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Abstract

Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective
options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these
technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to
resolve small, but presumably abundant, repeats.

Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any
read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that
would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences.
This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only
150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless,
there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short
reads while others require much longer reads.

Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under
study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.
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Introduction

Since the first published study using 454’s next-generation

sequencing technology [1], a number of competing technologies

have become available or will soon be released. These include

platforms from Applied Biosystems, Helicos, Illumina, and Pacific

Biosciences [2].

Arguably, the high throughput and relatively low per-base cost

of any of these next-generation technologies should allow

individual researchers to generate sequence data of sufficient

depth to accurately determine the sequence of a prokaryote

genome. However, producing a complete and finished sequence

remains a challenge. Regardless of the technology, shotgun reads

are assembled to produce a collection of contigs, separated by gaps

that must be closed manually.

One way in which the competing sequencing platforms differ is in

the length of the reads they produce. There is scepticism surrounding

the technologies that produce very short reads (,50nt), particularly in

the context of the de novo assembly of a whole genome [2,3,4,5,6]. This

reflects an expectation that short reads will be unable to resolve small,

but presumably abundant, repeats [7].

Importantly, the technologies that produce the shortest reads

also offer the highest throughput and lowest per-base cost [4].

Researchers are therefore compelled to weigh the improved

assembly results to be expected from longer reads against the cost

savings offered by the very short reads. Although read pairing can,

to an extent, compensate for read length, this also comes with an

increased cost per-base [8]. Thus, there is no guarantee that

simply opting for the longest available read or mate pair will be the

most cost-effective strategy.

To be clear, reads of 1000nt in length, or a mate pair separated

by the same distance, will produce a more complete assembly

than unpaired 75nt reads. But by how much? If the former options

produced an assembly consisting of 20 contigs and the latter 30, it

would be difficult to justify any additional costs for the longer

reads or pairing. While the particular figures in this example are

optimistic, the actual relationship between read length and the

frequency of unresolvable repeats is not clear. Likewise, it is not

known how this varies among prokaryotes. It is likely that for

some species, very short reads would be sufficient, whereas others

would require longer reads to produce an assembly of similar

quality.
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This work is intended to address this general question. It is

hoped that by providing a concrete assessment of the value of read

length, in terms of the ability to resolve repeats, researchers will be

able to better judge the relative merits of the various sequencing

options that are available.

Several previous studies have assessed the feasibility of

sequencing using very short reads, focussing particularly on the

challenge posed by repeat resolution [9,10]. However, these

involved only a small number of species and thus did not explore

the diversity of prokaryote genomes. In contrast, Kingsford et al.

(2010) incorporates a large selection of genomes, but focussed on

providing a benchmark for evaluating assembler performance and

the ability of short reads to reconstruct complete genes [8].

In common with Kingsford et al. (2010), this study examines the

limit imposed by repeat resolution in a large number of genomes.

However, our focus is the production of complete sequences.

While a draft consisting of a collection of contigs is often sufficient

for some applications, a complete sequence is, for a variety of

reasons, more desirable [11,12]. Further, it is a comprehensive

record of the structure and content of a genome and will remain a

useful resource for many years. The same cannot be said of an

incomplete draft.

Using a simple model of repeat assembly, we develop and test a

technique that, for any read length, can estimate the occurrence of

unresolvable repeats in a sequenced genome and thus predict

assembly results. We then apply this technique to 818 prokaryote

genome sequences. This provides a quantitative assessment of the

relative value of various read lengths, in terms of their ability to

resolve repeats and produce readily finished assemblies. We go on

to explore the relationship between read length and repeat

resolution in greater detail in a subset of genomes. Taken together,

this work provides interested researchers with a practical resource

to guide future sequencing projects.

Results

The problem posed by repeats
Gaps in an assembly may arise as a result of repeated sequences

or because a region of the genome is simply not represented in the

read set (i.e. a sequence gap). An implicit assumption of this work

is that the former will be largest, if not sole contributor, to the

fragmentation of an assembly. We explored the validity of this

assumption by analysing a set of error-free 36nt Illumina

sequencing reads from the 4.6 Mb Escherichia coli K12 MG1655

genome (see Supplementary Methods (File S1)).

Traditionally, the model of Lander-Waterman [13,14] is used to

predict the number of sequence gaps in an assembly. The model

predicts that for 36nt reads a raw coverage depth of approximately

506 would allow for the complete reconstruction of the E. coli

genome (Figure 1). To determine the actual number of sequence

gaps in the Illumina read set we compared the reads to the

reference genome using BLAST [15].

At any given depth of coverage, the Illumina read set has a

greater number of sequence gaps than predicted by Lander-

Waterman. This is not surprising as a real-world sequencing

technology cannot be expected to produce the random distribution

of reads which is assumed by the Lander-Waterman model.

However, when the same data sets are processed with Velvet, the

resulting assemblies are far more fragmented than we would expect

from sequence gaps alone [16]. At 1206 coverage, the assembly

consisted of 1,054 contigs. Only 37 of the gaps were due to missing

data, whereas the remainder were associated with unresolvable

repeats. For additional details of the sequence assembly and analysis

refer to the Supplementary Methods (File S1).

That unresolvable repeats are a cause of gaps is not surprising.

What this case does illustrate is that, in practice, essentially all gaps

are associated with repeats. However, reaching this repeat-

imposed limit requires excess coverage, although not beyond

what is characteristic of a real data set. Thus, regarding

unresolvable repeats as the principle cause of gaps in actual

assemblies is justified.

In general, given the diversity of bacterial genomes, and the

multitude of available technologies, it is not possible to identify a

particular depth of coverage that would minimise sequence gaps.

The most obvious approach would be to continue sequencing until

no new data are produced. How this can be achieved will be

technology-dependent.

Predicting repeat-induced gaps
The obvious way to explore the relationship between read

length and repeat resolution would be to carry out assemblies of

simulated read sets of various lengths. However, this is a time-

consuming process and we would therefore be limited to an

arbitrarily selected set of read lengths and a small, but hopefully

representative, collection of bacterial genomes.

Instead, we developed an algorithm that predicts assembly

results based on the sequence of a genome and the number and

average length of the sequencing reads. Briefly, exact repeat pairs

are first identified using repeat-match from the MUMmer package

[17,18]. These results are then processed to produce a list of the

repeat lengths, R, and their frequencies, F . At this point, a simple

model of repeat assembly is used to estimate the fraction of the

Figure 1. Assessing the cause of gaps in an assembly of 36nt
reads. The predicted number of sequence gaps based on the Lander-
Waterman model (+) is presented along with the actual number of
sequence gaps in sets of 36nt Illumina reads (#). This was determined
by aligning the reads in each set to the reference sequence. The total
number of gaps present in Velvet assemblies of the various read sets is
also included (N). The numerous additional gaps observed in the
assemblies are due to unresolvable repeats (# vs. N). Additional details
can be found in the Supplementary Methods (File S1).
doi:10.1371/journal.pone.0011518.g001
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repeats of each length which are not resolved. The sum of all of

these unresolved repeats is the total number of repeat-induced

gaps in the assembly.

To guarantee the correct assembly of a repeated sequence, at

least one read must encompass the entirety of the repeat, and

extend in both directions into adjacent unique sequence. In

Figure 2, the length of the reads and of the repeat are L and R,

respectively. To assemble the repeat, the read must extend V bp

into the unique flanking regions. The extent to which the read

must overlap the flanking sequence will depend on the particulars

of the assembly. In theory, only a single nucleotide either side of

the repeat would be sufficient. This is what is assumed in

subsequent analyses.

There are two conditions under which a repeat will be

unresolvable. Firstly, if the read length is less than the sum of

the repeat length and required overlaps, then the repeat cannot

possibly be resolved with the available reads. Assembly of a repeat

therefore requires that LwRz2V{1. Secondly, even with

sufficient read length, a gap will result if, by chance alone, none

of the reads in the shotgun dataset actually span the repeat. In

Figure 2, a read must begin in a window of L{(Rz2V{1) bp

adjacent to the repeated region to allow assembly. The likelihood

of this not happening can be estimated using a model analogous to

that of Lander-Waterman [13,14].

For a genome of length G, the probability that a given read does

not start in the window L{(Rz2V{1) is 1{
L{(Rz2V{1)

G
.

For N shotgun reads, the probability that no read starts in the

window is then

p ~ 1{
L{(Rz2V{1)

G

� �N

* e
{

N(L{R{2Vz1)
G

� �
: for large Nð Þ

ð1Þ

Using (1), and the repeat length frequencies discussed above, we

can predict the total number of gaps in any assembly. Specifically,

for a given repeat length R occurring F times in the genome, the

number of unresolved repeats is Fp when LwRz2V{1 or

simply F when LƒRz2V{1. The total number of repeat-

induced gaps expected in the assembly is the sum of the unresolved

repeats of each length.

A key difference between our model of assembly and how

assemblers actually operate lies in how unresolvable repeats

contribute to the total number of contigs. In our model,

unresolvable repeats only cause gaps. In reality, in addition to

causing a gap, a contig may be produced which corresponds to the

repeat itself (Figure S1). The algorithm therefore predicts the

number of unique contigs and gaps between them, rather than the

total. The former is a more useful figure as finishing requires only

that the unique contigs be joined. Any contigs which correspond to

repeats would be addressed as a necessary corollary of this.

Assessing the accuracy of the algorithm
To ensure that the algorithm was predictive for a variety of

organisms and a broad range of read lengths, we compared its

predictions to actual assemblies of Mycoplasma genitalium (580 kb),

E. coli K12 MG1655 (4.6 Mb), and Streptomyces coelicolor (8.7 Mb), at

five different read lengths: 36, 75, 125, 250, and 500nt. These read

sets were simulated.

In Figure 3, the number of gaps between unique, error-free,

contigs in each assembly is presented along with the predicted

number of gaps based on the algorithm. If included, the error-

containing contigs would have increased the total number of

contigs by only 3.4% in the most extreme case.

The algorithm accurately predicts the vast differences between the

genomes in terms of the number of gaps observed at a given read

length. In addition, for each genome, the algorithm is broadly

predictive of the overall relationship between read length and gap

number. However, its performance is not consistent for all variables.

The predictions for M. genitalium are generally less accurate than those

for the other genomes. This likely reflects the small size of the M.

genitalium genome. A relatively modest divergence, in absolute terms,

appears significant when the total number of gaps is small.

Read length requirements amongst prokaryotes
One way to look at the relative value of various read lengths is

to evaluate their performance on a large number of prokaryote

genomes. We applied our algorithm to 818 complete prokaryote

chromosomes (downloaded from GenBank, June 2009). For each

sequence we determined the number of repeat-induced gaps at a

number of read length benchmarks. These were: 36, 75, 125, 250,

500, and 1,000nt. Using a reciprocal approach, the algorithm was

used to calculate the read length required to produce assemblies

with 48, 96, 192, 384, and 762 gaps (gap benchmarks). These

particular values were selected because they are convenient

multiples of the microtitre plate sizes that might be used during

the finishing phase of a project. A full list of the benchmark data

for all 818 genomes is provided in Table S1.

In Figure 4, the proportion of the 818 genomes that would meet

the various gap benchmarks as read length increases is depicted.

For 75% of the genomes analysed, a read length of only 245nt is

Figure 2. A model of repeat assembly. To unambiguously assemble a repeat (black rectangle), a read must encompass the entirety of the repeat
and extend, in both directions, into unique sequence. If the repeat has a length of R nt, and the adjacent unique sequence must be at least V nt,
then resolution of the repeat requires that a read starts in a L{(Rz2V{1) window next to the repeated sequence. The likelihood of this failing to
occur in an assembly of a given number of reads of a particular length, can be estimated using an approach analogous to that used to compute
sequence gaps [13,14].
doi:10.1371/journal.pone.0011518.g002
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enough to produce assemblies with fewer than 96 repeat-induced

gaps. Reads of 125 and 70nt are sufficient for the same percentage

of genomes to meet the 192 and 384 gap benchmarks, respectively.

Relationship between read length and repeat resolution
The 818 genomes included in this analysis encompass the

overwhelming majority that have been sequenced to date.

However, they are surely not a representative sample of this

domain, being biased towards culturable organisms and pathogens

in particular. Nonetheless, the preceding analysis does provide an

initial estimate of the relative value of various read lengths when

sequencing prokaryotes generally. It also illustrates that there is

considerable variation in read length requirements.

To determine how the relationship between read length and the

frequency of unresolvable repeats varies, a detailed analysis of a subset

of genomes was carried out. M. genitalium (NC_000908.2), E. coli

(NC_000913.2), Haemophilus influenzae (NC_000907.1) and S. coelicolor

(NC_003888.3) were analysed to provide a range of genome lengths.

The extremely large genome of Sorangium cellulosum (NC_010162.1),

and the repeat-rich genome of Neisseria meningitides (NC_003112.2)

were also included [19]. The predicted assembly results, assuming

1006 raw coverage at every length, are presented in Figure 5.

First, very short reads (,50nt) produced highly fragmented

assemblies. This agrees with intuitive expectations, has been

observed previously, and is therefore unsurprising [16,20,21,

22,23,24]. However, what is notable is that, although extending

read length undoubtedly improves the assembly, the magnitude of

the improvement shrinks consistently as reads grow. Using E. coli as

an example, increasing the read length from 50 to 100nt closes 244

gaps; from 250 to 300nt, only 18. Once a relatively modest read

Figure 4. Assessing the performance of a range of read lengths. The fraction of the 818 genomes that meet gap benchmarks as a function of
read length was calculated. The benchmarks were 762, 384, 192, 96, and 48 repeat-induced gaps. For example, assuming reads of 150nt, *50% of the
genomes can be assembled with fewer than 96 gaps.
doi:10.1371/journal.pone.0011518.g004

Figure 3. Assessing the accuracy of the algorithm. The number of repeat-induced gaps predicted by the algorithm (grey bars) compared to the
number of gaps observed (black bars) in actual assemblies of 36, 75, 125, 250, and 500nt simulated reads from A) M. genitalium, B) E. coli and C)
S. coelicolor. The observed gaps are those between unique, non-redundant contigs larger than the read length. The coverage depth of each read set
was the threshold at which random gaps are no longer predicted by the Lander-Waterman model. This occurs at effective coverage depths of 9–176.
doi:10.1371/journal.pone.0011518.g003
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length is reached, 250nt for example, the overwhelming majority of

repeated sequences in all of the genomes have been resolved.

It was thought that the presence of multi-copy repeat families

would cause a relative abundance of repeats of a particular length

[25]. Extending the reads beyond this threshold length would

cause a sudden improvement in the assembly and introduce a step-

wise character to the curves in Figure 5. This does not appear to

be the case for the bacterial genomes examined here. The most

probable explanation is that the algorithm only identifies exact

repeats. Members of a repeat family which have diverged would

be detected as a series of small exact repeats rather than a single,

large, degenerate repeat. As such, there would be no accumulation

of repeats at a specific length that would be required to produce a

‘‘step’’ in the curves. Given the demonstrated accuracy of the

algorithm, the coverage depths achievable with next-generation

sequencers, and the underlying characteristics of short read

assemblers, the assumption that only exact repeats are problematic

is probably justified. Thus, it is unlikely that significant length

thresholds would be observed in true assemblies.

Guidance for read length selection
The graphs in Figure 5 illustrate that the overall relationship

between read length and contiguity of an assembly is broadly

consistent among bacteria. However, the absolute number of gaps

at a particular read length varies by as much as an order of

magnitude. For example, 75nt can reconstruct the M. genitalium

genome with only 97 gaps whereas the corresponding figure for S.

cellulosum genome is almost 1,500. Therefore, the most cost-

effective sequencing strategy depends on the particular organism.

This is problematic as little can be known about the repeat content

of a genome prior to sequencing. Thus, tailoring the strategy has

to be done based on some readily available characteristic of the

organism.

Intuitively, genome length seems to be such a characteristic.

However, there is a poor correlation between genome length and

the frequency of unresolvable repeats given a particular read

length (Figure S2 [8]).

Assuming that closely related genomes would be comparably

difficult to sequence and assemble, it would be logical to use

available sequences to help select a read length for the organism of

interest. As an example, researchers might sequence large

collections of clinical isolates or additional species from industrially

important genera.

To provide an estimate of the reliability of this approach, the

benchmark data were analysed to determine the variation in

assembly results within recognised species and genera. The 818

Figure 5. Read length and repeat resolution in 6 genomes. The algorithm was used to predict the occurrence of repeat-induced gaps in
assemblies of six bacterial genomes from a range of read lengths. A raw coverage of 1006was used for all genome/read length pairings. Assembly
results were predicted for read lengths at increments between 30–1,000nt. Between 30 and 100nt the increment was 5nt; 100–250nt, 10nt; 250–
500nt, 25nt; and 500–1,000nt, 50nt. A) M. genitalium (580 kb), B) H. Influenza (1.8 Mb), C) E. coli (4.6 Mb), D) N. meningitidis (2.3 Mb), E) S. coelicolor
(8.7 Mb) and F) S. cellulosum (13.0 Mb).
doi:10.1371/journal.pone.0011518.g005
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genomes included in the analysis were searched to identify those

species for which 6 or more isolates have been sequenced. The

variation in assembly results among isolates of the same species is

depicted in Figure 6 A–C.

Not surprisingly, the species differ considerably in the median

number of repeat-induced gaps predicted at any read length.

However, for most species, the range is small enough that a single

sequencing strategy would be appropriate for all members. For

Figure 6. Variation in assembly results within taxa. The median number of repeat-induced gaps for all members of a group is represented by (2).
The lower and upper bounds of the hollow rectangle correspond to the first and third quartile, and the range is indicated by the whiskers. Any outliers
are plotted as (6). In A)–C), the species are are Buchnera aphidicola, Prochlorococcus marinus, Francisella tularensis, Streptococcus pyogenes, Helicobacter
pylori, Acinetobacter baumannii, Salmonella enterica, Staphylococcus aureus, Sulfolobus islandicus, Streptococcus pneumoniae, Bacillus cereus, Clostridium
botulinum, Yersinia pestis, Escherichia coli, Rhodopseudomonas palustris. In D)–F), the genera are Borrelia, Campylobacter, Corynebacterium, Mycoplasma,
Streptococcus, Rickettsia, Lactobacillus, Bacillus, Clostridium, Shewanella, Mycobacterium, Pseudomonas, Methylobacterium. For Methylobacterium,
outliers at 36nt (6,307) and 125nt (1,219) have been omitted. Gap predictions are for reads of A)/D) 36nt, B)/E) 125nt, and C)/F) 500nt.
doi:10.1371/journal.pone.0011518.g006
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example, very short reads (*36nt) are probably sufficient for

isolates of species Buchnera aphidicola and Francisella tularensis,

whereas longer reads (*125nt) are required for Prochlorococcus

marinus, Streptococcus pyogenes, Helicobacter pylori, Salmonella enterica,

Staphylococcus aureus, and Bacillus cereus.

An identical analysis was conducted on those genera for which 6

or more distinct species have been sequenced (Figure 6 D–F). Not

surprisingly, the typical range of assembly results was larger for the

genera than for the species. Nonetheless, devising a sequencing

strategy on the basis of a previously sequenced member of the

same genus is probably justified.

In Figure 6, there are some groups for which the assembly

results are noticeably more variable than others; a familiar

example being E.coli (Figure 6 A–C). This is not surprising as in

this analysis, organisms were grouped together solely on the basis

of a common species or genus name. Avoiding the ongoing debate

as to the significance, if any, of a bacterial species, it is enough to

say that the actual degree to which the various genomes in each

group have diverged is not consistent [26]. Thus, the results

depicted in Figure 6 are, at best, an estimate of variation within

recognised, though necessarily arbitrary, groups of organisms.

In practice, it would be sensible to rely on the closest available

relative in Table S1 when devising a sequencing strategy rather

than the median or average for a group. Returning to the E.coli

example, it is the presence of several large and repeat rich

O157:H7 genomes that skew the results for this species [27]. If the

goal was to sequence a variety of O157:H7 clinical isolates, the

sequencing strategy should reflect the benchmark data from the

O157:H7 genomes rather than the lab strains.

Discussion

The motivation for this work was the belief that, with many

sequencing options available, a precise understanding of the value

of read length, in terms of repeat resolution, is necessary to select

the best technology for a particular application.

Our results confirm that, for at least one of the technologies,

repeats are effectively the sole cause of assembly gaps, but only

when excessive coverage is used. It is our view that targeting excess

coverage is justified if a complete sequence is the objective.

Primarily, this reflects changes in the relative costs of the shotgun

and finishing phase of a genome project. In the E. coli example

using 36nt reads, increasing the raw coverage from 406 to 1006
would increase the sequencing costs by a factor of 2.5 without

changing the duration of this phase. The result would be *500

fewer sequence gaps requiring closure. In our experience, closing

these gaps ‘‘manually’’ would likely cost more than the additional

sequencing reads and would substantially increase the duration of

the entire project.

In addition, the principal obstacle encountered during gap

closure is establishing the order of contigs. Once this is

determined, closing gaps using sequenced PCR products is a

trivial matter. In this context, sequence gaps and those that are

caused by repeats fundamentally differ. Without supplementary

data, ordering contigs that are separated by sequence gaps

presents an enormous combinatorial problem. In contrast, repeat-

induced gaps exist because there are at least two equally

acceptable ways to assemble a repeated sequence. In this case,

the order of contigs is constrained by their relationship to repeats.

This distinction is a further incentive to minimise the occurrence

of sequence gaps.

Until recently, the relative value of various read lengths, in

terms of their ability to resolve repeats, was not clear. Intuitively,

longer reads are preferable and individual researchers may have

arrived at their own conclusions about what lengths were suitable

for prokaryote sequencing. Our analysis of the 818 genomes

constitutes a systematic assessment of the performance of a range

of read lengths. In practice, this analysis demonstrates that

relatively modest lengths can produce well-connected assemblies

for the majority of prokaryotes.

A more detailed examination of the relationship between read

length and repeat resolution in a small set of genomes reveals that

extending reads produces consistently diminishing returns and this

appears to be consistent among bacteria.

Nonetheless, amongst prokaryotes, there exists considerable

variation in the absolute number of gaps at a given read length,

and genome length is a poor predictor of this. Thus, selecting a

sequencing technology for a particular organism is probably best

done with reference to the benchmark values of a sequenced

relative (Table S1). Broadly, the relatively small differences in the

frequency of repeat-induced gaps among isolates of the same

species validates this approach (Figure 6).

Although not explicitly addressed in this work, paired reads can

be conservatively regarded as pseudo-reads with a length equal to

that of the template molecule. Consequently, our results can be

extended to sequencing with read pairing. It is tempting to assume

that, with few exceptions, the largest possible mate pair would be

appropriate sequencing strategy for all prokaryotes. However,

increasing the distance between paired reads is not without

drawbacks [16]. Our results can be used to select the minimum

insert length that produces a readily finished assembly. This might

also help avoid the need for multiple libraries [28]. Furthermore,

our results show for which species unpaired sequencing is

adequate, thus avoiding the additional costs and technical

challenges associated with paired sequencing altogether [8].

The utility of our results is primarily to provide the scientific

community with a practical resource that should allow for a more

rational approach to prokaryote genome sequencing. A researcher

can examine the available sequencing options in light of the

benchmark data, select a technology, and have some confidence as

to the characteristics of the resulting assembly. Hopefully this will

lead to the production of more complete sequences using next-

generation platforms, rather than unfinished collections of contigs.

At present, the per-base cost of sequencing tends to increase

with increasing read length. Given the rate at which sequencing

technology is developing it would invite embarrassment to predict

how long this condition will persist. There are already technologies

under development which promise multi-kb read lengths [2,29].

However, until something better comes along, researchers will be

compelled to balance cost against contiguity. The results presented

here should remove some of the uncertainty from this decision.

Methods

The algorithm - description
The algorithm used to predict assembly results was as follows:

First, repeat-match from the MUMmer package [17,18] was used to

identify exact repeat pairs, regardless of their orientation. The

minimum length threshold that was used was 22bp, unless

otherwise stated. The pairwise results were processed to produce

a list of all of the identified repeats and their location in the

genome. These data were then sorted by location and nested,

bordering, or partially overlapping repeats were merged. Finally,

the repeat content of the genome was reduced to a table of merged

repeat lengths and the number of times they were observed.

Using these data, the fraction of repeats of each length left

unresolved, given a particular read length and coverage depth is

then determined. The formula used to compute the unresolved

Limits of Repeat Resolution
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fraction is p * e{
N(L{R{2Vz1)

Gð Þ . The derivation of this formula

is discussed in the results section. Throughout this work, V is set to

1 bp. For convenience, we refer to the raw coverage provided by

various read sets, e.g. 1006. The total number of reads, N , is

computed by multiplying this value by the genome length, G, and

dividing the product by the read length, L.

The algorithm - validation
Generating the simulated read sets was a two step process. First,

a list was created that defined the length, strand, and start location

in the genome of a large number of reads. The latter two

parameters were randomly generated using the Perl module

Math::Random. For the 36, 75, and 125nt read sets, a uniform

read length was assumed. When generating the 250 and 500nt

reads, the lengths was randomly sampled from a normal

distribution with the appropriate mean, 250 or 500nt, and

standard deviations taken from real 454 data (SRR01355 and

SRR014812).

The simulated reads were generated by extracting sequences

from the genome based on these parameters. Reads were reverse-

complemented if they were from the opposite strand. To simplify

subsequent analyses, any reads that would extend beyond the edges

of the genome were discarded. For a given read length/genome

pairing, a very large set of reads was first constructed and then reads

were sampled from this set to produce defined coverage subsets.

In terms of raw coverage, the sizes of the 36, 75, 125, 250, and

500nt read sets were as follows: For M. genitalium, 1056, 226, 166,

126, and 106, respectively. For E. coli, 1206, 266, 186, 156,

136. For S. coelicolor, 1256, 266, 206, 166, 146.

Unless otherwise stated, Velvet version 0.7.31 was run with

default settings. When processing 36nt reads, the ‘‘-short’’ flag was

used. All other assemblies were run with ‘‘-long’’. In all cases, the

hash length was set to 31, max_divergence set to 0, and long_mult_cut-

off set to 10. An extensive range of parameter combinations was

tested and these were found to produce the best assembly results

(data not shown).

After assembly, contigs were processed as follows: First, BLASTN

was used to align a contig set to both itself and to the reference

genome (-m 8 -e 1E-10 -F f). Any error-containing contigs - those

without perfect alignments to the reference - were removed from

consideration at this stage. In addition, any contigs that were nested

entirely within a larger contig were assumed to be assembler errors

and were discarded. Finally, those contigs that were shorter than the

reads used in the assembly were removed and a series of summary

statistics were computed for those that remained. This included the

number of unique contigs, the total number of contigs, and the

portion of the genome that was covered by the latter. The number of

gaps between unique contigs in each of the assemblies was compared

to the predictions of the algorithm.

Sequencing benchmarks
The genome sequences were downloaded from ftp://ftp.ncbi.

nih.gov/genomes/Bacteria/ on June 14, 2009. This dataset was

searched to identify those sequences which contained ‘‘complete

genome’’ in their description. This identified 876 sequences

among the 894 taxa included in the directory. Genomes consisting

of more than one chromosome were discarded as multiple

sequences cannot be processed by repeat-match. As well, several

sequences from extrachromosomal elements were identified and

removed. This left 818 complete prokaryote genome sequences. A

complete list of the genomes analysed is in included in Table S1.

For the length benchmarks, the algorithm was used to predict

assembly results for 36, 75, 125, 250, 500, and 1,000nt reads. The

gap benchmarks were determined by first predicting assembly

results for read lengths at 5nt increments between 30–1,000nt.

These data were then processed to identify the lengths at which the

number of repeat-induced gaps fell below each of the benchmarks

(48, 96, 192, 384, and 762 gaps). In all cases, 1006 raw coverage

was assumed.

The species and genera that were used to assess variation in

assembly results among related genomes were selected based on

the following criteria. A species was included in the analysis if there

were at least 6 genome sequences from organisms with that name.

A genus was included if there were at least 6 genomes from the

group and that these were derived from different species. Data

points were considered outliers if they did not fall within 1.5 times

the inter quartile range.

Supporting Information

File S1 Supplementary methods.

Found at: doi:10.1371/journal.pone.0011518.s001 (0.03 MB

PDF)

Figure S1 The algorithm predicts the occurrence of repeat-

induced gaps, rather than the total number of contigs produced in

an assembly. In this example, a genome containing 2 repeat pairs

(A and B) separated by stretches of unique sequence (U1–U5) is

depicted. If the read length under consideration could not possibly

resolve the repeats, the model would predict 4 gaps, and thus 5

unique contigs. In a true assembly, the repeats themselves may

emerge as contigs, bringing the total number of contigs to 7.

Found at: doi:10.1371/journal.pone.0011518.s002 (0.71 MB TIF)

Figure S2 The predicted number of repeat-induced gaps as a

function of genome length. The results for 818 prokaryote

genomes are depicted assuming reads of A) 36nt, B) 125nt, and

C) 500nt. A raw coverage of 1006 is used for all genome/read

length pairings.

Found at: doi:10.1371/journal.pone.0011518.s004 (1.06 MB TIF)

Table S1 Read length and gap benchmarks for 818 bacterial

genomes. To produce the benchmark data in the left-most portion

of the table, the algorithm was used to predict the number of

repeat-induced gaps at six specified read lengths. The benchmarks

on the right were produced by first specifying the maximum

number of gaps an assembly could contain, for example, 96, then

the algorithm was used to search for the shortest read that was

predicted to produce an assembly that met this criterion.

Found at: doi:10.1371/journal.pone.0011518.s003 (0.29 MB

XLS)
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