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Abstract

Background: Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature
and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational
approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for
improvement.

Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify
intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position
weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator
signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of
twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing
bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and
uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic
sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA
locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified
from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs
computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern
analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected
sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 59-ends of these six Northern-
supported sRNA candidates were successfully mapped using 59-RACE analysis.

Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner
algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the
computational specificity analysis we have undertaken suggests that ,40% of sRNAscanner hits with high cumulative sum
of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner
and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification.
sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.
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Introduction

Systematic experimental and computational approaches have

led to the identification of ,92 small RNAs (sRNAs) in Escherichia

coli K12 MG1655 alone [1]. Many sRNAs have been assigned

regulatory roles in the survival and physiology of the organism [2].

Prokaryotic sRNAs are known to play roles in regulation of

sporulation [3], sugar metabolism [4], iron homeostasis [5],

survival under oxidative stress [6], DNA damage repair,

maintenance of cell surface components [7] and regulation of

pathogenicity [8]. Though sRNAs do not code for peptides they

exert their function through antisense modes by RNA–RNA base

pairing [9,10] or by antagonizing target proteins through RNA–

protein interactions [11]. Genomic screens for sRNAs have been

most extensively conducted in the model organisms E. coli K-12

[12,13] and Bacillus subtilis [3]. More recently, significant numbers
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of sRNAs in pathogens such as Staphylococcus aureus [14],

Pseudomonas aeruginosa [15] and Listeria monocytogenes [16] have been

identified, though functional roles of the majority remain to be

determined.

Most computational methods, such as QRNA [17] and

Intergenic Sequence Inspector [18], use intergenic sequence

conservation among related genomes to identify sRNAs. By

contrast, the RNAz [19] and sRNAPredict [15,20] programs

utilize estimated thermodynamic stability of conserved RNA

structures and existing ‘orphan’ promoter and terminator

annotations for sRNA predictions, respectively. Previous studies

by Argaman et al. [12], Chen et al. [21], Pfeiffer et al. [22] and

Valverde et al. [23] had used promoter and terminator signals to

predict sRNAs but did not provide computational scripts for

general use. This study implements a generic transcriptional signal

detection strategy and applies it systematically to obtain repro-

ducible computational results and matching ‘prediction scores’.

Furthermore, sRNAPredict [15,20] and SIPHT [24] require

available promoter information and databases of rho-independent

terminators predicted by TransTermHP [25] to identify sRNAs.

Moreover, sRNAPredict2 requires as inputs sequence and

structure conservation data as identified by Blast and QRNA,

respectively, markedly hampering detection of sRNAs mapping to

non-conserved intergenic sequences. The proposed tool overcomes

these limitations by searching genome sequences for orphan

transcriptional signals and integrating signal co-ordinates to

identify candidate intergenic sRNAs without any pre-require-

ments.

Comparative genomic approaches are restricted to identifying

sRNA candidates located within conserved genomic backbone

regions common to closely related bacteria [26]. However, most

bacterial species have significant cumulative spans of multiple

strain-specific sequences or islands, dispersed along the genome,

many of which play key adaptive and/or pathogenesis-related

roles [27,28]. Indeed, genomic island-borne sRNAs have been

identified in S. aureus [14] and Salmonella enterica serovar

Typhimurium [22,29]. Furthermore, sRNAs transcribed from

strain-specific regions of S. Typhimurium were reported to partake

in complex networks for stress adaptation and virulence regulation

[8,22,28,29] leading Toledo-Arana et al. [8] to emphasize the

need for identification of strain-specific sRNAs in pathogens. S.

Typhimurium is an important food-borne pathogen that causes a

substantial burden of diarrhoeal disease globally. Life-threatening

systemic infections can also occur in those with severe co-

morbidities, at extremes of age and/or with impaired immune

systems.

We have constructed a position weight matrix (PWM) based

tool named sRNAscanner, using E. coli K-12 MG1655 sRNA-

specific transcriptional signals as positive training data, for the

identification of intergenic sRNAs. Experimentally characterized

E. coli sRNA promoters appear to vary slightly in base

distribution frequencies when compared to E. coli mRNA

promoters (Table S1a), though it remains possible that observed

differences may be statistically insignificant. sRNAscanner cut-off

thresholds were identified using the known E. coli K-12 MG1655

sRNAs as a positive dataset [30]. The predictive abilities of

sRNAscanner and sRNAPredict2 [20] were then compared by

analysing 13 bacterial genomes representative of diverse species.

As a specific case study, we analyzed a S. Typhimurium complete

genome sequence and experimentally validated a small set of

previously uncharacterized predictions. Our results strongly

support the accuracy and utility of sRNAscanner as a tool for

the discovery of novel sRNA genes within intergenic regions of

bacterial genomes and hint at the broader power of customized

PWMs as a generic strategy for detection of defined genomic

features in diverse bacterial genomes.

Methods

Summary of the sRNAscanner program
sRNAscanner uses as inputs matching complete bacterial

genome sequence and protein coding table files in standard

FASTA and tab-delimited text formats, respectively, to identify

sRNA genes in intergenic regions. The sRNAscanner suite consists

of algorithms to perform the following functions: (a) construct

PWMs from sRNA-specific transcriptional signals, (b) search

complete genome sequences using constructed PWMs to identify

‘orphan’ intergenic promoter and terminator locations, (c) perform

coordinate based integration of promoter/terminator signals to

define putative intergenic transcriptional units (TU) and (d) select

predicted TUs based on cumulative sum of scores (CSS) values

above a nominated threshold. The CSS value is determined by

summating three individual matrix-specific sum of scores (SS)

values for each candidate TU (see below for calculation of SS

value). sRNAscanner uses pre-computed PWM and the following

pre-defined parameters to predict intergenic sRNAs: promoter

box 1 SS value ($2), promoter box 2 SS value ($2), terminator SS

value ($3), spacer 1 range (defines distance between promoter

boxes 1 and 2; 12–18), spacer 2 range (defines distance between

promoter box 2 and terminator signal; 40–350), Unique Hit value

(200) and CSS ($14). The Unique Hit value identifies potential

TU from a set of overlapping hits based on the presence of closely

located start coordinates mapped within a defined window size

which by default is set at 200 bp. sRNAscanner selects the TU

with the maximum CSS value from each overlapping set as a

unique representative hit for the set. Note: all parameters can be

altered by users as required. Predicted TUs are examined for the

presence of a putative ribosome binding site and initiation codon;

if both signals are identified the TUs are classified as coding for

putative mini-proteins [28]. Remaining TUs are considered to

code for candidate sRNA molecules. A flowchart summarizing the

sRNAscanner algorithm is shown in Figure 1.

Construction of PWMs from training data
sRNAscanner computes a PWM of four rows and x columns for

N input sequences each having x residues; N and x can be any

positive integer. The program uses multiple sequences of sRNA-

specific transcriptional signals in fasta format as input for the

construction of alignment matrices. The alignment matrix

captures the number of occurrences, ni,j, of letter i at position j

across the set of aligned sequences. Subsequently, actual

occurrence values were converted into log-odd scores; values that

reflect the positional weights of each of the four bases (A, T, G, C)

at each position. Frequency calculations and scoring schemes were

adopted from previous algorithms and the positional weights were

derived from the alignment matrix itself. A PWM was then derived

from the above alignment matrix using the following formula (see

Hertz and Stormo, 1999 [31] for details):

ln

nijzpi

� ��
Nz1ð Þ

pi

& ln
fij

pi

In this formula N is the total number of input sequences and pi is

the a priori probability of the letter i occurring at position j of an

input sequence; by definition for a four component system (A, C,

G & T) this expected frequency is 0.25 for each of the four

nucleotides, fi,j = ni,j/N is the frequency of the letter i in position
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j. Importantly, the precise genomic base frequency of the

training or test genomes do not have a role in the construction of

PWM. The log-odd scores are used for the construction of

PWM; the algorithm was implemented using the PWM_create

module of the sRNAscanner program. We have used ten

promoter boxes and twenty one rho-independent terminators

[21] of experimentally-verified E. coli K-12 sRNA genes as

training data to construct PWM1 (promoter box1), PWM2

(promoter box2) and PWM3 (rho-independent terminator)

(Table S1 and Figure S1).

Identification of intergenic sRNA specific transcriptional
units

PWM1, PWM2 and PWM3 matrices were used individually to

scan entire genome sequences, one nucleotide at a time, by a

sliding window method as described previously [31]. The width of

Figure 1. Flowchart illustrating an overview of the sRNAscanner algorithm. The final step was performed using the web-based TargetRNA
[41] utility and/or by comparison of sRNAscanner hits with RNA deep sequencing datasets. The output dataset obtained is shown as the red outlined
box at the bottom of the figure. sRNAscanner hits supported by TargetRNA only are classed as possible sRNA candidates, whilst those supported by
deep seqeuncing are considered as probable sRNA candidates. Details of parameter values used in this study are as indicated in the text.
doi:10.1371/journal.pone.0011970.g001
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each sliding window was equal to the length of its matching input

PWM. The matrix-specific SS value of each DNA sequence

window was calculated by adding the PWM-determined scores

corresponding to each of the respective bases within the window as

described previously [31]. Each successive sliding window was

assigned a SS value and it was compared against a selected

threshold SS value obtained by analysis of the 92 known E. coli K-

12 sRNA genes from the sRNAMap and Rfam datasets (http://

srnamap.mbc.nctu.edu.tw/). sRNAscanner was run with an

arbitrary minimum SS value of 1 for each of the three matrices

to identify potential intergenic TUs which were then compared

manually with the known K-12 sRNA genes to identify

concordant pairs. Using these criteria and no imposed CSS cut-

off, 66 of the 92 known sRNAs were identified as possessing

sRNAscanner-detectable potential transcriptional signals (Table

S2). Re-iterative empirical analyses using progressively higher

matrix-specific SS values were performed to identify matrix-

specific default SS thresholds that sought to maximize sensitivity

whilst minimizing false-positive hits; SS cut-offs determined were

as mentioned previously. Sequences having PWM1-, PWM2- and

PWM3-specific SS values above the threshold scores were selected

as potential promoter box 1, promoter box 2 and terminator signal

hits, respectively. Next, the orientation, relative position and

spacing of PWM-detected hits were examined against pre-defined

allowable ranges for spacer 1 and spacer 2 to identify potential

TUs. Spacer parameters used were based on analysis of the length

and transcriptional signal spacing features of known E. coli and

other Enterobacteriaceae sRNAs. Sequences satisfying both spacer

checks and a selected CSS cut-off value were identified as likely

TUs. The PWM3 SS value was expected to contribute most to the

CSS score as for the known E. coli K-12 TUs detected by the

program, PWM3 scores varied from 4.54–11.19, whilst the top

values for PWM1 and PWM2 were 4.98 and 6.03, respectively.

Importantly, higher SS values on one or both of the other matrices

would not have compensated for a single below-threshold score.

Identified TUs were compared with protein coding annotation

files. Non-redundant, intact, non-overlapping TUs identified

within intergenic regions alone and lacking putative ribosome

binding sites and start codons were reported as probable sRNA-

specific intergenic TUs.

sRNAscanner availabitlity and requirements
Project name: sRNAscanner; Home page: http://bicmku.in:8081/

sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/;

Operating system: Linux/Unix platforms; Programming language:

C++; Compiler: g++/gcc 4.2 or higher; License: GNU GPL.

Bacterial strain and growth conditions
S. enterica Typhimurium wild type strain SL1344 (JVS-1574,

MPIIB culture collection) was used for experimental validation.

For early stationary phase (ESP) and late stationary phase (LSP)

cultures, 25 ml of Luria-Bertani broth was inoculated with a 1/

100 overnight culture and grown at 37uC in a shaking incubator

(220 rpm) in a 100 ml flask. Optical density at 600 nm (OD600)

was monitored. Two ESP cultures (OD600 = 0.5 [OD-0.5],

OD600 = 2.0 [OD-2.0]) and four LSP cultures (3 h [3H], 6 h

[6H], 9 h [9H] and overnight [ON] post-OD600 = 2.0) were

obtained. Approximately 108 ESP (OD600 = 0.5) cells were treated

with mitomycin C (0.5 mg/ml) [SOS], acidic LB (pH 5.4) [Acid]

or cold shock (15uC) [Cold] for 30 min to induce an SOS

response, acid stress or cold shock conditions, respectively.

Abbreviations shown are to describe the eleven growth conditions.

Salmonella pathogenicity island 1 (SPI-1) induced cultures [SPI-1]

were grown with high salt-containing LB broth (0.3 M NaCl) for

12 hours at 37uC/220 rpm in tightly closed tubes. Salmonella

pathogenicity island 2 (SPI-2) induced cultures [SPI-2] were

prepared by inoculating 70 ml of SPI-2 medium [32] in 250 ml

flasks, with 1/100 inoculums grown in SPI-2 medium overnight,

and incubated at 37uC/220 RPM until reaching an OD600 = 0.3.

The above cultures were spun down and the cell pellets mixed with

stop mixture [95% ethanol (v/v), 5% phenol (v/v)] and

immediately frozen in liquid nitrogen.

RNA isolation and Northern blot analysis
Total RNA was prepared from frozen cells using the TRizol

(Invitrogen) method and treated with DNase I (Fermentas) as

described previously [32]. Approximately 10 mg of RNA for each

growth condition was added to 26 RPA buffer and run on 6%

polyacrylamide/7 M urea gels, along with a pUC8 DNA ladder

(Fermentas). After separation RNA was transferred to Hybond-XL

nylon membranes (GE Healthcare) and UV cross-linked. Potential

sRNA transcripts were detected using c-ATP end-labeled

oligonucleotide probes (Table S3).

59 RACE mapping of RNA transcripts
59RACE experiments were performed as described by Vogel

and Wagner [33]. In summary, primary transcripts were treated

with tobacco acid pyrophosphatase (TAP), ligated to A4 RNA

adapters (500 pmol) at the 59ends and reverse transcribed into

cDNA with random hexamers (400 ng) using Superscript II

Reverse Transcriptase (Invitrogen). Next, the first strand of the

cDNA molecule was PCR amplified using an adapter-specific

primer (JVO-0367) and matching sRNA-specific primer (Table

S3). Amplified 59 RACE products were cloned into TOPO

pCR2.1 and sequenced from both ends with M13 primers.

Results and Discussion

Optimization of sRNAscanner with known E. coli K-12
MG1655 (NC_000913) sRNA data

We analysed the E. coli K-12 MG1655 (NC_000913) genome

using pre-defined parameters (see User Guide) and matrices

trained with data from ten promoter boxes and twenty one rho-

independent terminators [21] of experimentally verified E. coli K-

12 sRNA genes. To maximize sensitivity at the expense of

specificity, we ran this analysis without application of a CSS cutoff.

Predicted intergenic sRNA-specific transcriptional units were

compared with the 92 reported E. coli K-12 sRNAs available in

sRNAmap [1] and/or Rfam [34]. Physical locations of 66 of the

92 experimentally-validated sRNAs fully or partially overlapped

with sRNAscanner-identified putative TUs. However, application

of the program without a CSS cut-off led to extremely low

specificity with .2,500 putative intergenic TU identified. Subsets

of known MG1655 sRNA predicted by sRNAscanner and other

computational and experimental methods are shown as a Venn

diagram (Figure 2). The mean and standard deviation of the CSS

of experimentally verified MG1655 sRNA transcriptional units

detected by sRNAscanner were used to define a stringent CSS cut-

off value of 14 (mean + standard deviation = 13.87). Nevertheless,

the substantial overlap between whisker plots of CSS values for the

known sRNAs and the uncharacterized sRNAscanner hits

(Figure 3A) and the fact that these two sets remained unresolved

even when CSS score distributions were plotted as a histogram

(Figure 3B), suggested that many genuine E. coli K-12 intergenic

TUs remained to be experimentally defined or that the matrices

and/or the sRNAscanner algorithm lacked specificity. Interest-

ingly, the single uncharacterized hit outlier with a CSS = 19.56 has

also been predicted by SIPHT (Figure 3A). Lists of sRNAscanner-
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predicted (CSS.14) known and novel candidate sRNA TUs in

MG1655 are as shown (Table S2 and Table S4).

Analysis of sRNAscanner performance characteristics
sRNAscanner was run with the training set derived matrices

and pre-defined parameters. Excluding the 10 sRNAs used to

inform the PWM1 and PWM2 matrices, sRNAscanner (CSS.14)

detected 24% of the known E. coli K-12 sRNA genes [1].

Assessment of the specificity of sRNA prediction tools remains

extremely challenging as there are no gold standards and known

bacterial sRNAs are likely to represent no more than the tip of a

vast ‘RNome’ iceberg. Even experimental validation is problem-

atic as individual sRNA may only be expressed under highly

specific conditions and/or at extremely low levels. We have

attempted to examine the specificity of sRNAscanner through

three bioinformatics approaches. sRNA genes used to inform the

training dataset were included in these subsequent analyses.

Firstly, we have generated a conventional Receiver Operating

Characteristic (ROC) plot [35] based on analysis of the E. coli K-

12 genome (Figure 4A). The set of known K-12 sRNAs predicted

by sRNAscanner were defined as the ‘True positive’ set and the

impact of the full range of CSS cut-off values was assessed. The

ROC plot and related normalized frequency distribution graph

(Figure 4B) suggested a major sensitivity–specificity sacrifice with

there being no classical optimum point; favoring either led to a

marked deterioration of the other. However, even by these criteria

the sensitivity (Sn) – specificity (Sp) performance of sRNAscanner at

CSS.14 (Sn = 32%; Sp = 95%) was comparable to that of

sRNAPredict2 (Sn = 20%; Sp = 96%). Secondly, we compared

the performance of the pre-computed training-set-derived PWMs

with those of randomly generated ‘equivalent’ matrices and used

both sets of matrices to analyse the E. coli K-12 genome sequence.

Equivalent random matrices were generated by randomly

shuffling entire columns within each matrix (R1 random matrices)

(Figure S2), the numbers within individual columns (R2 random

matrices) (Figure S3), and a combination of these two shuffling

strategies (R3 random matrices) (Figure S4). This approach

preserved the precise SS characteristics for matching genuine

and random matrices and allowed the same SS and CSS

thresholds to be used. However, only the R1 random matrices

represented the same combination of nucleotide preferences,

though present in distinct permutations as compared to the

original matrices. The training and random PWM sets were used

to search the E. coli K-12 genome to identify occurrences of each

motif and, through integration of these data, TU-like arrange-

ments. The occurrence frequencies (OF) of individual motifs were

defined as the number of predictions per nucleotide of the

genome. The ratios of OF obtained with the random and

rationally-derived original matrices were expected to be inversely

proportional to the ratios of matrix specificities [36]. However

with the exception of the comparison between the genuine and R1

versions of PWM2, all three training PWM had higher OF than

matching random matrices when applied to the K-12 genome

sequence (Figure 4C). This was most marked for PWM3 with its

three random versions exhibiting less than 20% of the hits

observed with the training set-derived matrix. These data strongly

argued against the random nature of bacterial intergenic DNA

and demonstrated the relative abundance of terminator-like motifs

Figure 2. Venn diagram showing the set of known E. coli K-12 MG1655 sRNA genes detected or missed by sRNAscanner. The program
was run using the training set-derived PWMs and parameters described in the text. The pale green elipse shown in dotted outline highlights the set
of 66 known sRNA genes detected when the program was run without a CSS cut-off threshold. The darker green vertical oval indicates the set of 22
known sRNAs and a further 170 potentially novel intergenic sRNA detected using a CSS.14 cut-off. The sets of known E. coli K-12 MG1655 sRNA
genes predicted bioinformatically by Wassarman et al. [13], Argaman et al. [12] and Chen et al. [21] are shown in blue-, red- and green-outline ovals,
respectively. A further 61 sRNA genes identified through diverse experimental and bioinformatic means are shown in the yellow-outline oval.
doi:10.1371/journal.pone.0011970.g002
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in intergenic regions. Hits identified by the random matrices were

compared with known sRNA regions to identify the number of

known sRNA TUs detected. The stringent requirement for the

correctly ordered, orientated and appropriately spaced occurrence

of each of the three independently detected transcriptional signals

was expected to filter out much of the noise. Indeed, use of the

training dataset-derived PWMs resulted in identification of 66

known sRNA TUs (CSS scores [mean, range]: 12.87, 8.65–17.57),

while use of the R1 random PWM, the best performing of the

random versions, yielded only 14 known sRNA TUs with lower

CSS scores (11.42, 9.77–14.09). The R2 and R3 shuffled matrices

identified 5 and 9 potential sRNA TUs, respectively. Hence, the

training matrices detected more than four times as many known

sRNA TUs but only approximately twice as many total ‘TU’ hits

as the R1 matrices (Figures 4D and 4E). Nevertheless, as the

random matrices yielded up to 68% as many total ‘TU’ hits as the

training set-derived PWMs it would appear that even with a

stringent CSS.14 cut-off, that at best only about 40% of positive

calls were valid. As a third approach, we hypothesized that the

ratio of the numbers of hits obtained with the full complement of

concatenated genuine intergenic DNA to those found on

randomly shuffled intergenic sequences would provide a qualita-

tive measure of specificity. The concatenated sequence comprising

all K-12 intergenic sequences fused end-to-end (VIGS) was

subjected to random nucleotide shuffling to generate ten random

variants (RIGS-1 – RIGS-10). A length distribution histogram of

the ‘sRNA’ hits in the VIGS and RIGS sequences is shown in

Figure 4F. Consistent with a moderate level of specificity, the

concatenated native intergenic sequence yielded approximately

three times as many hits as those identified on the ‘average’

random intergenic sequence (435 vs 152) (Table S5). Use of future

additional filters and/or genus-adapted PWMs may lead to

incremental increases in specificity, perhaps with minimal loss of

sensitivity. For example, TransTermHP-2.07-predicted rho-inde-

pendent terminators in E. coli K-12 and S. Typhimurium LT2

typically exhibited PWM3 scores of $6 as opposed to the PWM3

minimum score criterion of .3, suggesting a possible route to

specificity gain.

Head to head comparison of sRNAscanner and
sRNAPredict2

A diverse group of bacterial genome sequences representative of

Enterobacteriaceae, Vibrionaceae, Pseudomonadaceae, Bacillaceae, Clostridia-

ceae, Chlamydiaceae and Lactobacillaceae were analyzed using sRNAs-

canner. Intergenic transcriptional unit data derived from sRNAs-

canner analyses were compared with previously reported

sRNAPredict2 results [20]. Manual curation of these predictions

identified partial or complete overlaps with known sRNAs.

sRNAscanner (CSS.14) and sRNAPredict2 detected a total of

180 (Sn = 31.3%) and 184 (Sn = 32%) known sRNA genes,

Figure 3. Distribution of sRNAscanner cumulative sum of scores (CSS) for known sRNA and uncharacterized hits in E. coli K-12
MG1655. The program was run using default parameters mentioned in the text. (A) The lower and top boundaries of the whisker plot boxes
represent the 25th and 75th quartiles, respectively. The vertical lines extending from the boxes indicate the full range of the remaining CSS values with
the exception of a single outlier, indicated as a cross, for the uncharacterized hits plot. (B) Histogram showing the CSS distributions of the two sets of
sRNAscanner hits.
doi:10.1371/journal.pone.0011970.g003
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respectively, across all 13 bacterial genomes investigated (Table 1).

However, across the genomes analyzed 0 to 23 known sRNAs per

genome, comprising a total of 88 known sRNAs, were predicted

uniquely by sRNAscanner. By comparison, 92 known sRNAs were

predicted uniquely by sRNAPredict2. However, sRNAPredict2

yielded appreciably more uncharacterized hits than sRNAscanner

(2953 vs 2344), suggesting a higher signal-to-noise ratio for the

latter. Similarly, large numbers of novel hits missed by

sRNAPredict2 were predicted by sRNAscanner, and vice versa.

Indeed, combined use of the two tools may potentially offer a

degree of cross-validation. However, sRNAscanner as optimized

presently appeared to be more appropriate for the analysis of

Figure 4. The three approaches used to estimate the specificity of sRNAscanner. Conventional ROC (A) and normalized frequency
distribution (B) plots were generated following analysis of the E. coli K-12 genome. The brown line in (A) denotes the point on the ROC curve which
corresponds to CSS = 14. For these analyses, the set of 92 known sRNA were defined as the true positive set. Random matrices-based specificity
analysis data are shown in panels (C), (D) and (E). (C) Histogram indicating the occurrence frequencies or predictions per nucleotide of intergenic hits
with each of the three training set-derived matrices and the matching R1, R2 and R3 randomly shuffled versions of these matrices. The test genome
sequence analysed was that of E. coli K-12 MG1655. (D) Graph showing the numbers of known MG1655 sRNA TU predicted by sRNAscanner within
each of five CSS ranges plotted against the mid-point CSS value for the CSS range when the program was run with the training set-derived PWM or
each of the three matching sets of random PWM in turn. (E) Bar graph showing the total numbers of hits (known and uncharacterized) predicted by
sRNAscanner when the program was run with the training set-derived PWM and each of the matching random PWM. (F) Histogram showing the
distribution of candidate ‘sRNA TUs’ predicted by length of sRNA within a composite sequence comprising concatenated intergenic sequences from
E. coli K-12 (VIGS) and ten randomly suffled variants on this sequence (RIGS-1 – RIGS-10).
doi:10.1371/journal.pone.0011970.g004
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genomes of Enterobacteriaceae and other medium/low G+C

organisms. sRNAscanner sensitivity versus known sRNAs ranged

from 51% for Clostridium tetani E88 (28.6% G+C) to 24% for

Salmonella Typhi CT18 (51.9% G+C) to 0% for Mycobacterium

tuberculosis CDC1551 (65.6% G+C). Detailed lists of known and

putative sRNA regions predicted by sRNAscanner in the above

genomes are provided as supplementary data files (see Table S4

and File S1).

Identification of novel sRNAs in Salmonella enterica
Typhimurium SL1344

Analysis of the S. Typhimurium LT2 genome using sRNAs-

canner under default conditions yielded a total of 38 known and

118 novel candidate sRNAs (Figure 5, Table S4). The genomic

locations of the 118 novel sRNA candidates were compared with

putative intergenic transcripts detected in deep sequencing

libraries derived from Hfq-co-immunoprecipitated RNA obtained

from S. Typhimurium SL1344 grown under multiple conditions

[32,37,38] [unpublished data, J. Vogel]. S. Typhimurium SL1344

was used for all subsequent experimental validation as no

comparable RNA deep sequencing dataset was available for S.

Typhimurium LT2. Sixteen novel sRNA candidates were detected

by both sRNAscanner and deep sequencing analysis (Table 2).

Northern and 59 RACE based verification of novel sRNAs
predicted by both sRNAscanner and deep sequencing

Northern blot experiments using oligonucleotide probes target-

ing the 16 novel sRNA candidates mentioned above were

performed (Table S3). RNA samples were harvested from cells

grown and/or subjected to eleven different growth conditions. Six

of the candidates (sRNA1, sRNA3, sRNA6, sRNA8, sRNA10 and

sRNA12) yielded distinct Northern-detectable transcripts of

broadly similar sizes to the sRNAscanner-predicted entities

(Figure 6). The additional non-specific bands seen with sRNA3-,

sRNA6- and sRNA8-specific probes may comprise degraded and/

or processed forms of the matching sRNAs or overlapping mRNA

Figure 5. Venn diagram showing the numbers of known sRNAs in Salmonella Typhimurium LT2 that have been identified or
reported by Pfeiffer et al. [22], Papenfort et al. [39] and Rfam [34], Padalon-Brauch et al. [29] and Sittka et al. [32,38]. The circles shown
in red dotted outline and green solid outline, excluding the central pale green curve-sided triangular area, indicate the numbers of known sRNAs
predicted by sRNAscanner without and with the use of a CSS cut-off (CSS.14), respectively. The central pale green curve-sided triangular area,
including the innermost circle outlined in purple, represents the 118 novel, intergenic, non-overlapping candidate sRNAs predicted in this study; the
innermost circle outlined in purple represents the 16-member subset comprising sRNA candidates found to have likely mRNA transcripts by
comparison with RNA deep sequencing datasets [32,38]. The $ superscript symbol indicates the five candidates belonging to both the Pfeiffer et al.
[22] and Sittka et al. [32,38] sets; the asterisk symbol denotes the one sRNA candidate mapping to the Padalon-Brauch et al. [29], Papenfort et al. [39]
and Sittka et al. [32,38] sets.
doi:10.1371/journal.pone.0011970.g005
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transcripts. Given the above assumption, sRNA1 and sRNA12

were expressed under all growth conditions tested; sRNA8 and

sRNA10 were detected in late stationary phase samples only,

whilst sRNA3 appeared to be induced specifically under cold

shock conditions. The sRNAscanner-predicted sRNA6 overlapped

with a previously proposed processed 59UTR fragment of the yhiI

transcript [38] that was likely to match the transcript we detected

under ESP-2.0 conditions. However, in this study the sRNA6 locus

was also found to express a distinct ,70 nt transcript found under

LSP and SPI-1/SPI-2 inducing conditions only.

The 59ends of six candidate sRNA transcripts corresponding to

the same Northern-supported candidates were successfully

mapped by 59RACE analysis. The 59 RNA termini identified for

sRNA1, sRNA6 and sRNA10 were coherent with computationally

predicted transcriptional start sites but start-sites of the remaining

three candidates varied significantly from those predicted by

sRNAscanner (Table 2). The extents of overlap between sRNA

predicted entities, deep sequencing identified sequences and

59RACE mapped start-sites are shown schematically in Figure 6;

Northern-detected transcripts were excluded as their precise

locations could not be conclusively inferred on the basis of

available data.

Potential biological significance of sRNAscanner
predictions for Salmonella Typhimurium

Recent discoveries of three sRNAscanner identified hits that

had originally been classified as novel provide further biological

validation of this algorithm; sRNA17, sRNA20 and sRNA29 are

now known as isrM [29], STnc410 [22] and rseX [39,40],

respectively. As many functionally characterized sRNAs are

antisense regulators of cognate mRNA targets [41], we hypoth-

esized that the presence of a matching TargetRNA hit may allow

for more reliable identification of genuine sRNAs. However, we

emphasize that bioinformatically-derived predictions of sRNA–

mRNA interactions remain fraught with problems. Consequently,

pending experimental validation by gel-shift assays or other

methodologies TargetRNA data need to be treated as truly

putative. We identified 22 sRNAscanner hits with TargetRNA-

identified potential mRNA targets (Figure S5); five had also been

detected in the deep sequencing dataset (Table 2). Several

TargetRNA-identified genes play roles in pathogenesis. sRNA18

putatively targets STM1403 that codes for SscB, a type III

secretion system (T3SS) chaperone encoded by Salmonella patho-

genicity island 2 (SPI-2). SscB is needed for normal secretion and

function of the SseF T3SS effector, which in turn is required for

Salmonella-induced epithelial cell filamentation and bacterial

proliferation in macrophages [42]. sRNA33 is believed to regulate

ssaP, which is postulated to code for part of the SPI-2 T3SS

translocon apparatus itself [43]. sRNA23 is predicted to regulate

RcsF which has been proposed as one of two proximal membrane-

located sensors for the Rcs phosphorelay signal transduction

system that coordinately regulates expression of SPI-1/SPI-2,

flagellar, fimbrial and capsule-related colonic acid synthesis genes

[44]. sRNA28 is hypothesized to target stiB, a fimbrial chaperone

gene, potentially allowing for sRNA28-based fine-tuning of Sti

fimbriae expression [45]. sRNAs have also been shown to regulate

S. Typhimurium outer membrane protein (OMP) profiles in

response to envelope stress [46] or nutrient availability [39].

Similarly, sRNA29 and sRNA7 are predicted to interact with

OMP-encoding genes (Table 2). Clearly, data supported solely by

sRNAscanner and TargetRNA bioinformatics predictions remain

speculative and robust experimentation would be required to

validate these prior to drawing firm conclusions.

b
,c

sR
N

A
sc

an
n

e
r-

p
re

d
ic

te
d

tr
an

sc
ri

p
t

co
o

rd
in

at
e

s
an

d
le

n
g

th
(n

t)
.

d
G

e
n

e
s

fl
an

ki
n

g
ca

n
d

id
at

e
sR

N
A

lo
ci

o
b

ta
in

e
d

fr
o

m
K

EG
G

g
e

n
o

m
e

m
ap

s.
e
5

9e
n

d
s

o
f

th
e

p
ri

m
ar

y
tr

an
sc

ri
p

ts
id

e
n

ti
fi

e
d

u
si

n
g

5
9R

A
C

E
e

xp
e

ri
m

e
n

ts
.

f St
ab

le
tr

an
sc

ri
p

ts
id

e
n

ti
fi

e
d

b
y

N
o

rt
h

e
rn

an
al

ys
is

in
th

is
o

r
o

th
e

r
re

ce
n

t
st

u
d

ie
s.

g
T

h
e

m
id

d
le

ar
ro

w
h

e
ad

re
p

re
se

n
ts

th
e

o
ri

e
n

ta
ti

o
n

o
f

th
e

sR
N

A
g

e
n

e
;

le
ft

an
d

ri
g

h
t

ar
ro

w
h

e
ad

s
in

d
ic

at
e

o
ri

e
n

ta
ti

o
n

s
o

f
fl

an
ki

n
g

g
e

n
e

s.
h
P

o
te

n
ti

al
p

ri
m

ar
y

m
R

N
A

ta
rg

e
t

id
e

n
ti

fi
e

d
u

si
n

g
th

e
T

ar
g

e
tR

N
A

to
o

l
[4

1
].

i G
e

n
B

an
k

fu
n

ct
io

n
al

an
n

o
ta

ti
o

n
s

o
f

th
e

p
u

ta
ti

ve
ta

rg
e

t
m

R
N

A
s.

l R
e

fe
re

n
ce

s
re

le
va

n
t

to
th

e
p

re
d

ic
te

d
ta

rg
e

t
g

e
n

e
s

an
d

/o
r

th
e

re
ce

n
tl

y
in

d
e

p
e

n
d

e
n

tl
y

id
e

n
ti

fi
e

d
/p

re
d

ic
te

d
sR

N
A

s;
Fu

ll
d

e
ta

ils
o

f
re

fe
re

n
ce

s
in

d
ic

at
e

d
w

it
h

‘R
’

ar
e

p
ro

vi
d

e
d

in
Su

p
p

o
rt

in
g

In
fo

rm
at

io
n

(F
ile

S2
).

m
N

T
,

d
e

n
o

te
s

n
o

t
te

st
e

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
1

1
9

7
0

.t
0

0
2

T
a

b
le

2
.

C
o

n
t.

Discovery of Bacterial sRNAs

PLoS ONE | www.plosone.org 11 August 2010 | Volume 5 | Issue 8 | e11970



Figure 6. Total RNA was isolated from Salmonella Typhimurium SL1344 grown under eleven different conditions and subjected to
Northern blotting using candidate sRNA-specific oligonucleotide probes. Details of growth conditions examined are outlined in the
Materials and Methods section. The curved arrows indicate the six putative Northern-detected transcripts mapping to loci predicted by sRNAscanner.
Additional bands seen for sRNA3, sRNA6 and sRNA8, are believed to represent degradation and/or processed forms of cognate sRNAs or overlapping
mRNA transcripts. The to-scale schematics shown below each gel image indicate sRNAscanner-predicted TUs (red/black/blue), deep sequencing
identified transcripts (orange line) and 59RACE-defined transcript start-sites (vertical black arrow). The yellow boxes indicate the probes used to detect
transcripts by Northern blot experiments. Red boxes represent putative promoter sequences; blue boxes indicated putative terminator sequences.
doi:10.1371/journal.pone.0011970.g006
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Conclusions
We have developed and implemented a simple PWM-based

strategy for the discovery of intergenic sRNA genes. Despite use of

a small, single species-derived training set, we have demonstrated

the major utility of sRNAscanner to predict large numbers of

potential sRNA genes in diverse bacterial species. Undoubtedly, it

is vital to further experimentally validate the predictive accuracy of

sRNAscanner and other sRNA prediction programmes using

Northern blot analysis, ultra-high-density cDNA sequencing

[37,38] and other emerging tools. Nevertheless, caution is

advisable in interpretation of results as each experimental method

has its own strengths and weaknesses. Furthermore, transcriptional

signals would be expected to vary considerably between

phylogenetically distant organisms. Consistent with this idea, we

found that the E. coli-derived PWMs used in this study performed

well with medium and low GC genomes but not with high GC

genomes. Consequently, we propose that an organism-targeted

approach is likely to lead to significantly enhanced performance

characteristics. Importantly the tool developed and the strategy

proposed would allow users to generate individualized PWMs

based on species-, genus- or family-derived training sets to better

identify sRNA genes in selected bacterial organisms. In addition, a

reiterative process of PWM optimization and selection of

rationally informed cut-offs based on newly discovered and

validated sRNAs may allow for progressively higher levels of

specificity without excessive loss of sensitivity. Finally, we propose

that PWM-based scanning strategies may in time prove to be a

powerful way of revealing other cryptic codes not only in DNA but

in protein molecules as well.
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