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Abstract

Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and
two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for
exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A
current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in
key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS) of a PHYTOENE
DESATURASE ortholog (TdPDS) can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%,
using tobacco rattle virus (TRV) vectors. The photobleached leaf phenotype of silenced plants significantly correlates with
the down-regulation of endogenous TdPDS (P,0.05), as compared to controls. Floral silencing of PDS was achieved in the
faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene
AGAMOUS (AG) resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol
for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The
three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum. The
evidence presented on floral silencing of orthologs of the marker gene PDS and the floral homeotic gene AG will enable a
comparative approach to the study of the evolution of flower development in this group.
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Introduction

Thalictrum, in the buttercup family Ranunculaceae, comprises

approximately 190 species globally distributed in temperate

regions [1]. The genus exhibits a range of floral morphologies

including four breeding systems and two pollination syndromes

[2]. Commonly known as ‘‘meadow rues’’, these perennial

woodland herbs have been actively studied for the medicinal

value of their secondary metabolites [3,4,5]. This lineage is ideally

suited for the study of the origins of core eudicot diversity because

of: (1) Its basal phylogenetic position within the eudicots and (2)

The presence of ancestral floral traits, such as free, uniovulate

carpels with ascidiate (open) development and variable number of

spirally arranged floral organs [6].

A major hurdle in obtaining functional data from emerging

model systems like Thalictrum, is a lack of transgenic techniques and

genomic tools that are readily available for established model

plants such as Arabidopsis thaliana. A single report of stable

transgenesis in Thalictrum involves cell culture, with a low efficiency

of explant regeneration [7]. The advent of virus-induced gene

silencing (VIGS) by tobacco rattle virus (TRV) as a laboratory

technique [8], offered a fast and effective solution to the need for

functional data, and promises to bridge the gap between

established and emerging model plant systems [9,10].

VIGS was developed as a way of harnessing the RNA-mediated

post-transcriptional gene silencing (PTGS) defense system natu-

rally present in plants and other organisms to fight pathogens

(reviewed in [11,12,13]). The technique relies on the use of viral

vectors carrying a transgene that can trigger the PTGS system,

causing the degradation of its homolog within the plant. One such

viral vector is based on TRV and consists of a binary

transformation system, pTRV1 and pTRV2, the latter carrying

one or more transgene/s. TRV has been the virus of choice in a

variety of plant species due to its minimal pathogenic effects, its

wide host range and its ability to cause infection to meristematic

tissues, including flowers [8].

Initially developed in members of the Solanaceae [14,15,16,

17,18], VIGS has proved useful in several other plants species. For

example, in Petunia it has been used to help elucidate mechanisms

of floral scent production [19], while in soybean it has facilitated

the dissection of the flavonoid biosynthetic pathway [20]. The

application of such a convenient, fast and cost-effective tool is

facilitating more comprehensive comparisons of gene function

across diverse plant taxa, including monocots and basal eudicots

[21,22,23,24,25,26,27].

PHYTOENE DESATURASE (PDS) encodes an enzyme that

catalyzes an important step in the carotenoid biosynthesis pathway

[28]. Silencing of this enzyme blocks the production of carotenoids
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(umbrella pigments for chlorophyll), causing the photodegradation

of chlorophyll and consequently giving plants an easily recogniz-

able photobleached appearance.

Our goal was to generate loss-of function phenotypes in the

early-diverging eudicot Thalictrum, in order to understand gene

function and enable a comparative approach. To that end, we

first show the successful implementation of VIGS in seedlings of

T. dioicum, by silencing the ortholog of the PDS marker gene,

TdPDS, in leaves. Subsequently we apply a modified protocol to

tubers of two fast-flowering spring ephemeral species and show

silencing of PDS and an AG ortholog in flowers. These three

species span the range of floral morphologies present in

Thalictrum: wind pollinated, inconspicuous flowers with green

sepals (T. dioicum) and showy, insect pollinated flowers with

petaloid sepals (T. thalictroides) or petaloid stamens (T. clavatum)

[29].

This approach will be subsequently applied to unravel the

functional significance of other genes in these and related species.

For example, it will allow to extend the study of previously

described gene duplications undergone by critical flower tran-

scription factors, such as the B and C class MADS box genes, to

this early-diverging eudicot [30,31].

Results

Silencing of PDS in leaves of T. dioicum
Our initial goal was to test whether the VIGS approach would be

successful in our study system. To that end we set out to silence the

ortholog of PHYTOENE DESATURASE, commonly used as a

marker due to the easy-to-score resulting photobleached phenotype.

The overall survival rate of treated and mock-treated plants was

97%, indicating that Thalictrum dioicum seedlings are hardy and

resilient to vacuum infiltration. Initiation of photobleaching in

TRV2-TdPDS treated plants was observed approximately 2 weeks

post-infiltration; after 2 months 42% of treated plants showed

some degree of TdPDS silencing. Twelve percent of treated plants

showed strong silencing, where a whole compound leaf, including

the petiole, was photobleached, as compared to untreated plants

(compare Fig. 1A to B–E). Intermediate phenotypes included

scattered sectors of white throughout the plant (Fig. 1F), and

milder ones exhibited photobleaching restricted to the vasculature

of leaflets (Fig. 1G). Photobleached leaves often looked pink, due to

the natural presence of anthocyanins, which were exposed by the

photo-degradation of chlorophyll (Fig. 1B, H and I, first two

leaflets). Overall, there was a gradient of silencing phenotypes at

Figure 1. VIGS of Thalictrum dioicum PHYTOENE DESATURASE ortholog TdPDS results in varying degrees of leaf photobleaching. A:
Untreated T. dioicum plant. B–F: Distribution of photobleaching in TRV2-TdPDS treated plants. G: Leaflet showing signs of silencing along the vascular
tissue. H: Detail of partially photobleached leaflet. I: Typical range of silencing in TRV2-TdPDS treated leaflets. Scale bar = 1 cm.
doi:10.1371/journal.pone.0012064.g001

Thalictrum VIGS
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the leaflet level (Fig. 1I). The duration of silencing varied from six

to eight weeks from onset, with a few outliers in which silencing

continued for up to three months. Photobleached tissue was more

vulnerable and typically died off over time, causing an overall

apparent decline of silencing over time. Mock-treated plants were

undistinguishable from untreated plants (not shown), suggesting no

visible viral effects in this species at the vegetative level.

In order to confirm that the leaf photobleached phenotypes

described above correlated with reduced endogenous levels of TdPDS,

we performed Reverse Transcriptase (RT) PCR with locus-specific

primers on leaf tissues from each of the three treatment groups (Fig. 2).

Amplification of the ACTIN ortholog, TdACTIN was used as a

template concentration control (Fig. 2A, top gel). To test if the

phenotype observed in treated plants was due to the presence of the

viral vectors, the presence of TRV1 and TRV2 transcripts in cDNA

was also determined by RT-PCR (Fig. 2A, bottom 2 gels). Samples

from the untreated group did not show viral expression and had high

expression of TdPDS, as expected. Half of the mock-treated plants

shown in Fig. 2 had both vectors, consistent with the 42% observed

incidence of photobleaching in the TRV2-TdPDS treatment. RT-

PCR performed with TRV2-specific primers spanning the multiple

cloning site produced a smaller product size (160 bp) in two of the

mock-treated plants, corresponding to the distance between primers

in the absence of insert, therefore confirming the presence of TRV2

and the absence of the TdPDS transgene fragment (Fig. 2A, smaller

bands in TRV2 panel). The same two plants also amplified TRV1

transcript. Expression of TdPDS in this treatment group was similar to

that of untreated plants, suggesting that the viral treatment does not

interfere with TdPDS expression. We further subdivided the pTRV2-

TdPDS treatment into three categories based on silencing phenotype

intensity: green (from partially silenced plants), variegated (green

leaflets with white silenced sectors) and completely photobleached

tissues (white leaflets). All of the TRV2-TdPDS treated photobleached

plants showed presence of transcript from both vectors. Detection of

the TdPDS transgene in pTRV2 is indicated by the larger PCR

product size (Fig. 2A, 585 bp band in TRV2 panel).

Figure 2. Downregulation of TdPDS and detection of TRV transcripts in VIGS photobleached leaves of Thalictrum dioicum. A:
Expression of TdACTIN control, native TdPDS and viral transcripts in leaves by Reverse Transcriptase (RT)-PCR. Untreated and mock-
treated (empty TRV2) T. dioicum plants are compared to TRV2-TdPDS treated plants showing photobleached (white), variegated (green/white) and
green leaf tissue. RT-PCR was performed with locus-specific primers to the housekeeping gene ACTIN (loading control), to endogenous TdPDS and to
the viral transcripts TRV1/TRV2. Approximate band size indicated for TRV2: larger band results from the presence of the TdPDS insert, smaller band
from an empty TRV2 (mock control). B: Comparative expression of TdPDS normalized with TdACTIN among treatments and resulting
phenotypes of Thalictrum dioicum. Values based on quantification of RT-PCR gel bands in part A using ImageJ (see text for details). Different
letters indicate statistical significance in a one-way ANOVA followed by Tuckey test (p,0.05), same letters indicate no statistical difference. Average
and standard error bars are shown. Sample sizes are n = 4 for untreated and mock-treated, n = 6 for treated bleached and n = 3 for treated variegated
or green.
doi:10.1371/journal.pone.0012064.g002

Thalictrum VIGS
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Quantification of band intensity (from the RT-PCR gels in

Fig. 2A) confirmed a statistically significant down-regulation of

TdPDS (relative to ACTIN) in fully photobleached and variegated

leaf samples compared to untreated and mock-treated controls and

treated-green leaves (p,0.05, denoted by different letters on top of

the bars in Fig. 2B). The decrease in levels of endogenous TdPDS

in bleached and variegated leaves was not statistically significant at

the resolution allowed by RT-PCR (equal letters above bars in

Fig. 2B), a more quantitative expression method may be needed to

detect these more subtle differences. For our purposes, variegated

leaves may be considered as silenced. Green leaves from plants

that had shown silencing in other leaf tissue had endogenous

TdPDS levels undistinguishable from the untreated or mock-

treated plants, indicating that treated plants are chimeras of

silenced and non-silenced tissue for TdPDS.

Since silencing lasts for 2–3 months, it became apparent that the

time to flowering in seedlings of T. dioicum is typically greater (4–6

months) than the duration of our silencing phenotypes. To

implement VIGS to the study of flower development we extended

the silencing assays to include faster flowering species within the

genus.

Floral silencing in fast-flowering spring ephemerals
PDS silencing in T. thalictroides. In order to achieve floral

silencing, we infiltrated dormant, bare-root plants of the spring

ephemeral hermaphrodite T. thalictroides (Fig. 3Ai). In this species,

Figure 3. Virus-induced gene silencing of TtPDS causes photobleaching in leaves and flowers of Thalictrum thalictroides. A: Flower
and leaf TtPDS silencing phenotypes compared to controls. Ai: Untreated flower of T. thalictroides, note green leaflets and green/yellow floral
center; Aii: TRV2-TPDS treated plant, showing partial photobleaching of leaflets that appear variegated; Aiii: Detail of varying degrees of
photobleaching in leaflets; Aiv: Detail of untreated flower, note that carpels and young stamens are normally photosynthetic (green); Av: Detail of
treated flower showing silencing in stamens and carpels, three older stamens are not photobleached and therefore look green (asterisks), a patch of
necrotic tissue (a viral effect) is indicated with an arrow; Avi: empty TRV2 mock-control flower showing background viral effects: arrow points to
reduced sepal with patch of necrotic tissue. Scale bar = 1 mm. B: Comparative expression of TtPDS in leaves and flowers of T. thalictroides
plants treated with TRV2-TPDS, relative to controls. Untreated and mock-treated (empty TRV2) plants are compared to TRV2-TPDS treated
plants showing photobleached leaves (left panels) or flowers (right panels). Reverse-transcriptase PCR was performed with locus-specific primers to
the housekeeping gene TtACTIN (loading control), to endogenous TtPDS and to the viral transcripts TRV1/TRV2. For TRV2: larger band results from the
presence of insert, smaller band from an empty TRV2 (mock control).
doi:10.1371/journal.pone.0012064.g003
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flowers develop from a fleshy root (a small tuber) simultaneously

with leaves in the second year. Therefore, photobleaching due to

PDS silencing can be rapidly detected (less than 2 weeks, and as

little as 4 days) not only in leaves (Fig. 3Aii, Aiii detail), but also in

photosynthetic carpels and young stamens (compare Fig. 3Aiv-Av).

Survival in this experiment was only 25% (5 out of 20 treated

plants), presumably due to the plants being young; the small tender

tubers did not respond well to wounding and longer infiltration

time. Age at infiltration was especially critical for bleached plants;

in the absence of green photosynthetic leaves, the young tubers did

not have enough stored metabolites to sustain them and the plants

died. Only 2 bleached plants survived, and one flowered.

Subsequently, we have experimented with older plants, with

significantly increased survival rates. All mock-treated plants

survived, and approximately two thirds flowered (10/15); of these,

most (8/10) showed varying degrees of necrosis (black spots) and

reduced sepal size (Fig. 3Avi). These phenotypes were interpreted

as background viral effect, and discounted from further analyses of

floral silencing.

Detection of TRV1 and TRV2 transcripts in cDNA provided

evidence that silencing was due to the viral treatment (Fig. 3B).

Downregulation of TtPDS was most marked in photobleached

leaves, where expression was not even detectable by RT-PCR

(Fig. 3B left panels). TtPDS downregulation was less pronounced in

flowers, where the bulk of the tissue (petaloid sepals) is white

(Fig. 3B, right panels).

Silencing of an ortholog of the floral MADS box gene

AGAMOUS in Thalictrum clavatum. T. clavatum is a close

relative of T thalictroides representing a different type of flower

morphology, with smaller pink/white petaloid sepals that fall off in

mature flowers and prominent stamens with flattened, petaloid

filaments (compare Figs. 3Ai and 4Ai). This species was treated

with a TRV2-ThtAG-1 single construct, to silence the ortholog of

the Arabidopsis floral MADS box gene AGAMOUS, described earlier

[30]. Silenced flowers showed homeotic conversion of stamens and

carpels to petaloid sepals (Fig 4A, the entire genus Thalictrum lacks

petals), as described for ag loss of function mutants in Arabidopsis

[32]. Untreated flowers consist of 4–6 white sepals, 26–39 stamens

with flattened petaloid filaments and 5–9 stalked carpels (flower

counts based on 15 flowers from 5 plants) (Fig. 4Ai, Aiv). No viral

effects were detected in the TRV2 empty controls for this species.

Two of the treated plants showed strong phenotypes (Fig. 4Aii) in

9 and 15 flowers respectively, consisting of complete conversion of

reproductive organs (stamens and carpels) into sterile organs

(sepals) of different size and shape (different degrees of narrowing

at the base); no effects were evident in sepals (Fig. 4Av).

Intermediate phenotypes were also observed in 3–4 flowers per

plant (Fig. 4Aiii), consisting of partially converted organs,

including sepaloid organs with anther tissue (Fig. 4Avi, arrows)

and staminoid organs with unusually expanded filaments,

becoming reduced in size towards the center of the flower

(Fig. 4Avi). While intermediate organs with staminoid features

were common, none of the silenced flowers had carpels. Silenced

flowers had immature organs that continued to develop in the

center throughout the life of the flower; consistent with the role of

AG in flower determinacy in Arabidopsis [32].

Phenotypes were validated at the molecular level: all untreated

and mock-treated plants tested had higher expression of TcAG-1

than treated plants, as shown by RT-PCR on individual flowers,

relative to ACTIN (Fig. 4B). TRV transcripts were present in

treated-silenced and one of the two mock treated flowers shown

(like in the other species, infiltration efficiency is not 100%) and

absent from untreated flowers, as expected (Fig. 4B). Larger bands

in TRV2 (580 bp) correspond to the presence of the TAG-1 insert

in treated plants, whereas smaller bands (160 bp) correspond to an

empty TRV2 in the mock controls (as explained for Figs. 2A and

3B; all inserts are approximately 400 bp).

Discussion

Thalictrum is one of the most species-rich genera in the family

Ranunculaceae and has a key phylogenetic place at the base of the

eudicots, which represent a smaller radiation nested within the

major angiosperm radiation [33]. This basal position, combined

with the retention of ancestral floral features, provides a window

into past scenarios of flower evolution. It is this particular

combination of key phylogenetic position and floral diversity that

makes Thalictrum a promising model plant lineage for evo-devo

studies [34].

Recently, VIGS has been employed in a variety of plant systems

as a reverse genetics approach [35]. It is becoming a powerful tool

in the area of evolution of plant development, allowing for

functional studies of floral transcription factors across the

angiosperm phylogeny, including early-diverging eudicots

[27,36]. Our demonstration that VIGS can be implemented

efficiently to silence a carotenoid pathway gene, as well as a floral

transcription factor in three species of Thalictrum, provides proof of

the value of this type of approach in evolutionary studies involving

early-diverging eudicots.

The successful implementation of VIGS in leaves and flowers of

Thalictrum species is a major step towards investigating gene

function in this emerging model plant genus. Its amenability to

vacuum infiltration of seedlings or dormant plants underscores the

versatility of these herbaceous perennials. Post-treatment survival

rates for T. dioicum seedlings were amongst the highest observed for

this infiltration method (97%), comparable to those reported

previously in Papaver [24] and higher than those in the closely

related Aquilegia [22]. Further, we observed a higher percentage of

the plants showing photobleaching at 42% compared with 12%

and 23% in the above studies.

Implementation of VIGS in Thalictrum broadens the already

wide host range of tobacco rattle virus and further supports the use

of VIGS in other, lesser known plant systems for which stable

transgenic techniques are not yet available.

Moreover, T. dioicum is the only dioecious species emerging so

far as a model system among basal eudicots [34]. Comparative

functional analyses within this genus, amongst hermaphroditic (T.

thalictroides and T. clavatum) and dioecious species (T. dioicum), will

facilitate studies of the genetic basis for the evolution of sexual

dimorphism.

Most importantly, the use of VIGS has allowed us to carry out

functional analyses within Thalictrum rather than relying on

transformation into established model systems, with its inherent

limitation to biochemically rather than physiologically informative

results. A heterologous approach also deters the investigation of

subtle functional differences amongst duplicated genes present in

Thalictrum and widespread in the Ranunculaceae [30,31], due to

the lack of a suitable molecular environment. The above

limitations are widespread and would ultimately prevent a

thorough investigation of the origin and evolution of key regulators

of development that may have shaped the evolution of

angiosperms using different pathways such as sub or neo-

functionalization [37].

Certain species of Thalictrum are economically significant in the

pharmacological [4] and horticultural industries [38]. The

development of this technique will facilitate the study of gene

function of clinically relevant secondary metabolite biosynthesis in

Thalictrum. Many species of Thalictrum, including the two

Thalictrum VIGS

PLoS ONE | www.plosone.org 5 August 2010 | Volume 5 | Issue 8 | e12064



hermaphrodites in this study, are sold as ornamentals. This study

enables the exploration of the genetic basis of existing varieties and

the creation of new, showier ones (such as the ‘‘double’’ flowers

resulting from AG silencing, Fig 4Aii), a desirable goal for the

floriculture industry.

In conclusion, we have shown that VIGS is an effective tool to

assess gene function in three species of Thalictrum, resulting in leaf

and floral phenotypes. Silencing of the floral MADS box gene

TAG-1 caused homeotic conversions of stamens and carpels into

sepals, as predicted by the ABC model [32]; silencing of TPDS

produced the expected photobleached phenotype in leaves and

flowers. The Thalictrum ortholog of PDS is a useful vegetative

marker to quickly identify plants that are undergoing silencing,

mainly in green leaves and additionally in species with green

flowers (most of the wind-pollinated taxa), or green floral parts

during early development (T. thalictroides and T. clavatum).

Photobleaching can, however, be detrimental to plant growth

and survival, especially in young plants. Therefore, the use of a

marker gene in double constructs must be considered carefully,

and may not be justified in cases where there is an expectation for

a well-defined phenotype. With these caveats, high survival rates in

seedlings and potentially improved ones on older tubers, combined

with high infiltration efficiency and silencing rates, make VIGS

promising for functional studies in these and related species.

Figure 4. Virus-Induced Gene Silencing of Thalictrum clavatum AGAMOUS ortholog TcAG-1 results in homeotic floral phenotypes. A:
Flower silencing phenotypes of TcAG-1, relative to controls. Ai, Untreated flower of T. clavatum showing sepals (se), stamens (st) and carpels
(ca); Aii: strongly silenced flower in TRV2-TAG-1 treated plant, showing an array of sepals and no stamens nor carpels, all reproductive organs have
been homeotically converted to sepals; Aiii: intermediate phenotype with partial conversion of organs and some normal ones; Aiv: detail of dissected
organs in an untreated flower (sepal, stamen, carpel, from left to right); Av: detail of all sepaloid dissected organs from a strong TcAG-1 silencing
phenotype (from the outside to the inside of the flower, left to right); Avi: detail of sample chimeric organs, arrows point to anther tissue on the
edges of an internal ‘‘sepal’’. Scale bar = 1 mm. B: Gene expression by Reverse Transcriptase (RT)-PCR in TcAG-1 silenced plants compared
to controls. Untreated and mock-treated (empty TRV2) plants are compared to TRV2-TAG-1 treated plants showing strong homeotic conversions
(Aii, Av). RT-PCR was performed with locus-specific primers to the housekeeping gene ACTIN (loading control); to the MADS box gene TcAG-1 and to
the viral transcripts TRV1/TRV2. For TRV2: larger bands result from the presence of insert, the smaller band from an empty TRV2 (mock control).
doi:10.1371/journal.pone.0012064.g004
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With the prospect of a full-length transcriptome for T.

thalictroides through the 1KP project (Univ. of Alberta, Canada),

the ability to test genes or whole gene families by VIGS in this

genus is especially timely [9]. In order to build a toolbox for an

emerging model system, it is indispensable to have a mechanism to

assess gene function [10]. Here, we have successfully adapted a

tool for functional studies, which is rapid, relatively simple to

implement and shows high promise for a comparative functional

approach in Thalictrum and beyond.

Materials and Methods

Plant Materials
Thalictrum dioicum seeds (greenhouse-collected from wild acces-

sions) were imbibed in distilled water for 2 days at 4uC, then sown

on Turface soil medium (Buffalo Grove, IL) 288-cell trays or in

Oasis Wedge system foam medium (Kent, OH) 102-cell trays.

Trays with sown seed were stratified for six weeks at 4uC covered

in plastic to avoid evaporation, then uncovered and transferred to

the UW greenhouse (20uC, 14–16 hr days), where germination

was seen within approximately 2 weeks. Seedlings with 2–3 true

leaves were used for further experiments. Flowering of T. dioicum

seedlings typically occurred 6 months after sowing.

T. thalictroides bare root plants were purchased from nurseries

and kept at 4uC in peat moss until infiltration.

T. clavatum plants that had died back were vernalized in a 4uC
room for 8 weeks, the small tubers were then dug up and used in

the experiments.

Voucher specimens for the three species in this study are: T.

dioicum, V. Di Stilio 101 (A); T. thalictroides V. Di Stilio 124 (WTU)

and T. clavatum, V. Di Stilio 127 (WTU).

Cloning of Thalictrum PDS
In order to clone the PDS ortholog, total RNA was isolated

from Thalictrum dioicum and T. thalictroides leaves using TRIzolH
Reagent (Invitrogen, Carlsbad, CA), following manufacturer’s

instructions. Samples were treated with amplification-grade

DNaseI (Invitrogen, Carlsbad, CA), followed by First-Strand

Synthesis with Oligo (dT) using the SuperScript IIIH System

(Invitrogen, Carlsbad, CA). A 441bp fragment of the Thalictrum

dioicum ortholog of PDS (TdPDS) was amplified by PCR using

PDS-F2-XbaI and PDS-R3-BamH1 primers [22] and cloned into

pCR2.1 using the TA cloning kit (Invitrogen, Carlsbad, CA).

Three positive clones were verified by sequencing (Biochemistry

DNA Sequencing Facility, University of Washington) and BLAST

search (NCBI). In order to design endogenous TdPDS specific

primers, we cloned a longer fragment of TdPDS. To that end we

used primers designed to Aquilegia vulgaris PDS (GenBank

DQ923721, (22)): AqPDS specific F1 59-AAT GCC AAG CAA

GCC AGG AG -39 and AqPDS specific R1 59-TCA GGG AAG

AGT TTC GCA AGC -39, at 53uC and 30 cycles. The resulting

830 bp partial coding sequence (TdPDS, deposited as GenBank

FJ457899) was used to design primers outside of the region

contained in the silencing construct.

The same approach was applied to isolate the orthologous PDS

fragment from T. thalictroides (TtPDS, deposited as GenBank

HM48111), which was similarly used to design RT-PCR locus-

specific primers outside of the region used in the silencing

construct.

Preparation of the TRV2-TdPDS construct
The TdPDS clone was PCR amplified using the forward and

reverse primers described above with added restriction sites for

cloning: 59-AGTGGATCCCAGCCGATTTGATTTCCCAGAT-

39 (TdPDS_F_BamHI) and 59-AAGCTCGAGGAGAATTGAG-

TGGGACTTCACCA-39 (TdPDS_R_XhoI). The resulting ampli-

con was gel purified using QIAquick Gel Extraction Kit (Qiagen,

Valencia, CA). Dr. Dinesh Kumar kindly authorized us to use the

TRV1 and TRV2 vector system developed in his laboratory. The

TRV2 plasmid and TdPDS fragment were digested with BamH1 and

Xho1 (New England Biolabs, Ipswich, MA), ligated using T4 DNA

ligase (Invitrogen, Carlsbad, CA) and transformed into One ShotH
TOP10 Chemically Competent E. coli (Invitrogen, Carlsbad, CA).

Colonies were selected on LB plates containing 50 mg/ml of

Kanamycin and the presence of insert was confirmed by PCR with

primers spanning the Multiple Cloning Site of pTRV2 (156 F: 59-

TTA CTC AAG GAA GCA CGA TGA GC -39 and 156 R: 59-

GAA CCG TAG TTT AAT GTC TTC GGG -39) [22]. In the

absence of insert, the expected size of the PCR product is 160 bp; in

the presence of TdPDS, the resulting amplicon size should be 585 bp.

TRV2-TdPDS plasmid was purified from a single positive colony

using FastPlasmid Mini kit (Eppendorf, Hauppauge, NY), then

confirmed by sequencing.

Preparation of Thalictrum AG-1 construct
Since the TAG-1 locus is highly conserved within Thalictrum and

even among genera of the Ranunculaceae [34], we used a T.

thalictroides existing construct (TRV2-TtAG-1) on T. clavatum, after

checking for sufficient homology between the two to elicit

silencing. The complete coding region of TcAG-1 was cloned

(deposited as GenBank HM488113). Since both species share 99%

nucleotide identity in the region used for silencing, we will refer to

this construct as TRV2-TAG-1 (for Thalictrum AG-1). To prepare

the silencing construct, flower bud cDNA of T. thalictroides was used

as template in PCR with AG-1 specific primers and added XbaI

and BamHI restriction sites: TthAG1_fwd_xba1 (59 AGG TCT

AGA GCA ATG ATC GCT GCA AAC GAG 39) and

TthAG1_rev_BamHI (59 AAT GGA TCC CAG ACA AAA

TGC CAA GTC CCT C 39). A PCR product of approximately

500 bp was excised from the agarose gel, and extracted using

QiaQuick gel extraction kit (Qiagen, Valencia, CA). The

resulting DNA was digested with XbaI/BamHI restriction

enzymes (New England Biolabs, Ipswich, MA) to create sticky

ends and ligated into a similarly digested TRV2 vector, yielding

the TRV2-TtAG-1 construct. The identity of the insert was

confirmed by sequencing.

Transformation of Agrobacteria with TRV constructs
Electrocompetent Agrobacteria GV3101 were prepared as

described elsewhere [39] and transformed with 2 ml of pTRV2-

TdPDS, pTRV2-TAG-1, pTRV2 (empty) or pTRV1. Electropo-

ration was carried out at 2.4 Kv for 5 ms on a MicroPulser

Electroporator (Bio-Rad Laboratories, Hercules, CA). Cells were

selected on LB plates containing 50 mg/ml Kanamycin, 25 mg/ml

Rifampicin and 50 mg/ml Gentamycin. Colonies were confirmed

by PCR as explained above, sequenced and stored as glycerol

stocks at 280uC.

Infiltration of T. dioicum seedlings
In order to achieve suppression of expression of TdPDS, a total

of 117 T. dioicum seedlings at the 2–3-leaf stage across 3

independent experiments were infiltrated with Agrobacterium

containing pTRV1 and pTRV2-TdPDS. A negative control (or

mock treatment) consisted of infiltrating 50 seedlings with a

mixture of pTRV1 and empty pTRV2 to test for background viral

effects; another group of 5 seedlings was left untreated and grown

under the same conditions.
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Agrobacteria were prepared for infiltration following [22], with

modifications. Starter overnight LB cultures (5 ml) of pTRV1,

pTRV2-TdPDS and empty pTRV2 were grown overnight with

selective antibiotics and used subsequently to inoculate 50 ml and

500 ml cultures. 1 M MES (2-(4-Morpholino)-Ethane Sulfonic

Acid) and 0.1 M Acetosyringone (39,59 -Dimethoxy-49-hydroxya-

cetophenone) were added to the final cultures. These were grown

to an OD600 of 2.0, then centrifuged at 4,000 g for 15 min at 4uC.

Cells were resuspended in infiltration medium (10 mM MES,

20 mM acetosyringone, and 10 mM MgCl2) to a final OD600 of

2.0 and incubated for 3 hrs at room temperature. Cultures of

pTRV1 were mixed in a 1:1 ratio in a 2-liter plastic container with

either pTRV2-TdPDS (silencing treatment) or empty TRV2

cultures (mock control), adding 100 ul/l Silwet L-77 (Lehle Seeds,

Round Rock, TX) as a surfactant. Seedlings were removed from

Turface or foam medium, roots were rinsed in distilled water and

whole seedlings were submerged in infiltration medium containing

either pTRV1 mixed with pTRV2- TdPDS or TRV1 mixed with

empty TRV2 (mock control). A 2100 kPa vacuum was applied in

a chamber for 2 minutes. Following infiltration, seedlings were

potted in soil and grown in the greenhouse. Photobleaching of

leaves, detectable two weeks after infiltration, was scored for up to

4 months following inoculation. Photobleached, variegated and

green leaves were collected starting at 3 weeks post infiltration,

flash-frozen in liquid nitrogen and stored at 280uC until

processing.

In order to record photobleached phenotypes, plants were

photographed using a hand held digital camera and a dissecting

microscope (Nikon SMZ800, Nikon Instruments Inc., Melville,

NY) equipped with a QImaging MicroPublisher 3.3 RTV digital

camera (Surrey, BC, Canada). Images were processed in AdobeH
PhotoshopH CS2 v 9.0.2 and figures were assembled using AdobeH
IllustratorHCS2 v. 12.0.1.

Infiltration of T. thalictroides and T. clavatum dormant
plants

Dormant underground tubers of T. thalictroides and T. clavatum

were cleaned of soil, then kept in the dark covered in wet paper

towels until infiltration media were ready. The small tubers were

wounded lightly before infiltration using a clean razor blade to

facilitate the entrance of Agrobacteria carrying the TRV plasmids.

Vacuum infiltration was carried out as above, except the

infiltration time was longer: 10 min for T. thalictroides and 5

minutes for T. clavatum (smaller tubers).

Given the high conservation of the PDS locus, silencing

constructs can be used successfully across species. Therefore, T.

thalictroides plants were treated with the available T. dioicum PDS

construct, TRV2-TdPDS, which is 99% identical at the nucleotide

level over the silencing fragment. Similarly, T. clavatum was treated

with a T. thalictroides AG-1 construct (99% identical, see details

above). For simplicity, these constructs are referred to as TRV2-

TPDS and TRV2-TAG-1 throughout the text. Mock-treated

controls were infiltrated identically, except the TRV2 vector did

not contain an insert. Untreated plants were given identical

treatment, but without infiltration.

After infiltration, tubers where potted in 2.5’’ DeepotsTM

(Stuewe & sons, Tangent, OR) using Sunshine Mix #4 soil (Sun

Gro, Bellevue, WA) without watering and transferred to the UW

greenhouses (20uC, 14–16 hrs light), where they flowered in less

than 2 weeks (T. thalictroides) to 3 weeks (T. clavatum). Pots were

covered with plastic for 24 hours, then uncovered and watered

twice a week for the duration of flowering.

Plants were monitored daily throughout the flowering period.

Once flowers started to show homeotically converted organs, they

were collected and flash frozen in liquid nitrogen for later analysis.

Flowers from mock-treated and untreated plants were collected

similarly to use as controls.

Semi-quantitative analyses by RT-PCR
Total RNA was extracted from frozen leaves as described

above. First strand synthesis was carried out using the pTRV1

specific primer OYL 198 (59- GTA AAA TCA TTG ATA ACA

ACA CAG ACA AAC -39) [24], pTRV2 specific primer 156 R

[22], or Oligo (dT). A set of reactions without Reverse

Transcriptase was used to control for presence of genomic

DNA. Reverse transcriptase (RT)-PCR was performed for 25

cycles using pTRV1 specific primers OYL195 (59- CTT GAA

GAA GAA GAC TTT CGA AGT CTC -39) and OYL198 [24],

51uC anneal; TRV2 specific primers 156 F and 156 R [22], 51uC
anneal; and Thalictrum ACTIN specific primers TthActin for 2 (59-

GCAGAACGGGAAATTGTCCGC-39 and TthActin rev 2 (59-

CCTGCAGCTTCCATTCCGATCA-39), 58uC anneal; or en-

dogenous TdPDS specific primers TdPDS_F_RT (59-TGA ATA

ATG ATG GAA CCG TG-39) and TdPDS_R_RT (59-GTC

AGC ATA CAC ACT CAA AAG G-39), 50uC anneal.

RT-PCR products were run on a 1.2% agarose gel. For the T.

dioicum experiment, TdPDS band intensity was quantified using

ImageJ (NIH), normalized against TdACTIN controls. The

statistical significance of the difference in normalized TdPDS

expression among treatments was tested by one-tailed ANOVA

followed by Tuckey test in JMP (statistical discovery software,

Cary, NC).

Untreated, mock treated and photobleached leaf and floral

tissue of T. thalictroides was collected, processed for cDNA and

assessed for gene expression as explained above, except the

forward PDS primer used to detect expression in cDNA was

adjusted to be species-specific: TthPDS_F_RT (59- TGA ACA

ACG ATG GAA CCG TG-39), and 32 cycles (at 53uC) were

run on floral tissue due to lower levels of PDS compared to

leaves.

Silenced flowers of TRV2-TthAG-1 treated T. clavatum plants

that showed homeotic conversions were similarly collected,

processed and compared to controls (untreated and empty

TRV2). Thalictrum AG-1 specific primers TthAG1_fwd_qPCR

(59-AGTCTCTCAGCAATCTCAATATCAGGG-39) and TthA-

G1_rev_qPCR (59-GCCCTGAGATACTTGTTATCAGRTC-

TGC-39) for 23 cycles at 53uC, were used to determine TcAG-1

expression levels. Previously designed PDS and ACTIN primers for

T. thalictroides were used on T.clavatum, due to high sequence

similarity between the two closely related species.
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