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Abstract

Recent studies have suggested that ribosomal protein S12 modulates 16S rRNA function and susceptibility to 2-
deoxystreptamine aminoglycosides. To study whether the non-restrictive K42R mutation in RpsL affects 2-deoxystreptamine
susceptibility in Mycobacterium smegmatis, we studied the drug susceptibility pattern of various mutants with genetic
alterations in the 16S rRNA decoding A-site in the context of wild-type and mutant protein S12. RpsL K42R substitution was
found not to affect the drug resistance pattern associated with mutational alterations in 16S rRNA H44.
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Introduction

Ribosomal protein S12 is a critical component of the A-site of

the 30S ribosomal subunit and is involved in both tRNA selection

and resistance to streptomycin [1,2]. Mutations in rpsL coding for

ribosomal protein S12 are known to affect ribosomal accuracy to

various extents, resulting in what is characterized as error-

restrictive or non-restrictive S12 alterations [3]. Streptomycin

inhibits protein synthesis and makes ribosomes error prone by

affecting initial tRNA selection and proofreading [4]. Mutations in

S12 confer streptomycin resistance by preventing streptomycin

binding and/or conferring ribosomal hyperaccuracy; a strongly

hyperaccurate phenotype may even manifest as streptomycin-

dependence [2]. Various substitutions at positions 42 and 87 are

associated with streptomycin resistance. In particular, mutations

Lys42 R Arg, Ala or Thr promote high levels of streptomycin

resistance; among those Lys42Arg has a non-restrictive phenotype

[3], whereas Lys42Ala and Lys42Thr are strongly error-restrictive

[3,5,6]. S12 substitutions Lys87 R Gln or Gly confer different

degrees of streptomycin resistance [7,8]. The homologous

mammalian ribosomal proteins carry Gln-87 (human mitochon-

drial ribosomes) or Gly-87 (human cytoplasmic ribosomes) in part

accounting specificity of drugs for prokaryotic ribosome [7].

More recently it has been suggested that ribosomal protein S12

modulates 16S rRNA function and susceptibility to 2-deoxystrep-

tamine aminoglycosides [5,6]. 2-deoxystreptamine aminoglyco-

sides are composed of a common core, termed neamine, in which

position 4 of a 2-deoxystreptamine ring (ring II) is attached to a

glycopyranosyl ring (ring I). Additional sugars are attached to

position 5 or 6 of the 2-deoxystreptamine moiety to give rise to

4,5- or 4,6- aminoglycosides (see Supplementary Fig. S1). In 4,5-

aminoglycosides, the core is further substituted by one (ribosta-

mycin), two (neomycin, paromomycin) or three (lividomycin)

additional sugars attached to position 5 of ring II, whereas in 4,6-

aminoglycosides (gentamicin, tobramycin, kanamycin, etc.) the

core is further substituted by one additional sugar attached to

position 6 of ring II. The drug binding pocket for these compounds

consists of an internal loop of 16S rRNA helix 44 – the decoding

A-site of the ribosome [9]. We have previously performed

extensive genetic studies of 16S rRNA helix 44 in Mycobacterium

smegmatis to address the role of individual rRNA residues in drug

binding (reviewed in [10]). These studies have been conducted

mainly in the genetic background of a non-restrictive K42R

mutation in ribosomal protein S12 [10–16]. The K42R mutation

confers high-level resistance to streptomycin and was used as

counter-selectable marker in strain construction [15]. The recent

reports on the interplay of S12 on 16S rRNA function and

susceptibility to 2-deoxystreptamine aminoglycosides prompted us

to study in detail the role, if any, between RpsL K42R and

mutational alterations in 16S rRNA helix 44 conferring resistance

to 2-deoxystreptamines. We find that the non-restrictive RpsL

K42R mutation does not affect the 2-deoxystreptamine suscepti-

bility of various rRNA mutations in M. smegmatis H44.

Results and Discussion

Generation of M. smegmatis strains with mutations in S12
and 16S rRNA

M. smegmatis was the first eubacterial model organism that was

made single rRNA allelic by means of deletion mutagenesis and

that allowed for genetic studies of its ribosomal RNA [16]. As a

gram-positive mesophilic bacterium, M. smegmatis is susceptible to a

number of ribosomal antibiotics and sets itself apart from other

model organisms by being a close representative of clinically
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relevant pathogenic bacteria. Early genetic studies on susceptibility

to 2-deoxystreptamine aminoglycoside antibiotics relied on M.

smegmatis strains with a K42R mutation in ribosomal protein S12

[10–16]. To substantiate the results and conclusions drawn from

these early studies, we constructed a comprehensive set of M.

smegmatis rRNA mutants in the context of both a wild-type and a

mutant S12 (Table S1). The set of 16S rRNA mutants includes

alterations of positions 1408 (A1408G), 1491 (G1491C; G1491U;

G1491A) and 1409 (C1409U; C1409G).

Aminoglycoside susceptibility of M. smegmatis mutants
Aminoglycoside susceptibility of the mutant strains was

determined by minimal inhibitory concentration (MIC) assays.

Representatives for each of the two disubstituted 2-deoxystrepta-

mine subclasses were included: the 4,5-disubstituted 2-deoxystrep-

tamines paromomycin and neomycin and the 4,6-disubstituted 2-

deoxystreptamines gentamicin, tobramycin and kanamycin. The

results are presented in Table 1.

Among all A-site mutations that confer aminoglycoside

resistance, the A1408G mutation is the most significant. In M.

smegmatis, the A1408G mutation confers moderate resistance to

paromomycin (69 OH) but high level resistance to 2-deoxystrepta-

mine aminoglycosides with an amino group at the 69 position of

ring I. A key element in drug binding is the pseudo base-pair

interaction between the ring of the aminoglycosides I and A 1408

[13,17,18]. In case of an adenine, the oxygen of ring I accepts a

hydrogen bond from the N6 of A1408, and the amino or hydroxyl

group at position 69 donates a hydrogen bond to the N1 of

adenine, accounting for two direct hydrogen bonds between ring I

and A1408 (Fig. 1). In case of a 1408 guanine, the 69 amino group

of ring I can no longer form an H bond with the Watson-Crick

edge of residue 1408. Additionally, the positive charge of the 69

amino group creates repulsion against the N1 and N2 amino

groups of guanine. As a consequence, the A to G mutation

prevents aminoglycoside binding by precluding the proper

insertion of ring I into the binding site. In contrast, a 69- hydroxyl

group, as in paromomycin could still become an acceptor of an H

bond from N1 or N2 of the guanine, although the resulting pseudo

base pair does not appear to promote optimal insertion of ring I, as

indicated by decreased ribosomal drug susceptibility.

The Watson–Crick base pair C1409–G1491 forms the base of

the drug binding pocket. In the crystal structures [17,18], G1491

provides a stacking interaction with ring I of the aminoglycosides,

thereby stabilizing the pseudo base-pair interaction of ring I with

A1408 (Fig. 1). Among all mutations investigated affecting base-

pair interaction C1409-G1491, the transversion mutations

G1491C and G1491U (resulting in pyrimidine-pyrimidine oppo-

sitions) confer the highest level of resistance, in particular to

paromomycin. Presumably, a pyrimidine-pyrimidine opposition

provides a conformation that sterically hinders the correct

positioning of ring I. A pyrimidine-purine opposition is retained

following transition of G1491 to A resulting in C1409–1491A.

This mutational alteration apparently interferes less with drug

binding, as indicated by the drug susceptibility pattern of the

mutants. The C1409U mutant shows little resistance to amino-

glycosides. Nucleotide C1409 is not involved directly in drug

binding, but is responsible for the correct orientation of nucleotide

1491, as 1409 and 1491 form a Watson–Crick base pair. The

mutant wobble-base pair interaction 1409U–G1491 is likely to

show conformational characteristics resembling those of the wild-

type C–G. Mutation C1409G leads to a purine–purine opposition

1409G–G1491 in which the exact nature of interaction is difficult

to predict. Surprisingly, the resistance levels conferred by this

mutation are low to moderate. In general, sequence alterations in

C1409-G1491 while mostly affecting the 69 OH paromomycin do

not discriminate between 4,5- and 4,6-aminoglycosides [10]. This

is in agreement with the structural observation that ring I binds in

the same orientation irrespective of the substituents at the 2-

deoxystreptamine ring [18].

Strains with mutations in 16S rRNA residues 1408, 1409 and

1491 show a mutation-specific drug susceptibility pattern that is

independent of the amino acid residue 42 in ribosomal protein S12

(wt vs K42R, see Table 1) and that corresponded to previously

published data [12]. These results demonstrate that the K42R

mutation in ribosomal protein S12 does not affect the susceptibility

of M. smegmatis H44 mutants to 2-deoxystreptamines. Notably, this

Table 1. Drug susceptibility of M. smegmatis 16S rRNA mutants: wild-type S12 versus K42R.

16S rRNA residues S12 MIC (mg/mL) Reference

1408 1409–1491 Pm Nm Gm Tb Km

A C;G wt 1 0.5 1 1 0.5–1 this study

A C;G K42R 1 1 1 1 0.5–1 [13]

G C;G wt 64 .1024 .1024 .1024 .1024 this study

G C;G K42R 64 $1024 .1024 .1024 .1024 [12]

A C ? C wt 512 16 16–32 16 16–32 this study

A C ? C K42R 512 16–32 16–32 16–32 16–32 [12]

A C ? U wt 512–1024 8–16 32–64 64 64–128 this study

A C ? U K42R 512 8–16 32 32–64 128 [12]

A C ? A wt 32–64 2 2 2 1–2 this study

A C ? A K42R 32 4 2 4 2 [12]

A U ? G wt 4–8 0.5–1 8 8–16 8–16 this study

A U ? G K42R 4–8 1 8–16 8–16 16 [12]

A G ? G wt 32–64 4–8 1–2 8–16 32–64 this study

A G ? G K42R 16–32 4 2–4 8–16 16–32 [12]

Pm, paromomycin; Nm, neomycin; Gm, gentamicin; Tb, tobramycin; Km, kanamycin A.
doi:10.1371/journal.pone.0011960.t001

Mutation K42R in R-Protein S12
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finding is not fully congruent with a previous finding in E. coli

where K42R (the rpsL226 allele) reportedly modulated the level of

paromomycin resistance of a G1491U mutant [19].

To study whether the different findings reported for E. coli are

due to phylogenetic differences in the decoding-site rRNA, we

constructed M. smegmatis with a proteobacteria-like helix 44

(Fig. 2). M. smegmatis and E. coli differ in 16S rRNA residues

1410–1490 and 1411–1489: 1410–1490 G-C (M. smegmatis) versus

A-U (E. coli), 1411–1489 U-A (M. smegmatis) versus C-G (E. coli).

We found that the various H44 mutations (A1408G, G1491A,

G1491C, G1491U) resulted in identical drug susceptibility

patterns regardless of a mycobacterial and proteobacterial H44

sequence context at residues 1410–1490 and 1411–1489 (data not

shown).

Structural analysis of K42 mutations
Crystal structures of streptomycin bound to the small ribosomal

subunit of T. thermophilus [17] have revealed two direct hydrogen

bonds between streptomycin and the lysine residue 42 of

ribosomal protein S12 (Fig. 3A, 3B). K42 forms an additional

contact to the phosphate backbone of 16S rRNA helix 27 (H27)

via a salt bridge to the phosphate group of residue A913.

Superimposition of the K42R substitution disrupts the hydrogen

bonding to streptomycin (Fig. 3C), accounting for the streptomy-

cin resistance of K42R mutants. However, amino-acid substitution

K42R leaves the salt bridge to H27 intact (Fig. 3C). Thus, the

general structure of the A-site remains intact and rate and fidelity

of translation remains unaffected [17]. This is in agreement with

the observation that K42R is the only known mutation in S12 that

Figure 1. Stacking interaction of ring I with G1491 and pseudo-base pairing of ring I with A1408. The hydrogen bonding contacts
between ring I and A1408 are indicated by black broken lines.
doi:10.1371/journal.pone.0011960.g001

Figure 2. Secondary structure of 16S rRNA helix 44 in the ribosomal decoding site. (A) Decoding site of E. coli wild-type (Proteobacteria).
Four nucleotide positions depicted in green represent residues that are specific for E. coli 16S rRNA. (B) Decoding site of M. smegmatis wild-type
(Mycobacteria). (C) Decoding site of M. smegmatis mutagenised to correspond to the polymorphism observed in E. coli i.e., Eco4.
doi:10.1371/journal.pone.0011960.g002

Mutation K42R in R-Protein S12
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confers streptomycin resistance but at the same time does not

result in a hyper-accurate (i.e. restrictive) phenotype [3].

In contrast to K42R, mutations K42A or K42T disrupt the salt

bridge to H27 (Fig. 3D, 3E). This mostly accounts for the

restrictive phenotype of these mutations [17]. While K42A does

not interfere with the binding of paromomycin directly [5], the

hyperaccurate phenotype of the variant K42A ribosome in part

functionally antagonizes aminoglycoside-induced misreading.

Thus, these ribosomes show paromomycin-induced misreading

only at much higher drug concentrations compared to wild-type

[5].

Conclusions
Our data demonstrate that K42R in ribosomal protein S12 does

not affect resistance to 2-deoxystreptamine aminoglycosides as

conferred by 16S rRNA mutations in H44, and that S12 most

likely plays little role in the species-specific pattern of susceptibility

to 2-deoxystreptamines. This conclusion is supported by the

Figure 3. Three-dimensional crystal structure of T. thermophilus ribosomal decoding A-site with bound paromomycin and
streptomycin. (A) General view of the A-site. Amino-acid residues of S12 (green) are shown labelled according to atoms: carbon – green, nitrogen –
blue, oxygen – red. 16S rRNA helices are indicated as follows: H44 strand I (pink), H44 strand II (magenta), H27 (violet), H18 (orange). Streptomycin
(light blue) and paromomycin (yellow). (B) Close up of wild type K42. Hydrogen bonds to streptomycin (black dotted lines) and salt bridge to A913
(red dotted line) are shown. (C) Close up of mutant K42R. Salt bridge (red dotted line) is shown. (D) Close up of mutant K42A. (E) Close up of mutant
K42T. (Protein Data Bank, 1FJG.pdb).
doi:10.1371/journal.pone.0011960.g003

Mutation K42R in R-Protein S12
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observation that mutations G1645A/A1754G in S. cerevisiae 18S

rRNA (homologous to E. coli residue A1408/G1491) reversed the

natural resistance of yeast cytoplasmic ribosomes, i.e, increased the

susceptibility to aminoglycosides from completely resistant

(MIC.5000 mg/ml) up to highly susceptible (MIC about 3 mg/

ml). These levels of drug susceptibility are similar to those found in

drug susceptible E. coli (MIC about 2.5–5 mg/ml) [20]. Thus,

irrespective of ribosomal protein S12 (S. cerevisiae or E. coli),

susceptibility to 2-deoxystreptamines is apparently determined by

the nucleotide residues in drug binding pocket of 16S rRNA. This

finding contrasts with the view of a universal interrelation between

S12, base pair 1409–1491 and 2-deoxystreptamine susceptibility.

Instead, it suggests that functional interactions between S12 and

the 2-deoxystreptamine binding site are limited to certain bacterial

genera and/or specific rpsL mutations. Interaction of S12 and 2-

deoxystreptamine aminoglycosides apparently is not at the level of

drug binding, but provoked by interference of two opposite effects

on translation fidelity induced by error-restrictive rpsL mutations

and misreading-inducing aminoglycoside antibiotics. As a result,

this interplay is limited to S12 amino acid substitutions which

confer a hyperaccurate phenotype and thus are functional

antagonists of drug-induced misreading.

Materials and Methods

Strains used in this study
A single rRNA allelic strain M. smegmatis DrrnB (SZ380) was

generated by unmarked deletion mutagenesis of the rrnB operon in

M. smegmatis mc2155. A suicide vector pH022 containing two DNA

fragments flanking the rrnB operon (generated by PCR), a

selectable marker (GmR) and counter-selectable marker sacB (both

outside the rrnB DNA fragments), was transformed into M.

smegmatis mc2155. A single rRNA allelic derivative was obtained by

a two-step selection procedure: selection of transformants on agar

plates containing gentamicin followed by a counter-selection step

on agar plates with sucrose. Deletion of rrnB was confirmed by

Southern blot analysis and partial sequencing.

Mutagenesis of the H44 decoding-site RNA was performed in

strain M. smegmatis DrrnB (SZ380) and in strain M. smegmatis DrrnB

rpsL K42R (SZ004) [12]. rRNA mutations were generated by

PCR, cloned into vector pMIH-rrnB and introduced into the 16S

rRNA A-site of the single rRNA allelic strain SZ0380 by RecA-

mediated homologous recombination as described [12]. For a list

of strains and plasmids see Tables S1 and S2 in Supplementary

Data.

Minimal inhibitory concentration (MIC) assay
Drug susceptibility was studied by determining Minimal

Inhibitory Concentrations (MIC). MIC tests were performed in

a microtiter plate format as described [12]. In brief, freshly grown

M. smegmatis cultures were resuspended in LB broth supplemented

with 0.05% of Tween 80, diluted to an absorbance at 600 nm of

0.025 and incubated in the presence of 2-fold serial dilutions of 2-

deoxystreptamine aminoglycosides. After incubation at 37uC for

72 h, the MIC was recorded as the lowest concentration of drug

inhibiting visible growth.

Structural modelling
PyMol (DeLano Scientific) was used to render the structure of

the A-site of 30S ribosomal subunit from T. thermophilus (Protein

Data Bank, 1FJG.pdb) [21].
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Figure S1 Chemical structures of disubstituted 2-deoxystrepta-

mine antibiotics used in this study.

Found at: doi:10.1371/journal.pone.0011960.s001 (0.48 MB
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Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pone.0011960.s002 (0.04 MB

DOC)

Table S2 Plasmids used in this study.

Found at: doi:10.1371/journal.pone.0011960.s003 (0.03 MB
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gene conversion and aminoglycoside resistance in strains heterozygous for

rRNA. Antimicrob Agents Chemother 43: 447–453.
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