Fig. 3C

and 3D). 2-U inhibited responses to odorants for both ORs

(Fig. 3C), albeit at different sensitivities. AaOR2 response to indole

was strongly and significantly inhibited by 2-U at 1023 M (activity

reduced to 30%); activity was entirely abolished at 1022 M

(Fig 3D). In contrast, AaOR8 response to octenol was slightly

inhibited by 2-U but was only significant at both 1023 M and

1022 M (ANOVA; P,0.01, Bonferroni posttest) (Fig 3D). The

main effect of 2-U on AaOR8 was to prolong signal recovery, an

effect only detected at the highest 2-U concentrations (Fig. 3C, Fig.

S4). In all cases, the inhibitory effects of 2-U on AaOR8 and

AaOR2 were reversible using a final exposure of 1027 M octenol

or indole, respectively (Fig. 3C).

Inhibitory effects of IR3535 and Picaridin on AaOR2 and
AaOR8 responses to odorants

AaOR2 and AaOR8 were exposed to a range of IR3535 and

Picaridin concentrations (1027 M21022 M) in the presence of

their respective odorants indole and octenol (both at 1027 M)

(Fig. 5A and 5C). Both compounds strongly and significantly

reduced AaOR2 and AaOR8 responses to indole and octenol

Modulators of Odor Receptors
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(P,0.01; Bonferroni posttest) in a concentration-dependent

manner (Fig. 5B and 5D). IR3535 had a 4-fold stronger inhibitory

effect on AaOR8 compared to AaOR2 based on extrapolated IC50

values (Fig. 1 and S5). Picaridin had statistically similar effects

(IC50 values) on both receptors (Fig. 1 and S5). The inhibitory

effects of IR3535 and Picaridin on AaOR2 and AaOR8 were

reversible using a final exposure of 1027 M indole or octenol,

respectively (Fig. 5A and 5C).

Discussion

We studied the actions of insect repellents DEET, 2-U, IR3535

and Picaridin on the activities of two Aedes aegypti ORs, AaOR2

and AaOR8, in the absence and presence of odorants specific to

these ORs, indole (OR2) and octenol (OR8). In all cases, the ORs

were expressed in Xenopus oocytes along with their common

obligate co-receptor AaOR7. In the absence of odorant, DEET

activated AaOR2 but not AaOR8, while 2-U activated AaOR8

but not AaOR2; neither receptor was activated by IR3535 or

Picaridin. In the presence of odor, DEET strongly inhibited

odorant-induced responses of AaOR8 but only slightly inhibited

AaOR2, while 2-U strongly inhibited odorant-induced responses

of AaOR2 but only slightly inhibited AaOR8; both receptors were

equally and strongly inhibited by IR3535 or Picaridin. The

observed OR activation by DEET and 2-U is consistent with

previous physiological reports of adult OSNs and a molecular

study of a larval OR. DEET alone activated two OSNs in the

short blunt tipped sensilla (A-2) of Ae. aegypti [7]. 2-U acted as a

mosquito attractant [22] and activated mosquito OSNs including

an OSN sensitive to octenol [23,36]. DEET alone also activated a

larval OR and affected larval behavior in An. gambiae [3].

The dual activities of DEET and 2-U, activation and inhibition

under different conditions, is consistent with the idea that these

repellents may act on independent sites on the ORs. The

activation properties of DEET and 2-U are consistent with the

structural similarities to indole and octenol, respectively (Fig. 1),

and suggest that these repellents may bind to and activate the odor

binding site, albeit at lower affinity than the odorant. DEET and

indole share an aromatic ring and a nitrogen-linked function. 2-U

and octenol share a similar carbon backbone, and 2-U has a

ketone group similar to the octenol analog 1-octen-3-one which

was previously reported to activate AaOR8 [33]. Orthosteric

modulation by DEET and 2-U is consistent with their structural

similarities with their cognate ligands and with our data.

In our study, millimolar doses of repellents were necessary to

achieve both odorant-independent activation and odorant-depen-

dent inhibition of ORs. These high concentrations are consistent

with the high amounts of repellents required in commercial

formulations and the large quantities needed to elicit physiological

responses in mosquito OSNs [4,5,37]. While the amount of

repellents going into vapor phase is unknown, it is clear that large

quantities are required to achieve close range protection against

arthropod bites. At the physiological level, indole-sensitive neurons

were activated by DEET only at high concentrations (apparent

threshold of 100 mg) [37], while a dose-response curve revealed a 6

spike/s frequency increase over a 10,000 fold DEET increase

(0.1 mg–1000 mg). A ‘‘DEET sensitive’’ OSN in short trichoid

sensilla of Cx. quinquefasciatus was also activated by high

concentrations (10 mg) of DEET [5].

Our observations have in common with prior studies that

DEET activates OSNs at extremely high concentrations consid-

ering the reported sensitivity of these neurons to their cognate

ligands. For example, in our study, both DEET and 2-U

respectively activate OR2 and OR8 at 1023 M while their

respective ligands are active at 1028 M (Fig. S1 and [33]), or 5 log

steps higher sensitivity to the cognate ligand. Similarly, the

detection threshold for the well-characterized octenol receptor

located on the maxillary palps of Cx. quinquefasciatus is 0.1 ng [38]

while 10,000 ng of DEET (5 log steps difference) activates an

antennal OSN in the same insect [5]. Although it should be

pointed out that based on differences in retention times observed

in gas chromatography, DEET is less volatile than octenol.

We report the inhibitory (antagonist) property of all 4 repellents

through negative modulation of odorant-induced OR activation.

IR3535 and Picaridin alone failed to activate either receptor, but

rather inhibited the receptor complex (OR2+OR7, OR8+OR7)

regardless of the odor-binding subunit; AaOR2 and AaOR8 are

highly divergent, sharing only 14% sequence identity. The

common action of IR3535 and Picaridin on these otherwise

divergent ORs suggests they target the common AaOR7

component. DEET and 2-U differentially inhibited odorant-

induced activity of AaOR8 and AaOR2, but in opposite

relationship with repellent induced activation, suggesting inde-

pendent OR binding sites for activation and inhibition. The

differential inhibitory activities of DEET and 2-U on AaOR2 and

AaOR8 suggest that inhibitory binding sites for these repellents

associate with the OR2 and OR8 subunits. Inhibitory activities of

DEET and 2-U may thus be more influenced by differences in

OR2 and OR8 sequence than the activities of IR3535 and

Picaridin.

DEET alone has been shown to inhibit several classes of OSNs

in insects, including lactic acid-sensitive OSNs in Ae. aegypti

[19,20], various Drosophila OSNs and the 1-octen-3-ol receptor

neuron of An. gambiae [4]. Ditzen et al. [4] showed that responses of

AgOR2 to 2-methylphenol and AgOR8 to racemic 1-octen-3-ol

were differentially inhibited by DEET in the oocyte system with

the strongest inhibitory effect on the latter.

The odor-inhibition activity of all four repellents was effective

only at very high repellent concentrations (above 1024 M). This is

consistent with the high concentrations of repellents used in

commercial formulations (e.g. DEET concentration ranges from 4

and 100% in commercial products). The inhibitory effects of all

four repellents were reversible upon fresh exposure to the odorant

alone, suggesting that the interaction between the inhibitors and

the ORs is as labile as the one between the receptor and its

cognate odorant.

It was previously suggested that DEET reduces OSN activity to

experimentally applied airborne odorants through interactions

between DEET and odor molecule in the release substrate in

stimulus cartridges [5]. We did not measure whether DEET and

octenol can form a stable complex in water that might mask the

concentration of odor available for binding at high DEET

Figure 2. DEET and 2-undecanone alone, selectively activate AaORs. Response traces and concentration-response curves of AaOR2+AaOR7
and AaOR8+AaOR7 exposed to DEET (red), 2-U (blue), IR3535 and Picaridin are recorded in nano-ampere (nA). (A) DEET activates AaOR2+AaOR7. (B)
(C) and (D) 2-U, IR3535 and Picaridin do not activate AaOR2+AaOR7. (E) The concentration-response plots of AaOR2+AaOR7 to increasing amounts of
repellents. (F) (H) and (I) DEET, IR3535 and Picaridin do not activate AaOR8+AaOR7. (G) 2-U activates AaOR8+AaOR7. Horizontal arrows indicate
prolonged recovery times. Inward currents are shown as downward deflections. (J) The concentration-response plots of AaOR8+AaOR7 to increasing
amounts of repellents. Odorant concentrations were plotted on a logarithmic scale. All concentrations are in molarity. Each point represents the
mean current response and vertical error bars are s.e.m. n = 5 oocytes for each treatment.
doi:10.1371/journal.pone.0012138.g002
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Figure 3. DEET and 2-undecanone selectively inhibit odorant-induced responses of AaORs. The concentration-response plots of
AaOR2+AaOR7 and AaOR8+AaOR7 to repeated exposures of 1027 M indole (open squares) and 1027 M octenol [(R)-(2)-1-octen3-ol] (open circles)
were duplicated in each panel for comparative purposes. (A) Response traces of AaOR2+AaOR7 (blue) and AaOR8+AaOR7 (red) to 1027 M agonist
alone and in combination with increasing concentrations of DEET (1027 M to 1022 M) are recorded in nano-ampere (nA). (B) Concentration-response
plots of AaOR2+AaOR7 (solid blue squares) and AaOR8+AaOR7 (solid red circles) to 1027 M indole and 1027 M octenol in the presence of increasing
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concentrations. However, we did demonstrate that DEET does

not chemically alter the structure of octenol (Fig. 4). We also

showed that the solvent used for odor introduction, DMSO, had

no measurable effect on OR activity when presented in the

absence of odor molecules.

DEET, IR3535 and Picaridin all possess an amide moiety.

Small amide derivatives have been shown to affect a wide range of

molecular pathways through allosteric regulation of various

proteins including proteases [39,40], the cannabinoid receptor 1

(CB1) [41], the a7 nicotinic acetylcholine [42] and GABAA

receptors [43]. The broad activity of such compounds is mirrored

by DEET’s inhibitory effects on phylogenetically unrelated cation

channels [4] and underscores that there might be alternative

modes of action yet unknown.

Our results reconcile seemingly contradictory theories of

DEET’s mode of action. Previous studies suggested DEET

decreases the sensitivity of OSNs to known attractants [20] and

ORs [4] to their cognate odorants, or stimulates specific OSNs

[5,7] and ORs [3] that induce repellent behavioral responses. The

excitatory and inhibitory properties of DEET and 2-U, as well as

the non-specific inhibitory effects of IR3535 and Picaridin on ORs

observed in our current study, support a model in which repellent-

targeted OSNs elicit altered patterns of glomerular activity

resulting in the scrambling of cognitive olfactory inputs and

ultimately behavioral disruption.

Materials and Methods

Heterologous Expression of AaOr2, AaOr7 and AaOr8 in
Xenopus laevis Oocytes

AaOr2, AaOr7 and AaOr8 cRNAs were synthesized from linearized

pSP64DV expression vectors (Dr. L. J. Zwiebel, Vanderbilt

University) using the mMESSAGE mMACHINE SP6 kit (Am-

bion). Following mechanical disruption of the Xenopus laevis ovaries,

stage V-VI oocytes were treated for 30 min at room temperature

under 70 rpm shaking with a 2 mg/mL collagenase (SIGMA,

C6895) solution in Ca2+ free Ringer’s buffer (96 mM NaCl, 2 mM

KCl, 5 mM MgCl2 and 5 mM HEPES [pH 7.6]). All procedures

were performed in accordance with the NIH Institutional Animal

Care and Use Committee and NIH guidelines. Oocytes were

subsequently washed 5 times with Ca2+ free Ringer’s buffer, 5 times

with Ca2+ free Ringer’s buffer supplemented with 50 mg/mL

gentamycin and 5 times with Ringer’s buffer (96 mM NaCl, 2 mM

KCl, 5 mM MgCl2/6H2O, 5 mM HEPES and 0.8 mM CaCl2
[pH 7.6]) supplemented with 5% heat inactivated horse serum,

50 mg/mL tetracycline, 100 mg/mL streptomycin and 550 mg/

mL sodium pyruvate. Individual oocytes were allowed to recover

overnight prior to injection with 10 ng of each cRNA and were

recorded 4 to 6 days post-injection.

Electrophysiological Recordings
Whole-cell currents were recorded using the two-microelectrode

voltage clamp technique [44,45]. Odorants and insect repellents

were dissolved in 1% dimethyl sulfoxide (DMSO) final concen-

tration. Prior to recording, stock solutions were diluted in Ringer’s

solution [pH 7.6] (96 mM NaCl, 2 mM KCl, 5 mM MgCl2,

5 mM HEPES and 0.8 mM CaCl2) to the indicated concentra-

tions before being applied to Xenopus oocytes in a RC-3Z oocyte

recording chamber (Warner Instruments) connected to a manual

gravity perfusion system. Oocytes were continuously perfused by

either pure Ringer’s solution or exposed for 8 sec to 1027 M of the

odorant alone, 1027 M of the repellent alone, or to solutions of

1027 M odorant in combination with sequentially fixed increasing

concentrations of inhibitors, all dissolved in Ringer’s solution. An

8 sec stimulation was chosen to stay consistent with other

functional OR studies using similar odorant delivery systems

[28]. To avoid residual repellent effects, each oocyte was exposed

to only one of the four tested repellents. Odorant-induced currents

were recorded with an OC-725C oocyte clamp (Warner

Instruments) at a holding potential of 280 mV. Between

stimulations, oocytes were allowed to return to their membrane

resting potential by washing out the odorants or the odorant and

inhibitor using pure Ringer’s solution. The recovery time was

defined as the time required for agonist-induced responses to abate

and to reach levels identical to pre-stimulation levels. Data

acquisition and analysis were carried out with Digidata 1440A and

pCLAMP10 software (Axon Instruments).

Data Analysis
For the desensitization analysis (GraphPad Prism5 Software,

Inc.), the perfusion system consisted of a unique stimulus source

for the repeated administration of the agonist. Normalization of

the current responses for AaOR2+AaOR7 and AaOR8+AaOR7

was performed by calculating the ratio of a given response to the

current elicited by the the first exposure defined as 100% based on

ratio defined by equation [1] (Fig. S6). Linear regression was

performed using Prism5.

In subsequent experiments, the perfusion system required

additional delivery sources for the application of serial dilutions

of inhibitors (Fig. S6). Data normalization was performed by

calculating the ratio of a given response to the average response

elicited by the ligand alone (first and last stimulation) (Fig. S6).

Statistical analyses of the logIC50 means were performed using

an ordinary one-way analysis of variance (ANOVA) followed by a

Tukey Kramer multiple comparison post-test. Results with

P,0.05 were considered statistically significant. In all figures,

graphical results are shown as means and standard error of the

mean of five or more independent oocytes. IC50 values for

individual compounds were extrapolated using the non-linear

regression curve fit function provided in Prism5.

Chemical Analyses
Organic chemicals were extracted from physiological saline

solutions containing 1% dimethyl sulfoxide (DMSO) and (R)-(2)-1-

octen-3-ol at 1025 M or 1% DMSO and (R)-(2)-1-octen-3-ol at

1025 M and N,N-diethyl-3-methylbenzamide (DEET) at 1023 M

using ethyl acetate. One milliliter of the experimental solution was

shaken then vortexed with 500 mL of ethyl acetate. After the ethyl

acetate separated from the physiological saline solution, 300 mL of

this supernatant was transferred into a cone vial for analysis. A one

amounts of DEET. (C) Response traces of AaOR2+AaOR7 (blue) and AaOR8+AaOR7 (red) to 1027 M agonist alone and in combination with increasing
concentrations of 2-undecanone (2-U) (1027 M to 1022 M) are recorded in nano-ampere (nA). Horizontal arrow indicates prolonged recovery time. (D)
Concentration-response plots of AaOR2+AaOR7 (solid blue squares) and AaOR8+AaOR7 (solid red circles) to 1027 M indole and 1027 M octenol in the
presence of increasing amounts of 2-U. Inward currents are shown as downward deflections. Odorant concentrations were plotted on a logarithmic
scale. Each point represents the mean current response; error bars are s.e.m. n = 5–6 oocytes for each treatment. Treatments with high DEET
concentrations (1023 M and 1022 M) and 2-U (1023 M and 1022 M) differed significantly from the no-repellent controls (two-way ANOVA, Bonferroni
posttests, **: P,0.01; ***: P,0.001). Vertical and horizontal scale bars represent 100 nA and 1 min, respectively.
doi:10.1371/journal.pone.0012138.g003
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microliter aliquot of this supernatant was injected into an Agilent

6890 gas chromatograph (GC) equipped with a HP-5 capillary

column (cross-linked 5% PH ME Siloxane; film thickness 0.25 mm;

length 30 m; internal diameter 0.25 mm) and flame ionization

detector. After an initial temperature of 50uC held for 2 min

following sample injection, the temperature of the GC oven was

increased 15uC/min to 235uC which was held for 8 min.

Identifications of peaks in the gas chromatograms were verified

using an Agilent 7890A GC coupled with an Agilent 5975C mass

spectrometer (MS) also equipped with an HP-5 capillary column as

previously described. The temperature program used for GC/MS

analysis was identical to the regime used in GC studies. Authentic

spectra for DMSO, octenol and DEET from the NIST (National

Institute of Standards) reference library of mass spectra were

matched to mass spectra obtained from our samples. Five replicates

for each experimental solution were conducted. For each replicate,

the areas of GC peaks for DMSO, octenol and DEET were

calculated using GC/EAD software from Syntech, The Nether-

lands. Means for DMSO and (R)-(2)-1-octen-3-ol obtained for

solutions with or without DEET were compared using a t-test.

Figure 4. Octenol is not modified by DEET in solution. The presence of DEET (1023 M) does not affect the mean amount of octenol [(R)-(2)-1-
octen-3-ol)] (1025 M) in physiological solution. Vertical bars represent s.e.m. (n = 5). Note broken x-axis for data representation. Same letters above
histograms indicate non significant differences (P.0.05, ANOVA test with Tukey posttest).
doi:10.1371/journal.pone.0012138.g004
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Chemicals
Indole (99+%) was obtained from Aldrich Chemical Co.,

Milwaukee, WI, USA. (R)-(2)-1-octen-3-ol [99.6% (R) form] was

custom synthesized by Bedoukian Research, Inc. The repellents

used in this study, their purity and source were: DEET N,N-

diethyl-3-methylbenzamide (99.2%) and 2-undecanone (99%),

Aldrich Chemical Co., Milwaukee, WI, USA; IR3535 3-[N-

butyl-N-acetyl]-aminopropionic acid ethyl ester (.95%), Merck,

Rahway, NJ, USA and Picaridin 2-(2-hydroxyethyl)-1-piperidine

carboxylic acid 1-methylpropyl ester (.95%), Bayer, USA.

Supporting Information

Figure S1 AaOR2+AaOR7 dose-response curve to indole.

Concentration-response plots of AaOR2+AaOR7 to indole.

Odorant concentrations were plotted on a logarithmic scale. Each

point represents the mean current response; vertical bars are s.e.m.

(n = 5 oocytes).

Found at: doi:10.1371/journal.pone.0012138.s001 (0.29 MB TIF)

Figure S2 Desensitization of AaORs by odorants. Activation of

AaOR2+AaOR7 and AaOR8+AaOR7 by repeated exposures of

1027 M indole and 1027 M octenol [(R)-(2)-1-octen3-ol],

respectively. (A) Response traces of AaOR2+AaOR7 and

AaOR8+AaOR7 are recorded in nano-ampere (nA). Inward

currents are shown as downward deflections. Vertical and

horizontal scale bars represents 100 nA and 1 min, respectively.

(B) Fractional activities (left Y-axis) are expressed as percentages

with respect to the initial exposure defined as 100%. The data

points were fitted using a linear regression model (solid lines):

AaOR2 (r2 = 0.94, slope = 22.73860.2781, n = 7); AaOR8

(r2 = 0.96, slope = 23.93060.2965, n = 10). The two slopes were

significantly different (P,0.05, Student’s t-test). Histogram of the

time intervals (right Y-axis) between stimulations of AaOR2+
AaOR7 and AaOR8+AaOR7 by serial exposures of 1027 M

indole and 1027 M octenol, respectively. Each point represents

the mean and vertical error bars indicate s.e.m. Mean time

intervals were not statistically different (two-way ANOVA,

Bonferroni posttests, P.0.05).

Found at: doi:10.1371/journal.pone.0012138.s002 (0.56 MB TIF)

Figure S3 Insect repellents do not elicit currents in water-

injected oocytes (control). Water-injected oocytes did not display

currents following exposure to increasing concentrations of DEET,

2-undecanone (2-U), IR3535 or Picaridin in the presence of

1027 M octenol [(R)-(2)-1-octen3-ol] or 1027 M indole (n = 5).

Found at: doi:10.1371/journal.pone.0012138.s003 (0.81 MB TIF)

Figure S4 High concentration of 2-Undecanone prolongs

AaOR8+AaOR7 recovery. Recovery times of the AaOR2+-
AaOR7 (AaOR2) and AaOR8+AaOR7 (AaOR8) complexes

following 1022 M exposure to IR3535, Picaridin, DEET, 2-

undecanone (2-U) or to agonist alone. Bars represent the mean

recovery time; error bars are s.e.m; n = 5–6 oocytes for each

treatment. Bar labeled with three asterisks indicates P,0.0001

(ANOVA test with Tukey posttest).

Found at: doi:10.1371/journal.pone.0012138.s004 (0.59 MB TIF)

Figure S5 Relative effectiveness of IR3535, Picaridin, DEET

and 2-undecanone on AaOR2+AaOR7 and AaOR8+AaOR7

responses. Half maximal inhibitory concentration (IC50) ranking

profile of IR3535, Picaridin, DEET and 2-undecanone (2-U) on

AaOR2+AaOR7 and AaOR8+AaOR7. ns, not significant;

*, P,0.05; **, P,0.01 and ***, P,0.001 (ANOVA test with

Tukey post test). Odorant concentrations were plotted on a

logarithmic scale. Each point represents the mean and error bars

indicate s.e.m. n = 5 oocytes for each treatment.

Found at: doi:10.1371/journal.pone.0012138.s005 (0.94 MB TIF)

Figure S6 Gravity-driven perfusion system and normalization

method. Each of the 6 fractional activities was calculated by

measuring each current (Yn) elicited by the odorant in the

presence of one of six doses (1027 M to 1022 M) of repellents

divided by the average of the sum of the initial (X0) and final (X1)

ligand-evoked currents as shown in the equation.

Found at: doi:10.1371/journal.pone.0012138.s006 (1.35 MB TIF)
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