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Abstract

Prior to gastrulation in the mouse, all endodermal cells arise from the primitive endoderm of the blastocyst stage embryo.
Primitive endoderm and its derivatives are generally referred to as extra-embryonic endoderm (ExEn) because the majority
of these cells contribute to extra-embryonic lineages encompassing the visceral endoderm (VE) and the parietal endoderm
(PE). During gastrulation, the definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE comprises
most of the cells of the gut and its accessory organs. Despite their different origins and fates, there is a surprising amount of
overlap in marker expression between the ExEn and DE, making it difficult to distinguish between these cell types by marker
analysis. This is significant for two main reasons. First, because endodermal organs, such as the liver and pancreas, play
important physiological roles in adult animals, much experimental effort has been directed in recent years toward the
establishment of protocols for the efficient derivation of endodermal cell types in vitro. Conversely, factors secreted by the
VE play pivotal roles that cannot be attributed to the DE in early axis formation, heart formation and the patterning of the
anterior nervous system. Thus, efforts in both of these areas have been hampered by a lack of markers that clearly
distinguish between ExEn and DE. To further understand the EXEn we have undertaken a comparative analysis of three
ExEn-like cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal carcinomas (EC) of 129 strain mice and
have been characterized as parietal endoderm-like [1], END2 cells are derived from P19 ECs and described as visceral
endoderm-like, while XEN cells are derived from blastocyst stage embryos and are described as primitive endoderm-like.
Our analysis suggests that none of these cell lines represent a bona fide single in vivo lineage. Both PYS2 and XEN cells
represent mixed populations expressing markers for several EXEn lineages. Conversely END2 cells, which were previously
characterized as VE-like, fail to express many markers that are widely expressed in the VE, but instead express markers for
only a subset of the VE, the anterior visceral endoderm. In addition END2 cells also express markers for the PE. We extended
these observations with microarray analysis which was used to probe and refine previously published data sets of genes
proposed to distinguish between DE and VE. Finally, genome-wide pathway analysis revealed that SMAD-independent
TGFbeta signaling through a TAK1/p38/JNK or TAK1/NLK pathway may represent one mode of intracellular signaling shared
by all three of these lines, and suggests that factors downstream of these pathways may mediate some functions of the
EXEn. These studies represent the first step in the development of XEN cells as a powerful molecular genetic tool to study
the endodermal signals that mediate the important developmental functions of the extra-embryonic endoderm. Our data
refine our current knowledge of markers that distinguish various subtypes of endoderm. In addition, pathway analysis
suggests that the ExEn may mediate some of its functions through a non-classical MAP Kinase signaling pathway

downstream of TAK1.
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Introduction

Studies in amphibians, avians and mice demonstrate that
endodermal cells play both inductive roles and make important
cellular contributions to organ formation. Endodermally derived
organs such as the liver and pancreas serve important secretory
functions that are required for homeostasis in the adult organism
and because of this, much effort has been exerted in recent years
toward the development of protocols for the directed differenti-
ation of specific endodermal subtypes. Toward these efforts, the
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identification of secreted endodermal factors that mediate their
inductive functions would also be highly desirable. However, these
efforts have been hampered by a lack of markers that efficiently
distinguish one type of endoderm from another. One possible
reason for this is that endoderm constitutes only a small percentage
of cells in the developing embryo, and consequently, slow progress
has been made in the identification of regional specific markers
within the endoderm. Furthermore, it has been noted that there is
tremendous overlap in marker expression between the visceral
extra-embryonic endoderm and the gut endoderm of the embryo.
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Recent efforts to characterize markers that distinguish these
lineages have relied on endoderm derived from ES cell sources
followed by FACS purification with the aid of antibodies that
recognize different types of endoderm [2,3]. While these
approaches have identified multiple lineage restricted endodermal
markers not all of the “hits” have been validated by further
experimentation.

In the mouse it has long been assumed that there are two
distinct phases of endoderm formation such that extra-embryonic
endoderm forms prior to gastrulation and is derived from the
primitive endoderm (Fig. 1G, red), while the definitive endoderm
rises from the epiblast during gastrulation. Prior to gastrulation,
the original primitive endoderm expands with the growing embryo
and becomes subdivided into PE (Fig. 1G, yellow) and VE (Fig. 1G,
green) based on their position relative to the egg cylinder. The VE
itself is further divided into sub-regions, including the anterior
visceral endoderm (AVE) (Fig. 1G, blue). In this study, we
characterize and compare three cell lines that are either derived
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from the primitive endoderm or have been reported to resemble
these primitive endoderm-derived lineages. Three ExEn cells lines
were examined in detail by immunocytochemistry, qRT-PCR and
microarray analysis, using well-characterized markers for ExEn
and definitive endoderm, and a more elaborate panel of putative
ExEn markers, previously identified as distinguishing between
different subtypes of endoderm. These studies confirm that each of
these ExEn cell lines exhibits high molecular correlation to visceral
and parietal endoderm and little or no similarity to definitive
(epiblast-derived) endoderm. This comparative gene analysis also
refines a growing list of markers that have been proposed to
distinguish between VE and DE. By providing a clearer picture of
endodermal subtypes, these studies should assist the development
of experimental protocols that require a distinction between
embryonic and extra-embryonic lineages.

Finally, consistent with our previous embryological studies,
pathway analysis from microarray data reveals that molecules
downstream of TGFbeta-family members are highly represented

Extrasmbryonic ecioderm (EXE) & Epibiast (EP1) ‘_\

Parletal Endoderm (PE)
Primitive endoderm (PrE) Visceral Endogderm (VE)

Anterior Visceral Endogerm (AVE)

Figure 1. Morphological characterization of END2, PYS2 and XEN cells. DIC (1 A-C) and Scanning EM (1 D-F) images of END2 (1 A, D),
PYS2 (1 B, E) and XEN (1C, F) cells reveal morphological details of the cell lines used in these studies. G. Cartoon depicting early endodermal
lineages in the mouse embryo prior to gastrulation. The primitive endoderm (red) forms in the pre-implantation blastocyst stage embryo and
subsequently expands and differentiates into parietal endoderm (yellow), visceral endoderm (green) and anterior visceral endoderm (blue). Visceral
endoderm is also sub-divided into embryonic and extra-embryonic regions based both on location relative to the embryonic/extra-embryonic

junction of the epiblast (grey), fate and marker expression.
doi:10.1371/journal.pone.0012016.g001

@ PLoS ONE | www.plosone.org

August 2010 | Volume 5 | Issue 8 | 12016



in these cell lines and suggests that both SMAD-dependent and
SMAD-independent TGFbeta signaling could mediate the
inductive function of these cell lines.

Results

Extra-embryonic endoderm stem cells (XEN cells) and
PYS2 cells but not END2, express markers characteristic
of the primitive endoderm

END2 and PYS2 cells have been described previously, based on
cell morphology and marker expression [1,4,5], to be similar to
visceral endoderm (VE) and parietal endoderm (PE), respectively.
Because these cells were originally derived from EC cell lines, they
may not represent true endodermal lineages but rather, endo-
derm-like populations. Recently described protocols allow for the
isolation of ExEn stem cells (XEN cells) directly from blastocyst
stage mouse embryos [6], and as such, are more likely to represent
endogenous endodermal cell types. For this study, we derived a
XEN cell line from wild type mouse blastocysts of the ICR strain.
Although each of the three cell lines are relatively flat and exhibit a
cobblestone appearance when confluent, bright field microscopy
reveals that each of the three cell lines is morphologically distinct
from the other two (Fig. 1A—C). Scanning electron microscopy of
cells plated at low density reveals that all three cell types are
rounded in appearance and densely covered with microvilli, with
END2 and PYS2 cells forming large lamellipodia (Fig. 1D-F).
These data demonstrate that, like END2 and PYS2 cells, XEN
cells exhibit an endodermal morphology.

Each of these cell lines was assessed by immunocytochemistry,
for a panel of markers characteristic of the primitive endoderm
including SOX7, GATA4 and GATAG [7,8,9,10]. Both XEN and
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PYS2 cells are recognized by antibodies against GATA4, GATAG,
and SOXY7 (Fig. 2 B, C, E, I, H, I). However, only a subset of
XEN cells express SOX7 (Fig. 2I). By contrast, END2 cells express
only low levels of GATAG (Fig. 2D) and do not express GATA4 or
SOX7 (Fig. 2 A, G). In these studies, PYS2 cells showed the most
uniform expression of these primitive endoderm markers. By
contrast, END2 and XEN cells may represent mixed or fluctuating
populations of primitive endoderm and other lineages since their
expression of these markers was more heterogeneous. In
particular, the failure of END2 cells to express GATA4 and
SOX7, suggests that there are few if any primitive endoderm cells
within this line. While they do exhibit heterogeneous expression of
GATAG it should be noted that this gene also marks other
endodermal subtypes including the VE. The heterogeneity of
END2 cells is also demonstrated by the expression of BMP2,
which is proposed to be a major signaling molecule from the
endoderm [11,12,13,14,15,16,17]. BMP2 is uniformly expressed
in PYS2 and XEN cells (Fig. 2L, M) but only expressed in a small
subset of END2 cells (Fig. 2]). Overall these data suggest that
END2 cells represent a heterogeneous endodermal population
with little resemblance to the primitive endoderm.

Detailed marker analysis demonstrates that END2 cells
are molecularly divergent from XEN and PYS2 cells

To further characterize these cell lines, we used qRT-PCR
(Fig. 3A), to examine a panel of markers representing several ExEn
lineages (Fig. 1G and Fig. 3, insert) including PrE, PE, VE and
anterior visceral endoderm (AVE). Sox7 [7], Pdgfra (18], Gata4
[10], and Gata6 [19] are expressed in the primitive endoderm of
the mouse blastocyst and are thought to be among the earliest
ExEn markers. XEN and PYS2 cells express all of these markers,
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. G L .. P ek 3 : ‘ﬁ v

Figure 2. Inmunocytochemical analysis of EXEn cell lines. Inmunocytochemical analysis of confluent END2 (A, D, G, J), PYS2 (B, E, H, L) and
XEN (C, F, I, M) cells showing the expression of GATA4 (A, B, C), GATA6 (D, E, F), SOX7 (G, H, I) and BMP2 (J, L, M) protein in END2, PYS2 and XEN
cells. Merged images with DAPI staining (blue nuclei in all images) reveal ubiquitous expression of GATA4 and GATAG6 in both PYS2 and XEN cells (B,
C, E, F). SOX7 is ubiquitously expressed in PYS2 cells (H), while XEN cells express SOX7 only in a subset of cells (I). In END2 cells, GATA6 expression is
limited to a small subset of cells (D) while GATA4 and SOX7 are not expressed (A, G). BMP2 is ubiquitously expressed by PYS2 and XEN cells (L, M),

while END2 express BMP2 only in a subset of cells (J).
doi:10.1371/journal.pone.0012016.9002
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Figure 3. Heart inducing cell lines express markers characteristic of several primitive endoderm lineages. A. Summary of Real-Time
PCR on END2, PYS2 and XEN cells. Insert, cartoon showing embryonic lineages assessed, primitive endoderm (reds), parietal endoderm (oranges/
yellows), visceral endoderm (greens) and AVE (blues). The panel of markers assessed include markers for primitive endoderm (Sox7, Pdgfra, Gata4,
Gata6), parietal endoderm (tPA, Krt19, Lamb1 and SPARC), visceral endoderm, (FoxA2, Ttr, uPA and HNF4a), anterior visceral endoderm (Dkk1, Cerl, Hex),
the regionally restricted VE marker Bmp2 and the definitive/pan endoderm marker Sox17. B. Linear regression analysis comparing real-time PCR data
to averaged fluorscence detection in the Illlumina Microarray. 80% of markers that we compared showed strong correlation between the qRT-PCR
data and microarray detection. The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [78] and are
accessible through GEO Series accession number GSE19564 (http://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc = GSE1956).

doi:10.1371/journal.pone.0012016.g003

but END2 cells express only Gata6. Note that all of these markers
are also expressed in derivatives of the primitive endoderm
including the PE and VE and as a consequence, there are no
known markers that are uniquely expressed in the primitive
endoderm. All three cell lines express markers for the PE including
t-type  Plasminogen activator (tPA) [20], Cytokeratin 19 (Kirt19) [21],
Laminin B1 (Lambl) [22] and Sparc [23], although END2 cells
express these at relatively lower levels as compared to the other cell
lines.

We next determined the transcriptional status of markers that
are widely expressed throughout the VE including FoxA42 [24],
Transthyretin (Ttr) [25] u-type Plasminogen activator (uPA) [26] and
Hepatocyte nuclear factor 4, (Hnf4a) [24]. Ttr and uPA are expressed by
all three of these cell lines (although at lower levels in ENDZ2).
Hnf#a is expressed by PYS2 and XEN cells, but not by END2.
FoxA2 is only expressed by PYS2 cells. None of these cell lines
express Vilin (data not shown).

@ PLoS ONE | www.plosone.org

We next assessed markers whose expression is restricted (either
spatially or temporally) within the VE. The extra-embryonic VE
that lies proximally over the extra-embryonic ectoderm of the
mouse embryo (Fig. 1G) expresses Sox7, Sox/7 and also upregulates
alpha fetoprotein (Afp) after gastrulation has been initiated. Prior to
gastrulation, A4fp and Sox!7 also mark the distally positioned VE
that overlies the epiblast (the embryonic VE) (Fig. 1G and 3, insert)
[27]. Of these, Sox7 and Sox!7 are present in both PYS2 and XEN
but not END2 cells. Afp is only expressed in PYS2 cells. Thus,
PYS2 and XEN cells express markers for both the extra-
embryonic VE and the embryonic VE, whereas END2 cells only
expressed panVE markers such as T#.

Finally, we assessed a panel of markers that are spatially
restricted in the VE. Dkk-1 [28], Cerl [29,30,31], and Hex [32] are
all known to be expressed in the AVE of the mouse embryo. As has
previously been shown for XEN cells [6], all three ExEn cell lines
express Hex. PYS2 and XEN cells also express Dkkl. None of the
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cell lines express Cerl (data not shown). Consistent with our
immunocytochemical analysis, BMP2, which is also spatially
restricted within the VE, is expressed by all three of the ExEn
cell lines.

Both the patchy expression of these markers when assessed by
immunoctyochemistry and the relatively lower expression of
mRNAs for these genes when assessed by qRT-PCR, are
consistent with the idea that END2 cells are a heterogeneous
population in which a small subset of cells express markers for the
VE (or more likely, a subtype of VE), whereas PYS2 and XEN
cells are more homogeneous and express a broad array of markers
for the primitive endoderm and its derivatives.

To further analyze these cell lines, we performed a comparative
microarray analysis. To confirm the consistency between the array
data and data collected from qRT-PCR and immunocytochem-
istry analyses, we examined the same panel of markers initially
assessed by qRT-PCR. Averaged fluorescent detection for each
marker was plotted versus qRT-PCR data normalized to Gapdh
and R? values were determined from the line of best-fit.
Importantly, a high degree of correlation is found between the
two data sets, and over 80% of the genes tested had R? values close
to one (Fig. 3B). We found only three notable exceptions. First, ¢PA
showed the same basic trend between qRT-PCR and microarray,
but with low numerical correlation. This could reflect non-specific
amplification by qRT-PCR or a problem with the array probe. In
addition, a single probe for Gata4 is highly recognized in the array
by END2 cells. Gata4, however, is absent in END2 cells by both
qRT-PCR (Fig. 3A) and immunocytochemistry (Fig. 1A). Finally,
Bmp2 is not detected in the array but is highly expressed by PYS2
and XEN cell lines, as assessed by qRT-PCR and immunocyto-
chemistry (Fig. 2 J-M and Fig. 3A). This suggests that these
particular probes may either recognize non-specific transcripts or
splice variants of the target genes and highlights the need for
independent verification of candidates identified by probing
microarrays. Overall, there is significant agreement between
microarray data and our other assays.

Having confirmed a high degree of correlation between qRT-
PCR data and the array, a large-scale analysis of markers for
endodermal cell types was undertaken using microarray data (Fig. 4).
Studies using immunohistochemistry and m situ hybridization
studies have identified a relatively small number of genes that are
differentially expressed in the endoderm. Indeed, many of these
markers are expressed in more than one endodermal subtype. For
example, the primitive endoderm markers used in this study (Gata4,
Gata6, Sox7 and Pdgfro) are also expressed in other endodermal
subtypes. Thus few truly diagnostic markers that distinguish
endodermal subtypes have been identified. Two recent studies
aimed at identifying markers that distinguish between VE and DE
were based largely on comparative analysis of endodermal cell
populations sorted by expression of endodermal markers. First,
Sherwood et al. used differential expression of the epitopes for
EpCAM, Dba and Ssea-# [2]. Later, Yasunga et al. used differential
expression of Goosecord and Sox!7 [3]. Here we sought to analyze
these data sets by comparative analysis of the three ExEn cell lines.
First, we analyzed our array data based on well-characterized
markers for endodermal subsets (Fig. 4). As expected all three of
these cell lines express most of the VE specific markers. Notably, all
three express high levels of Fxyd3, Emp2, Sdc4 and Gata6, suggesting
that these markers, in particular, are highly diagnostic for the VE
fate. By contrast, a second subset of VE markers including 7#r, Dab2,
Pthr] and Cited are highly expressed by PYS2 and XEN cells but not
by END2 cells, suggesting that they mark a specific subset of cells
within the VE. In addition, all three cell lines express the AVE
markers Hex and Dkk1 but not Cerl.

@ PLoS ONE | www.plosone.org
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None of the cell lines express markers reported to be diagnostic
for DE including Cxcr4, Gpel and Tm4sf2 [3]. This would seem to
confirm that these cell lines do not possess characteristics of the
DE and conversely support the notion that these markers are
diagnostic for DE but not ExEn cell types.

We further analyzed these cells for PE markers and found, as
expected based on our previous analysis, that PYS2 and XEN but
not END2 cells show high expression of PE markers. Finally, in
confirmation of our previous findings, XEN cells and PYS2 cells
but not END2 cells express high levels of markers for the primitive
endoderm. In addition, each cell had a specific subset of uniquely
expressed markers that are either higher or lower as compared to
the other two cell lines. Since these cell lines have in other assays
been shown to have inductive effects, such as activating heart
formation [4,5,33,34,35], these differences might be exploited to
identify specific inductive signals within the individual cell lines.

The microarray data were then examined for expression of a
large panel of markers identified in Sherwood e/ al. that are
described as distinguishing between DE and VE (Fig. 5). Many,
but not all, of the pan-endodermal markers are expressed by these
cell lines [9/18 (50%), END2, PYS2 and 7/18 (39%), XEN cells].
These data indicate that a subset of these markers are not truly
pan endodermal but add further support to the characterization of
Sox17, Spink3 Rab 15, Dsg2, Ripk4, AnxA4 and Emb as true pan
endodermal markers. In addition, markers that were described as
VE-enriched are highly expressed in the ExEn cell lines (65%,
END2, 60% PYS2 and 62.5% XEN). By contrast, ExEn cells
express only a small percentage of markers that distinguish DE
from VE (9.6% END2, PYS2, 19% XEN cells). It should be noted,
however that these markers are not exclusive to the DE and VE,
and thus their expression in ExEn cell lines may indicate the
presence of other lineages such as parietal endoderm.

Altogether these findings suggest that all of the cell lines
examined in these studies are similar to extra-embryonic
endodermal lineages and probably represent mixed populations
of PrE derivatives. In addition, microarray analysis reveals distinct
differences between these cell lines. To further understand these
differences, cluster analysis (Fig. 6A) was performed. This
supported the existence of significant molecular differences
between the three ExEn cell lines. The greatest overall differences
were found when END2 cells were compared to the other two cell
lines (PYS2 and XEN). This finding is consistent with our previous
analysis. We also compared the number of genes that are
differentially expressed in pair-wise comparisons of the three cell
lines, confirming our findings from the cluster analysis (Fig. 6B).

Therefore, while demonstrating that the three cell lines exhibit
characteristics of the VE, these studies also highlight the fact that
they do, nonetheless, have significant molecular differences
between them. Since a subpopulation of the VE, the AVE has
been shown to have heart-inducing ability, it is possible that these
molecular differences might also reflect differences in the ability of
these cell lines to activate and/or enhance cardiac differentiation
i ES cells. Indeed both END2 and PYS2 cells have already been
shown to possess heart inducing ability [4,5,33,34,35].

Microarray analysis

To examine the microarray data in more detail, we performed
pathway and tissue expression analysis on a total of 6094
annotated gene IDs that were detected as present in at least one
of the three cell lines (based on a p-value of detection <0.01) using
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) [36,37]. Tissue expression analysis revealed
that the top non-cancer tissue hit for this list of gene IDs was for
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Figure 4. Heat map analysis of well-characterized markers for different endodermal cell types. lllumina microarray data for genes that
are expressed in various endoderm subtypes (depicted as heat maps) includes regionally restricted markers representing the VE, DE, PE and PrE. Each
of the three cell lines expresses markers for VE, PE and PrE. None of the cell lines express markers that are diagnostic for DE. Fluorescence data was

indicated as 0.00 if the p-value of detection was greater than 0.01.
doi:10.1371/journal.pone.0012016.9004

liver (with a p-value of 5.3E-115), which is expected given the high
degree of overlap between markers for the liver and the VE.

To determine the signaling pathways that characterize these cell
lines, the DAVID bioinformatics tool was used to compare the
6094 gene IDs present in the arrays to the BIOCARTA pathways
database. This analysis revealed that the top pathways (not directly
related to cell cycle) in the ExEn lines were the MAP Kinase (p-
value, 2.7E-3) and TGFbeta (p-value, 3.1E-3) signaling pathways.
Gene expression in these pathways was described by comparing

@ PLoS ONE | www.plosone.org

our gene list to the TGFbeta and MAP Kinase pathways described
in the Kyoto Encyclopedia for Genes and Genomes (Fig. 7 and
Fig. 8). A detailed analysis of the TGFbeta pathway suggests that
all three of these cell lines are capable of responding to all known
subgroups of TGFbeta family members (Fig. 7). By comparison, an
analysis of known MAP Kinase signaling pathways suggests that
only XEN cells have a fully intact classical MAP Kinase signaling
pathway since it was the only cell line in which Grb2 is present by
microarray (Fig. 8A). By contrast microarray data suggests that
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Figure 5. Heat map representation of detailed marker analysis. Microarray data of markers distinguishing VE from DE according to Sherwood
et al. [2]. Only a subset of the previously examined pan endodermal markers are expressed in the array. This refines the list of true pan endodermal
markers to include Sox17, Spink3, Rab15, Dsg2, Ripk4, AnxA4 and Emb. “VE enriched” genes indicate factors that were found to be expressed in VE plus
other lineages but not DE. Our analysis suggests that a subset of these factors may not be present in all VE subtypes and thus may represent
regionalized VE markers. “DE enriched” represents genes found, in Sherwood et al. [2], to be expressed in DE and other subtypes but not in VE.
These data strongly suggest that the ExEn cell lines are not similar to DE. Fluorescence data was marked as 0.00 if the p-value of detection was
greater than 0.01.

doi:10.1371/journal.pone.0012016.9005
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END2 and PYS2 cells likely signal through the TAK1/p38/JNK
and the TAK1/NLK pathways. Although we found a better than
80% correlation between microarray and qRT-PCR data, we
decided to confirm the presence or absence of Grb2 expression in
these cell lines by qRT-PCR (Fig. 8B). By PCR, we found that
each of the three cell lines expresses mRNA for Grb2 at similar
levels. Taken together these analyses suggest that each of the three
endodermal cell lines can signal through both classical and non-
classical MAP Kinase signaling pathways.

In addition, we have previously shown [40] that signaling of
TGFbeta family members in the endoderm is required for heart
development. Together these pathway analyses (Fig. 7, 8) reveal
that the effects of TGFbeta signaling could be mediated by either
traditional SMAD-dependent signaling or by a SMAD indepen-
dent pathway involving either TAK1/p38/JNK or TAK1/NLK.

Finally, since END2 and PYS2 cells have been shown to secrete
factors that induce differentiation in ES cells it is likely that XEN
cells will have a similar inductive ability. Before this can be
established, however, it is important to show that XEN cells are
stable when maintained in culture. To address this question, we
collected XEN cells at 70% confluence to ensure that cell density is
equivalent for all analyses over seven passages. We then assessed
the expression of a number of ExEn markers at each passage. In
parallel, XEN cells were passaged in a serum-free medium to
determine if gene expression in these cells is sensitive to culture
conditions (Fig. 9). We found that despite spikes in some markers
at certain passages, that cells grown in standard serum-containing
medium are quite stable over seven passages and that there were
no obvious trends in marker expression during the duration of this
experiment. This suggests that XEN cells are stable in standard
medium for at least short-term culture. When XEN cells are
grown in serum-free medium we again noticed spikes in expression
of some markers at some passages but again found no obvious
trends in marker expression. We did however note that overall
expression of Gata6 and Tir was different between the two culture
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conditions whereas other markers were expressed at statistically
the same levels at most passages.

Discussion

The endoderm makes up only a small percentage of cells of the
early embryo. Cells within the endoderm layers of the early
embryo exist in simple cuboidal or squamous epithelia, making
them difficult to isolate mechanically from embryos. Because of
these challenges to the embryological study of endodermal cells in
the mouse embryo, many recent studies have relied on the use of
endodermal-like cell lines that can mimic the functions of the early
endoderm. For example END2 cells have been shown to enhance
myocardial differentiation of both human and mouse ES cells
[4,33,34] and to mimic the effect of the VE in activating cardiac
formation from the undifferentiated mesoderm from the mouse
embryo [35]. While it is clear from these studies that END2 cells
mimic the effects of the AVE, the fact that they were originally
derived from ECs raises some doubt as to whether they perfectly
recapitulate the endogenous signals secreted by the AVE.

An added complication is the significant overlap between genes
that mark the ExEn and those that mark the DE. This makes the
analysis of in vitro differentiation of endodermal cell types difficult
and thus poses a major hurdle for attempts to derive endodermal
cell types for ES or other sources that might be used for
therapeutic purposes.

Our studies address both of these concerns. First, we have
undertaken an in depth analysis of the newly characterized XEN
stem cells [6] which like the EC-derived END2 and PYS2 cells,
express markers for the AVE. XEN cells can thus can be used to
study the inductive effects that have been attributed to the AVE,
including heart formation, primitive streak initiation and forebrain
induction. In addition, since XEN cells are derived from mouse
blastocysts, it will be possible to derive XEN cells from mice with
deletions of genes thought to be involved in AVE function thereby
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providing an assay to directly test their function in the primitive
endoderm. Finally, by comparing the three related but dissimilar
cell lines, we are able to refine the list of markers that distinguish
between different subtypes of endoderm including those that
distinguish DE from VE.

Inductive and morphogenetic functions of the extra-
embryonic endoderm

Endoderm both embryonic and extra-embryonic has been
shown in various model systems to play an inductive role in the
differentiation of mesodermal and ectodermal tissues that adjoin it.
The VE in particular has been proposed to play important roles in
heart formation, primitive streak formation and the development
of the forebrain.

Studies in amphibian embryos dating back to the 1960s
demonstrate that signals from the pregastrula endoderm support
myocardial differentiation [38,39,40,41,42,43,44,45]. This finding
1s supported by studies that the AVE of the mouse [46] and the
hypoblast of avian embryos [47,48,49], also support cardiac
differentiation. In addition, endoderm isolated from avian
embryos has been shown to enhance cardiac differentiation when
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co-cultured with mouse ES cells [50]. Importantly, these studies
indicate that cardiac specification requires a VE signal only
transiently, from early to mid-gastrulation [47,51,52] and that
signals from the DE are required only later, for proliferation of
cardiomyocytes and the initiation of beating [53]. Thus it will be of
particular importance to separate the molecular signals of the DE
from the VE in order to uncover the specific signals that mediate
endoderm’s ability to activate and later support myocardial
differentiation.

The VE has also been implicated as providing signals required
for streak elongation. This hypothesis has come largely from the
observation of an anterior migration of the AVE just prior to the
onset of gastrulation [54] and studies in avian embryos showing
that rotation of the hypoblast (which is equivalent to the AVE [55])
results in a repositioning of the primitive streak [55,56,57]. A more
in depth molecular analysis of this process has revealed greater
complexity than was previously anticipated. First, removal of the
hypoblast does not eliminate streak formation but rather results in
the formation of multiple streaks. This suggests that the hypoblast
does not activate streak elongation but rather acts to limit streak
formation to a single location [58]. Simultaneously, FGF signaling
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from the hypoblast activates localized expression of genes
associated with the establishment of planar cell polarity and
defines the site of active streak elongation [59].

Finally, two specific observations lead to the hypothesis that
AVE might serve as an inducing population for the vertebrate
forebrain. First, ablation of the AVE of the mouse leads to a loss of
Hesx expression in the anterior neural folds of the mouse (although
other markers assessed were normal) [60]. Second, chimeric
analysis of mouse embryos possessing homozygous deletion of Otx2
[61,62] and Lim! [63] or that are double mutant for Lim/ and
HNF3B [64], suggest that AVE expression of these genes is
necessary for normal axis and forebrain development. Together
these data suggest that signaling from the AVE is necessary for
normal forebrain development. However, the AVE does not
directly activate forebrain differentiation. Grafting of the rabbit
AVE [65] or chick hypoblast to naive epiblast that is capable of
forming neural tissue results in the transient ectopic expression of
neural markers but these markers are not maintained and host
tissues do not form neural plate structures [55]. Similarly, explant
co-cultures of AVE and mouse epiblast do not induce the
expression of anterior neural markers but instead suppress
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posterior neural differentiation [66]. So what is the mechanism
by which VE helps to pattern the forebrain if it does not act as a
forebrain inducer? 1) Transient activation of early neural markers
suggests that the VE may prime the ectoderm for neural
development, 2) The AVE appears to repress posterior develop-
ment and 3) it appears that the VE directs morphogenetic
movements in the ectoderm and mesoderm that are required for
normal axis formation [reviewed in: [55,66]. This hypothesis is
consistent with the hypoblast rotation experiments described in the
previous section.

Together, these studies highlight the importance of the VE
generally and the AVE specifically in the early patterning of the
embryo and subsequent organ formation.

Does the extra-embryonic endoderm make cellular
contributions to endodermal organ formation?

Until recently, the dogma of endoderm formation in the mouse
has asserted that the visceral endoderm that surrounds the
embryonic epiblast prior to gastrulation is actively displaced by
the forming definitive endoderm and contributes only to extra-
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doi:10.1371/journal.pone.0012016.g009

embryonic structures [67]. This conclusion was based largely on
the observation of gene expression patterns showing markers such
as alpha-fetoprotein being lost in the endodermal cells overlying the
epiblast during gastrulation and low-resolution fate mapping
studies. With the advent of multiple lineage labels and time-lapse
live imaging, we have clearly demonstrated that all or most the
visceral endoderm that overlies the pregastrula epiblast is
integrated into the definitive endoderm rather than being
displaced by it. Concomitantly, these cells lose expression of
visceral endoderm markers and gain expression of markers for the
definitive endoderm. This lineage study also demonstrates that
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VE-derived cells contribute to gut formation [27]. This shows that
there are distinct regions of embryonic (EmVE) and extra-
embryonic (ExVE) visceral endoderm with unique fates in the
embryo and suggests that these EmVE cells may contribute to
endodermal organ formation. While none of the ExEn cell lines
that we assessed expressed markers for the definitive endoderm, it
remains to be determined if these cells can be coaxed by the
addition of growth factors to differentiate along definitive
endoderm lineages and adopt fates associated with the gut or its
associated organs. If this turns out to be the case, then in addition
to being a useful tool for the study of the inductive properties of the
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ExEn, XEN cells might also serve a stem population from which to
derive differentiated endodermal cell types.

TAK1/p38/JNK/NLK pathways in these cells types

Above, we presented genetic and embryological data that the
VE acts, in part, to direct cell movements in the embryo.
Consistent with this, we found that each of the three ExEn cell
lines possesses intact pathways for non-classical MAP Kinase
signaling acting through JNK [68] and NLK [69]. Since both of
these factors are associated with planar cell polarity, it supports the
notion that these pathways may play a pivotal role in the
endoderm’s ability to direct morphogenetic movements. Indeed,
JNK Kinase has been shown to be necessary for heart induction
downstream of the non-canonical Wnt, Wntl1 [70]. In addition,
TAKI1, which is immediately upstream of NLK is essential for
cardiac differentiation in P19 [71], and TAK1 [72] and TAB1[73]
mutants show defects in cardiac morphogenesis. It remains to be
determined whether these defects result from a specific endoder-
mal requirement for these signals or arise from a more general
requirement in embryonic tissues. Nonetheless these findings lend
support to a model in which a non-classical MAP Kinase pathway
mediated by TAK1/p38/JNK or TAKI1/NLK mediate some
functions of the endoderm.

Conclusions

Endoderm, both embryonic and extra-embryonic plays impor-
tant morphogenetic functions in the mouse and other vertebrate
embryos. We are only just beginning to refine our understanding
of the different types of endoderm and the molecular mechanisms
by which they mediate their functions in development. Here, we
undertake a thorough analysis of ExEn cell lines to help refine the
list of markers that define various endodermal cell types.
Specifically we provide further characterization of XEN cells [6]
which may serve as a useful tool in the study of ExEn
differentiation and function.

Materials and Methods

Cell Culture

XEN cells were derived from ICR strain blastocyst stage
embryos according to standard procedures [6]. END2 cells were
derived from P19 embryonal carcinoma cell lines [74] and PYS2
cells were derived from 129 strain mice tumor cells [1]. XEN and
PYS2 cells were both maintained in high glucose Dulbecco’s
Modified Eagles Medium (DMEM) devoid of L-glutamine and
sodium pyruvate (Mediatech). DMEM was enriched with 10% ES
qualified Fetal Bovine Serum (GIBCO, lot: A15A00X), 1X
nonessential amino acids (Mediatech), 1X L-glutamine, 1X
sodium pyruvate (Mediatech) and B-mercaptoethanol (Sigma)
was added to the medium to make a final concentration of
0.1 mM. Penicillin and streptomycin were then added in final
concentrations of 100 units/ml and 100 ug/ml, respectively
(Mediatech). This medium is referred to in the text as standard
medium. END2 cells were grown in DMEM/F12 1:1 media
(Mediatech) supplemented with 10% FBS, L-glutamine, non-
essential amino acids and penicillin/streptomycin (Mediatech). To
test for the stability of these cells over several passages and to test
their stability in different media, XEN cells were thawed and
cultured as previously described. Cells were split onto two plates:
one for standard (+ serum) and the other for serum-free culture.
Serum-free medium is comprised of Knockout DMEM (Invitro-
gen), 10% Knockout SR (Invitogen), 1X nonessential amino acids
(Mediatech), 1X L-glutamine, B-mercaptoethanol (Sigma) and
penicillin/streptomycin (Mediatech). Cells were then collected at
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approximately 70% confluence after every passage for a total of 7
passages. RNA was isolated and ¢cDNA was synthesized. qRT-
PCR was performed with various endodermal markers and data
analyzed for changes in marker expression over the 7 passages in
serum containing and serum-free conditions.

Real Time PCR

Cells were collected at 70% confluency, RNA was isolated using
Tri Reagent (Sigma) and cDNA was transcribed using 1 ug RNA
using Quantitect Reverse Transcription Kit (Qiagen). gRT-PCR
reactions were carried out using a 1/20 dilution of template cDNA
in SybrGreen Master Mix (Roche, cat #: 04707516001), on a
Roche LightCycler ® 480 Real-Time PCR Instrument, and
analyzed with the LightCycler 480 software package (version
1.5.0.39). Primers used in this study are as follows:

Alpha-fetoprotein  (Afp):  forward AGCTGACAACAAGG G-
GAGTG, reverse TTAATAATGGTTGTTGCCTGGA; Cerber-
us-like  (Cerl): forward GCAGACCTATGTGTGGA, reverse
ATGAGACATGATCGCTTT; Bmp2: forward TGTGGGCC-
CTCATAAAGAAGC, reverse AGGGTGCAGGCAGGAAACATA; Dkk-
1: forward TACAATGATGGCTCTCTGCAGCCT, reverse TGGTCA-
GAGGGCATGCATATTCCA;  Foxa2: forward CGGCCAGC-
GAGTTAAAGTAT, reverse TCATGTTGCTCACGGAAGAG;
Gapdh: forward AATGGATACGGCTACAGC, reverse GTGCAGC-
GAACTTTATTG; Gatat: forward CATCAAATCGCAGCCT,
reverse AAGCAAGCTAGAGTCCT; Gatab: forward ACCAT-
CACCCGACCTACTCG, reverse CGACAGGTCCTCCAAC-
AGGT; Grb2: forward TTGTGTGTCCCAGTGTGCAA reverse
AGCTCAGCTCATCGTCAGCA; Hex: forward GGAGGCTGA-
TCTTGACT, reverse GTAGGGACTGCGTCAT; Hnf4a: jforward
CGAACAGATCCAGTTCATCAAG, reverse ATGTGTTCTTGCAT-
CAGGTGAG; Cylokeratin 19 (Kit19): forward ATCCAGATAAG-
CAAGACCGAAGT, reverse ATCTGTGACAGCTGGACTC-
CATA; Laminin Bl@Lambl): forward CAGAATGCAGACGA-
TGTTAAGAA, reverse  GGCATCTGCTGACTCTTCAGT;  reverse
AGCGTGTACCCTATTGG, Platelet-derived growth factor alpha (Pdgfra):
forward CCTCAGCGAGATAGTGGAGAAC, reverse AC-
CGATGTACGCATTATCAGAGT; Sox17: forward GGAATC-
CAACCAGCCCACTG, reverse GGACACCACGGAGGAAATGG; Sox7:
Jorward CAAGGATGAGAGGAAACGTCTG, reverse  TCATCCACA-
TAGGGTCTCTTCTG; Spare: forward AGGGCCTGGATCTTC-
TTTCTC, reverse CAAATTCTCCCATTTCCACCT; transthy-
retin (Tir) forward TTCACAGCCAACGACTCTGG, reverse
AATGCTTCAGGGCATCTTCC;  t-type  plasminogen — activator
(tPA): forward CTGACTGGACAGAGTGTGAGCTT, reverse
ACAGAT GCT GTGAGGTGCAG; urokinase-type Plasminogen
actwator (uPa): forward CAGCTCATCTTGCACGAATACTA,
reverse AGATGGTCTGTATGGACCTGGAT; Villinl (Vill): for-
ward TCAAGTGGAGTAACACCAAATCC, reverse CTAGT-
GAAGTCTTCGGTGGACAG.

Immunohistochemistry

Cells were washed with PBS and fixed in 4% PFA 30 minutes,
then blocked with 3% FBS-0.3% Triton in PBS. Primary antibodies
were then added, and incubated overnight at 4°C. Cells were
washed with PBS and blocked for 30 minutes at room temperature.
Secondary antibodies were added and cells were incubated
overnight at 4°C. Finally, cells were washed with PBS and cover
slipped with Vectashield mounting medium containing DAPI.

Scanning Electron Microscopy

Cells were passaged on to gelatin-coated plastic coverslips. A
day later, they were rinsed once with PBS and fixed at room
temperature in 2.5% Glutaraldehyde/2% PFA in 0.075M
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Cacodylate buffer pH 7.5 for one hour. They were then
dehydrated in a graded ethanol series. Cells were then critical-
point dried in a Denton JCP-1 Critical Point Drying Apparatus
and subsequently coated with gold/palladium in a Denton
Vacuum Desk 1V sputter coating system. Imaging was carried
out with Zeiss Field Emission Supra 25 Scanning Electron
microscope.

Microarray Analysis

Total RNA was isolated with Qiagen RNeasy Mini Kit and used
to probe Illumina expression array (MouseWG-6_V2_0_R0_
11278593) in triplicate for each of three heart-inducing cell lines
using Illumina BeadStudio version 3.4.0. The raw Illumina data (9
arrays) was analyzed using Bioconductor packages. The data was
first normalized using LumiExpresso () function. The differentially
expressed genes in each pair-wise comparison were obtained using
Limma_( ) R-package. For gene ontology studies, Illumina probes
were mapped to gene symbol names using__getAnnote.lllumina__
("MouseWG-6_V2_0_R0_11278593_A.bz2") downloaded from
Bioconductor website: http://www.bioconductor.org/download.

Pathway and expression analysis was carried out using DAVID
Bioinformatics Resources 2008 sponsored by the National Institute
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