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Abstract

Background: Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically,
epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This
observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at
the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over
the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of
infectious agents on allergy and autoimmunity.

Methods and Findings: Here, we performed a systematic study of the disease-modifying effects of a set of natural or
synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune
diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to
both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of
the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that
multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which
stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by
the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-
mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-b
and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3
agonists.

Conclusions/Significance: These observations demonstrate that systemic administration of TLR ligands can suppress both
allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new
therapeutic perspectives for the prevention of these pathologies.
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Introduction

There is compelling evidence to indicate a central role of Toll-

like receptors (TLRs) in the stimulation of innate and adaptive

immunity when applied at the site of immune responses [1–3].

More limited but convincing observations suggest a possible role

of TLRs in the triggering of allergic and autoimmune diseases

[4–9]: such induction could not be obtained in several

experimental models after genetic invalidation of certain TLRs

or one of their adaptor molecules, namely MyD88 [6,7,10,11].

On the other hand, more unexpected observations have indicated

that systemic TLR stimulation can prevent the onset of allergic

and autoimmune diseases when it is implemented early enough in

the natural history of the disease. Thus, administration of the

TLR4 agonist LPS and of the TLR9 agonist CpG has been

shown to prevent spontaneous diabetes onset in the non obese

diabetic (NOD) mouse [12,13]. Similarly, administration of

various TLR agonists may prevent onset of ovalbumin (OVA)-

induced allergic asthma in various mouse strains including

BALB/c and A/J mice [14–20], even though the same agonists
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may exceptionally show the opposite effect depending on the

experimental conditions [21–24].

TLR-mediated prevention of allergic and autoimmune diseases

could represent one of the major mechanisms underlying the

hygiene hypothesis according to which the major increase of these

diseases observed in western countries over the last three decades

is secondary to the decline of infections [25–27]. Originally

elaborated in the context of an increased susceptibility to allergy

we proposed back in 2002 that the hypothesis could also apply to

autoimmune diseases [28]. Validating the hygiene hypothesis in

the clinical setting is a complex issue. A major problem is that

some particular infections may trigger/exacerbate either allergic

or autoimmune diseases and that the nature of the infections

contributing to protection is still ill-defined. This is why so far the

best direct evidence in support of the hygiene hypothesis has been

collected from experimental animal models such as the NOD

mouse in which a variety of pathogens (living pathogens or

bacterial extracts) totally prevent autoimmune diabetes onset

[29–32] (reviewed in [28]). The study of bacterial extracts, which

are easier to use and analyze as compared to living pathogens, is

complicated by the multiplicity of their components.

When reports on the hygiene hypothesis were confined to

allergic diseases the Th1/Th2 paradigm was proposed as a leading

mechanism to explain the effect observed. Thus, given the

reciprocal down-regulation of Th1 and Th2 cells some authors

initially suggested that, in developed countries, the lack of

microbial burden in early childhood which normally favors a

strong Th1-biased immunity would redirect the immune response

towards a Th2 phenotype and, therefore, predispose the host to

allergic disorders. Such conclusions were challenged once the

hygiene hypothesis was extended to autoimmunity as Th1

responses in the case of autoimmunity are not protective but

pathogenic [28].

Taking into account these considerations we chose to study the

effect of TLR stimulation in the NOD mouse that is an

experimental model where development of allergy and spontane-

ous autoimmunity can be studied in parallel in the context of an

identical genetic background. In fact, NOD mice represent a

particularly appropriate model since, in addition to their well

documented susceptibility to develop spontaneous autoimmune

diabetes [33,34], they have been shown to be a strain that is highly

susceptible to the induction of allergic asthma [35]. It was our

rationale that this approach would provide us with the opportunity

to test whether common regulatory immune mechanisms, possibly

involving TLR stimulation, exist underlying infection-mediated

protection against both allergy and autoimmunity namely,

whether these common regulatory immune mechanisms control

both Th1 and Th2 responses.

Thus, one may postulate that TLR ligands that are present in

numerous pathogens have a general non specific inhibitory effect

on allergic and autoimmune responses.

Here, we have tested whether TLR stimulation can recapitulate

the protective effect of infectious agents on allergy and

autoimmunity. To that aim we first performed a systematic

screening of a set of natural or synthetic TLR agonists in two

experimental models, OVA-induced asthma and autoimmune

diabetes. Secondly, in the same models we investigated the effect

of probiotics. We also examined the effect of the genetic

invalidation of MyD88 on the development of spontaneous

diabetes, as previously performed by the group of A. Chervonsky

[36] and additionally in the allergic asthma model.

Collectively, results presented in this study demonstrate that

systemic TLR stimulation by both probiotics and TLR agonists is

efficacious in preventing from both allergy and autoimmunity.

Materials and Methods

Mice
Conventional NOD mice (Kd, I-Ag7, and Db) were bred in our

animal facility at the Hôpital Necker as well as CD282/2NOD

mice (a kind gift from J.A. Bluestone, UCSF, San Francisco, CA),

CD1d2/2NOD mice (a kind gift from M. Kronenberg, La Jolla

institute, San Diego, CA) and IL-42/2NOD mice (a kind gift from

D. Mathis and C. Benoist, Josslin Center, Boston, MA). We

backcrossed MyD882/2C57BL/6 mice into the NOD genetic

background (N13). Seven-week-old female C57BL/6 mice were

purchased from Janvier.

Ethics Statement
All experiments have been conducted in accordance with

European Union Council Directives (86/609/EEC) and with

institutional guidelines (INSERM: Institut National de la Santé et

de la Recherche Médicale). The animal facility has an agreement

delivered by the Prefecture de Police of Paris, France.

TLR agonists and probiotics
The P40 protein of Klebsiella pneumoniae was purified as

previously described [37]. We obtained purified lipopolysaccha-

ride (LPS) from S. minnesota and R848 (resiquimod) from Alexis

Biochemicals (Paris, France). Polyinosinic-polycytidylic acid

(Poly(I:C)) was purchased from Invivogen (Toulouse, France)

and Sigma-Aldrich (St Louis, MO) as well as lipid A from S.

Minnesota. Pam3Cys: S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-

palmitoyl-(R)-Cys-(S)-Ser-Lys4-OH from Invivogen. The probiotic

preparation VSL#3 containing bifidobacterium, lactobacillium and

streptococcus was purchased from Sigma-tau (Ivry-sur-Seine,

France).

The ovalbumin-induced airway inflammation model and
treatments

On day 0 NOD mice were sensitized with 100 mg of chicken egg

OVA (Sigma-Aldrich) in 1.6 mg aluminium hydroxide i.p. in a

volume of 200 ml. Then they were challenged with 50 mg/ml

OVA upon aerosol exposure on three consecutive days (days 7–9)

to induce allergic airway inflammation. Controls received a NaCl

solution. The TLR agonists P40, Poly(I:C), LPS or R848 were

injected i.p. 24 hrs and 1 hr before the first challenge.

We assessed lung function using two different methods. The first

was non-invasive barometric plethysmography and consisted in

measuring airway hyper-responsiveness (AHR) 24 hrs after the last

OVA challenge by delivering an aerosol of methacholine (Mch)

(Sigma-Aldrich) for 1 min at 150 mM to mice placed in a

plethysmographic chamber (EMKA technologies, Paris, France).

The index of airflow obstruction was expressed as enhanced pause

(Penh). In some experiments airway resistance and compliance

were measured with the FlexiVent device (FlexiVent; SCIREQ,

Montreal, Québec, Canada). Twenty four hours after the last

challenge, airway resistance (R) and compliance (C) to methacho-

line were measured. Mice were anesthetized with an intraperito-

neal injection of sodium pentobarbital (70 mg/kg). The trachea

was exposed, a tracheotomy was performed to insert a 18-gauge

needle connected to a computer-controlled small-animal ventila-

tor. Mice were quasi-sinusoidally ventilated with a tidal volume of

10 ml/kg at a frequency of 150 breaths/min and a positive end-

respiratory pressure of 2 cmH2O to achieve a mean lung volume

close to that during spontaneous breathing. After recording

baseline values, each mouse was challenged with an aerosol of

methacholine, generated with an in-line nebulizer and adminis-

tered directly through the ventilator for 5 seconds delivering

TLR and the Hygiene Hypothesis
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increasing concentrations (0, 0.625, 1.25, 2.5, 5, and 10 mg/ml).

R and C were measured with a ‘‘snapshot’’ protocol each 20

seconds for 2 min. The mean of these six values was deduced for

each methacholine concentration. For each mouse, R and C were

plotted against methacholine concentration (from 0 to 10 mg/ml),

as previously described [38].

It is relevant to mention that in our colony NOD mice develop

spontaneous insulin-dependent diabetes as assessed by hypergly-

cemia and glycosuria by 12–13 weeks of age. Before this point in

time all animals exhibit normal glucose levels. As done in other

strains OVA sensitization was performed in 8 week-old mice and

given the kinetics of the experiment (described above) the

challenge was performed one week later (day 7 to 9). Therefore

experiments were completed when NOD mice were 9–10 week

old which explains that we never observed abnormal glucose levels

in NOD mice undergoing OVA sensitization/challenge.

For probiotic treatment, VSL#3 preparation (5. 109 bacteria/

mouse in 100 ml PBS) was administered by gavage 5 days a week

during 6 weeks before the OVA immunization. In these

experiments control mice were treated with PBS.

An infraoptimal protocol was also set for MyD88+/+ and

MyD882/2 NOD mice. Here mice were immunized with only

50 mg of OVA in 1.6 mg of aluminium hydroxide and challenged

by aerosol exposure with a single reduced dose of OVA (20 mg/ml)

on day 7. Samples were collected 48 hrs after the challenge for

further analyses.

In some experiments a monoclonal antibody specific for the IL-

10 receptor, that neutralizes IL-10 activity (1B1.2) was adminis-

tered i.p. 48 hrs and 1 hr before the first challenge.

For adoptive transfer experiments, 56106 CD4+ cells were purified

from total spleen cells following magnetic bead sorting (Myltenyi

Biotec, Paris, France) recovered from either probiotic-treated or

untreated control NOD mice. The cells were injected i.v. to syngeneic

recipients that had already been immunized with OVA and which

received the CD4+ cell infusion 1 hr before the first challenge.

Bronchoalveolar lavage
Mice were euthanized with urethane (Sigma-Aldrich) adminis-

tered i.p. The lungs were cannulated through the trachea to

perform the BALF. Cellular fractions were recovered and

processed for differential staining by cytospin centrigugation.

The BALF as well as lung homogenates were analyzed for cytokine

and chemokine content by ELISA (R&D Systems, Lille France)

according to manufacturers’ specifications.

Monitoring for autoimmune diabetes and treatment of
NOD mice

We treated NOD mice with TLR agonists or PBS and monitored

weekly for clinical signs of diabetes using Gluko-Test reagent sticks, to

detect glucose in urine samples (Boehringer Mannheim, Meylan,

France). When needed, glycemia was also measured in a drop of blood

collected from the tail vein and using a Reflolux S glucometer

(Boehringer Mannheim). Incidence of diabetes was defined based on

the discovery, upon serial monitoring, of glycosuria and hyperglycemia

(fasting glycemia .2.5 g/L).

NOD mice were also treated with probiotics (VSL#3; 5.109

bacteria/mouse in 100 ml PBS) delivered orally by gavage 5 times

a week starting at 4 weeks of age. In these experiments control

mice received PBS.

Histological analysis
Pancreas were collected when needed, fixed in 4% formalde-

hyde and paraffin-embedded. Serial 5-mm sections were stained

with hematoxylin and eosin. Mononuclear cell infiltration was

scored by counting at least 100 independent islets/recovered

pancreas and distinguishing three distinct patterns that were: 1)

Intact islets: islets showing a normal morphology and total absence

of infiltrating mononuclear cells, 2) Peri-insulitis: islets showing a

generally preserved morphology but presenting a significant

number of mononuclear cells that remain confined to the

periphery of the islets and 3) Destructive insulitis: islets showing

a disrupted morphology and a significant number of invading

mononuclear cells.

In vitro cultures
For cytokine production 26105 splenocytes from MyD88+/+

and MyD882/2 C57BL/6 mice were cultured in complete

medium: RPMI supplemented with antibiotics and 10% fetal calf

serum (Invitrogen, Cergy-Pontoise, France) in the absence or

presence of TLR agonists at varying doses. After 48 (for IL-10) to

72 (for TGF-b) hrs of culture at 37uC, supernatants were

harvested. For TGF-b, responses to TLR agonists were compared

to control cultures performed in serum-free medium. When

needed peritoneal macrophages were collected 48 hrs following

i.p. injection with 2 ml of thioglycollate broth (BioMérieux,

Craponne, France). Macrophages were then cultured in presence

of probiotics for 24 hrs at 37uC. All supernatants were harvested

and stored at 280uC until cytokines were dosed by ELISA (R&D

systems, Lille, France).

Circulating cytokine analysis
NOD mice were injected with TLRs agonists or fed with

probiotics for two weeks (see details in the results section). Twenty

four hrs after the end of treatment, serum samples were collected

and levels of circulating TGF-b and IL-10 were measured by

ELISA (R&D systems).

Flow cytometry analysis
Spleen cells were recovered following treatment with TLR

agonists or probiotics (see details in the results section). Cell

suspensions were stained with antibodies to CD25 (labeled to

phycoerythrin (PE)) and CD4 (labelled to phycoerythrin fluores-

cein isothiocyanate (FITC)) (BD Biosciences, Pont de Claix,

France). Then cells were fixed and labelled with the Foxp3 kit (BD

Biosciences) according to manufacturer’s instructions. Samples

were collected on a FACSCantoII cytometer (BD Biosciences).

Data were gated on mononuclear cells with forward- and side-

scatter properties using the FACS Diva Software.

Statistical analysis
Diabetes incidence was plotted using the Kaplan-Meier method,

i.e., nonparametric cumulative survival plot. Statistical comparison

between curves was performed using the logrank (Mantel-Cox) test

that provided the corresponding x2 values. When needed, statistical

comparison of mean values was performed using Student’s t test. In

the allergic model, the difference between groups was calculated

with the Mann-Whitney U test for unpaired data (GraphPad Prism

Software, La Jolla, CA). Differences were considered significant

when P,0.05 (* P,0.05, ** P,0.01, *** P,0.005).

Results

Effect of TLR agonists on allergic asthma and
autoimmune diabetes in NOD mice

We tested the effect of agonists of TLR2 (P40 protein of Klebsiella

pneumoniae and the Pam3Cys lipopeptide), TLR3 (double-stranded

TLR and the Hygiene Hypothesis
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Figure 1. Stimulation of TLR pathways prevents allergic inflammation and airway hyper-responsiveness. NOD mice were treated as
described in the Methods section. Briefly, mice immunized with OVA on day 0 were challenged with OVA or NaCl (controls) on days 7, 8 and 9. Each
TLR agonist or phosphate-buffered saline (PBS) was administered 24 hrs and 1 hr before the first challenge. OVA-challenged mice were treated with

TLR and the Hygiene Hypothesis
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RNAs Poly(I:C)), TLR4 (LPS and lipid A) and TLR7 (R848) on

experimental allergic asthma and autoimmune diabetes in the

NOD mouse. In the asthma model, NOD mice were immunized

intraperitoneally on day 0 with OVA in presence of alum,

challenged one week later with 3 consecutive OVA aerosol

administrations and analyzed 24 hrs after the last challenge.

Following this protocol, mice presented allergic inflammation and

abnormal lung function. Allergic inflammation resulted in an

increase of cell recruitment including eosinophils in the BALF, and

of cytokine and chemokine production, IL-4 and eotaxin

respectively, in the lung. Lung function was assessed by measuring

AHR using non-invasive whole-body plethysmography (Figure 1)

and also in some experiments by measuring airway resistance (R)

and compliance (C) using an invasive method (Figure 2).

The TLR2, TLR3, TLR4 and TLR7 agonists were adminis-

tered 24 hrs and 1 hr before the first challenge. In treated mice a

significant decrease in AHR as well as in eosinophil counts in

BALF and levels of IL-4 and eotaxin in the lung were observed

(Figure 1). Levels of IL-5, IL-13, IL-17 and TARC in the lungs

were also decreased (data not shown). As measurement of AHR

using non-invasive plethysmography may be subject biases (linked

to changes in mice breathing patterns) we validated our results, in

the case of mice treated with the TLR7 agonist (R848) by

measuring airway resistance and compliance using a FlexiVent

device. As detailed in Figure 2, R848 administration resulted in

significantly decreased lung resistance and compliance which

confirmed the AHR values previously described (Figure 1).

In the spontaneous autoimmune diabetes model, TLR agonists

were injected once a week intraperitoneally (i.p.) starting at four

weeks of age for 20 consecutive weeks. In these conditions, most of

the TLR agonists tested were protective (Figure 3A). It is

interesting that, for a given TLR, some agonists were not

protective although their efficiency at stimulating the TLR

pathway in vitro has been well demonstrated. Thus, lipid A, which

is the lipid portion of LPS, was not protective whereas LPS was

(Figure 3A). Most agonists required a long treatment (20

consecutive weeks) for inducing protection, with the exception of

P40 which was also protective after a shorter 10-week treatment

(Figure 3B). TLR agonists were protective when treatment was

started early in disease development, between 4 and 10 weeks of

age. A delayed treatment did no longer protect from diabetes

(Figure 3C); disease aggravation was never observed.

In protected animals the histological analysis of pancreata showed

a reduction in destructive islet infiltration (i.e. invasive insulitis)

(Figure 4). It is important to mention here that up to three weeks of

age untreated NOD mice do not show any islet infiltration or insulitis.

The first infiltrating mononuclear cells appear by 3–4 weeks of age

and accumulate up to approximately 12 weeks of age under the form

of a non invasive peripheral insulitis (peri-insulitis, see Figure 4A). By

12 weeks of age the topography of the infiltration changes and the

insulitis becomes invasive and aggressive (invasive insulitis, see

Figure 4A). This form of insulitis is associated to active destruction

of insulin-secreting b-cells; this is the point in time where the first mice

showing overt hyperglycemia are observed. It appeared that

depending on the agonist the effect observed was either a global

prevention of the infiltration (in the case of P40) or a control of

insulitis progression (in the case of LPS, R848 and Poly(I:C)) with high

proportion of infiltrated islet showing a benign form of non invasive

peripheral insulitis (Figure 4). Results on the insulitis patterns in TLR

ligand-treated mice versus controls were recovered at the end of the

experiments when mice were all aged 25–27 weeks, a quite advanced

point in time in disease progression (by 13 weeks after diabetes and

invasive insulitis is detected in untreated controls).

Contrasted effects of MyD88 invalidation on allergic
asthma and autoimmune diabetes

In order to study if exogenous or endogenous pathogens

(intestinal commensal bacteria) modulate OVA-induced allergic

PBS or (A) P40 (200 mg/challenge/mouse), a TLR2 agonist, (B) Poly(I:C) (100 mg/challenge/mouse), a TLR3 agonist, (C) LPS (100 mg/challenge/mouse),
a TLR4 agonist and (D) R848 (100 mg/challenge/mouse), a TLR7 agonist. AHR to Mch was measured 24 hrs after the last challenge and total cell as
well as eosinophils in BALF and cytokine and chemokine concentrations in lungs. Mice treated with TLR agonists showed a decreased AHR,
eosinophilia and IL-4 and eotaxin production as compared to control mice (* p,0.05; ** p,0.01). These experiments were performed twice using 4 to
6 mice per group. One representative experiment is shown.
doi:10.1371/journal.pone.0011484.g001

Figure 2. Treatment with the TLR7 agonist R848 prevents airway resistance and compliance. NOD mice immunized with OVA were
injected with R848 and challenged with OVA as described in the methods section. Lung resistance (R) and compliance (C) were measured 24 hrs after
the last aerosol challenge with OVA or NaCl. Results are representative of one experiment out of 2 performed using 4 to 6 mice per group.
doi:10.1371/journal.pone.0011484.g002

TLR and the Hygiene Hypothesis
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asthma or diabetes, we studied the effect of MyD88 deficiency on

these diseases. At variance with results described above which

showed a striking parallelism in the pharmacological effects of the

TLR agonists in both conditions, impact of MyD88 deficiency on

asthma and diabetes was strikingly different. Thus, MyD882/2NOD

mice immunized with OVA died (with asphyxia) within few hours

following the first or the second aerosol challenge with OVA as

compared to wild-type MyD88 sufficient NOD mice which

regularly survived the three challenges (Figure 5A). Given these

results MyD882/2NOD mice were immunized and challenged

with lower doses of OVA (50 mg as compared to 100 mg for

immunization and 20 mg/ml as compared to 50 mg/ml for

challenge) to allow a significant mouse survival. Results shown on

Figure 5B indicate that following this infraoptimal OVA stimulation

BALF from MyD882/2 mice contained significantly increased

numbers of total leucocytes and eosinophils as compared to

controls.

Contrasting with the exacerbated airway allergic response the

incidence of autoimmune diabetes was drastically reduced in

MyD882/2NOD mice (Figure 5C). None of these mice developed

Figure 3. Stimulation of TLR pathways prevents spontaneous autoimmune diabetes in NOD mice. A. Female NOD mice were injected
i.p. with 200 mg P40, 100 mg Poly(I:C), 5 mg LPS from S. minnesota, 5 mg Lipid A, 10 mg R848 or PBS once a week, starting at 3–4 weeks of age and for
20 consecutive weeks. Mice were monitored weekly for the advent of glycosuria. Significant prevention from diabetes was observed with most TLR
agonists tested (* p,0.05; ** p,0.01) but not with Lipid A. Each panel represents one of 3 independent experiments using 8 mice per group. B. A
shorter treatment with the TLR2 agonist P40 administered between 4 and 14 weeks also induced significant protection from diabetes (** p,0.01). C.
Treatment with Poly(I:C) was highly protective if started up to 10 weeks of age but not later (at 16 weeks of age).
doi:10.1371/journal.pone.0011484.g003

TLR and the Hygiene Hypothesis
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diabetes by 30 weeks of age; a nearly complete prevention of

insulitis was also observed (Figure 5D).

Effect of TLR agonists on immune regulatory pathways
Using both in vitro and in vivo models we investigated the

implication of immune regulatory cytokines and of subsets of

regulatory lymphocytes in the protective effect of TLR2, TLR3,

TLR4 and TLR7 agonists.

In vitro, the 4 agonists induced the production of either TGF-b
(for P40, Poly(I:C) and LPS) or IL-10 (all 4 agonists) by spleen cells

(Figure 6A). In vivo, serum concentrations of TGF-b andIL-10 were

measured 24 hrs after the agonists’ injection. As shown in

Figure 6B, an increased level of IL-10 and TGF-b was observed

after treatment with TLR2, 3 or 7 agonists. We also observed that

the administration of a single dose of LPS or R848 increased the

number of regulatory CD4+CD25+Foxp3+ T cells in the spleen

24 hrs after injection whereas Poly(I:C) did not (Figure 7 and data

not shown).

To directly evaluate in vivo the role of CD4+CD25+Foxp3+ and

NKT cells in the protection induced by TLR3 and TLR4 agonists

we took advantage of CD282/2 and CD1d2/2NOD mice that

are deficient in these two subsets respectively. Results shown in

Figure 6C demonstrated that the protective effect of LPS was

not observed in CD282/2NOD mice but was still present in

CD1d2/2NOD mice. Conversely, the protective effect of

Poly(I:C) was observed in CD282/2 NOD mice but not in

Figure 4. Histological analysis of pancreas. A. Representative photomicrographs of distinct patterns observed in pancreas sections. Histological
examination of hematoxylin and eosin stained pancreas sections recovered from the various experimental groups was performed (n = 8 per group).
Islet infiltration (insulitis) was scored by deducing the proportion of non-infiltrated islets (healthy islets) and of islets showing a non destructive
peripheral insulitis (peri-insulitis) or an invasive/destructive insulitis (destructive insulitis). B. The relative degree of islet inflammation in mice treated
with P40, Poly(I:C), LPS or R848 is shown in a cumulative histogram as compared to PBS-treated controls.
doi:10.1371/journal.pone.0011484.g004

TLR and the Hygiene Hypothesis
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CD1d2/2 NOD mice. Interestingly, the TLR3 agonist-mediated

protection that was dependent on the presence of NKT cells was

abrogated in IL-42/2 NOD mice which was not the case for the

protective effect of LPS, whose protective effect did not depend on

NKT cells (Figure 6C).

Effect of probiotic bacteria on allergic asthma and
autoimmune diabetes

We studied the capacity of probiotic bacteria to protect from

both experimental allergic asthma and autoimmune diabetes.

In the allergic asthma model we administered VSL#3, a

commercial combination of probiotic bacteria (bifidobacterium,

lactobacillium and streptococcus), orally for 6 weeks before the first

i.p. OVA immunization. In the spontaneous diabetes model,

treatment was given once a week for 20 consecutive weeks starting

at 4 weeks of age. Results demonstrated significant protection in

the two models (Figure 8A,B). The protective effect was dose-

dependent (data not shown).

In vitro, the same probiotic preparation induced Tumor Necrosis

Factor (TNF)- a and IL-10 production by macrophages, an effect that

was MyD88-dependent as shown by the absence of production of both

cytokines by cells obtained from MyD882/2 mice (Figure 8C).

The TLR dependency of the probiotic bacteria effect was

further confirmed in vivo in the allergic asthma model since

MyD882/2NOD mice were insensitive to treatment, using the low

OVA dose described above, compatible with mouse survival

(Figure 8D). In MyD882/2NOD mice results showed no effect of

probiotic bacteria treatment on either eosinophil recruitment or

IL-4 production (Figure 8D).

Interestingly, in the sera of mice protected following probiotic

bacteria administration increased levels of TGF-b were detected

(Figure 9A). We also detected in the spleen of protected mice an

increased frequency of CD4+CD25+FoxP3+ T cells (Figure 7).

Figure 5. MyD882/2 NOD mice are sensitive to airway allergic inflammation but resistant to the development of autoimmune
diabetes. As compared to MyD88+/+ NOD mice, MyD882/2 NOD mice were hypersensitive to experimental allergic asthma. A. The left panel shows
the data observed in MyD88+/+ (n = 25) and MyD882/2 (n = 35) mice immunized with our conventional protocol, namely immunization with 100 mg of
OVA on day 0 and challenge with 50 mg/ml of OVA or NaCl on days 7, 8 and 9. Results are expressed in percentage of survival. The right panel shows
the data observed when using an infraoptimal protocol according to which MyD88+/+ (n = 10) and MyD882/2 (n = 15) mice were immunized with
50 mg of OVA on day 0 and challenged only once with 20 mg/ml of OVA or NaCl on day 7. Results are also expressed in percentage of survival. B.
Results show that, using the infraoptimal immunization and challenge protocol, the eosinophil recruitment in BALF was more important in MyD882/2

as compared to MyD88+/+ mice (* p,0.05). C. Monitoring for the cumulative incidence of spontaneous diabetes showed that MyD882/2 NOD mice
(n = 25) were fully protected from disease (littermate female MyD88+/+ NOD mice (n = 60) showed a normal disease incidence reaching 80% by 30
weeks of age) (** p,0.01). D. Histological examination of hematoxylin and eosin stained pancreas sections recovered from 20-week-old MyD88+/+

and MyD882/2 NOD mice (n = 8 per group) showed that a great majority of islets in MyD882/2NOD mice were insulitis free.
doi:10.1371/journal.pone.0011484.g005
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Figure 6. Stimulation of the TLR/MyD88 pathway modulates immune regulatory cytokines and lymphocyte subsets. A. In vitro
stimulation of C57BL/6 mouse spleen cells with varying doses of different TLR agonists (P40, 1 or 20 mg/ml; Poly(I:C), 1 or 10 mg/ml; LPS, 0.1 or
1 mg/ml; R848 0.1 or 1 mg/ml) induced the production of cytokines such as IL-10 (at 48 hrs) and TGF-b (at 72 hrs). Study of splenocytes from MyD88+/+

or MyD882/2 C57BL/6 mice confirmed that the effect is dependent on the MyD88 pathway. Results are expressed as mean cytokine level 6 SD.
Results are representative of three independent experiments. B. Circulating levels of IL-10 and TGF-b were detected following in vivo administration
of TLR agonists. NOD mice were injected i.p. with 20 mg of P40, 100 mg of Poly(I:C) or 10 mg of R848 (n = 8 per group). Control mice were injected with
saline (PBS). Sera were collected 24 hours after the injection and cytokine levels were measured by ELISA (*p,0.05; ** p,0.01; *** p,0.005). C. The
same conventional treatment protocol (described in Figure 3) with the TLR4 agonist LPS (5 mg/week/mouse) and the TLR3 agonist Poly(I:C), that
protected wild type NOD mice from diabetes, was applied to female NOD mice invalidated for CD28 (CD282/2), CD1d (CD1d2/2) and IL-4 (IL-42/2).
Results obtained showed that the Poly(I:C)-induced protective effect was maintained in CD282/2 NOD mice (*p,0.05) but not in CD1d2/2 and
IL-42/2 NOD mice. As a mirror-like image the LPS-induced protective effect was maintained in CD1d2/2 and IL-42/2 NOD mice (* p,0.05) but not in
CD282/2 NOD mice. One representative experiment out of 2 performed is shown.
doi:10.1371/journal.pone.0011484.g006
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In keeping with the in vitro data described above the protective

effect of probiotic bacteria was IL-10-dependent. In fact,

administration of an anti-IL-10 receptor monoclonal antibody

before the first aerosol OVA challenge completely abolished the

therapeutic effect (Figure 9C).

Finally, the probiotic protective effect was transferable by T

cells. Adoptive transfer of CD4+ splenocytes from probiotic-treated

mice into OVA-challenged wild-type NOD mice significantly

inhibited AHR (Figure 9D).

Discussion

Here we show that a wide spectrum of agonists for various

TLRs administered systematically inhibits both allergic and

autoimmune responses extending in a comprehensive fashion

previous isolated reports. These results are at variance with

observations made after using TLR agonists at the site of antigen

administration in normal and pathological conditions as discussed

in the introduction.

The study of MyD882/2NOD mice provided different results

in asthma and diabetes, which initially surprised us in view of the

similarity of the effects of all TLR agonists in the two

animal models. The acceleration of OVA-induced asthma in

MyD882/2NOD mice is in agreement with the pharmacological

effects of TLR agonists in this model, corroborating their

postulated mode of action and supporting the notion that

environmental infectious agents contribute to the modulation of

allergic reactions through TLR stimulation. It is important to

mention at this point that one should not restrict the discussion to

the MyD88 adaptor. Other important adaptor molecules have

been identified such as TRIF that is involved in TLR4 and TLR3

signaling [39] and which may impact in the effect we observed

following LPS and/or Poly (I:C) treatment remains to be determined.

These data are in keeping with the previous report showing that

MyD882/2C57BL/6 mice present a Th2 skewed balance with

increased IgE levels [40]. It was more difficult to explain the

complete prevention of diabetes observed in MyD882/2NOD

mice reported by Chervonsky and observed in our study [36]. The

first interpretation is that MyD88 is mandatory for diabetes

development. Another possibility is that MyD88 deficiency favors

a significant change in the composition of the commensal flora or

the development of infections that both inhibit diabetes onset

[36,41]. The second interpretation is supported by Chervonsky’s

data showing that specific pathogen-free (SPF) MyD882/2NOD

Figure 7. Treatment of NOD mice with TLR4 or TLR7 ligands or probiotics induces CD4+CD25+FoxP3+ Tregs. Mice were injected i.p.
with 5 mg of LPS, 10 mg of R848 or treated orally with the VSL#3 probiotic preparation 5 days a week for 2 weeks (n = 5 per group). Twenty four hrs
after the end of treatment spleen cells were recovered, stained with labeled antibodies specific for CD4, CD25 and FoxP3. Representative flow
cytometry plots representing proportions of CD4+CD25+ and CD25+FoxP3+ T cells (examined on gated CD4+ cells) are shown. In addition, the
corresponding histograms showing the total proportions of FoxP3+ T cells (within the CD4+CD25+ and CD4+CD252 compartments) are detailed for
each experimental group. For the FoxP3 staining, the isotypic controls showed values ranging 0.02–0.09%.
doi:10.1371/journal.pone.0011484.g007
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mice are protected from diabetes (as in our own study) but germ-

free MyD882/2NOD mice show normal diabetes incidence [36].

It may be interesting to mention here that invalidation of the

CD28 gene also shows contrasting effects on diabetes and asthma

with acceleration of diabetes and reduction of asthma [42,43].

Finally, it appears that our results showing diabetes prevention

with TLR agonists provide further support for TLR involvement

in the control of the diabetogenic response in NOD mice.

Our results point to several non mutually exclusive mechanisms

underlying asthma and diabetes prevention by TLR agonists.

These include: 1) the production of immune regulatory cytokines

that was observed both in vitro and in vivo, 2) the involvement of

CD4+CD25+FoxP3+ regulatory T cells indicated by the loss of

protection observed in CD282/2 NOD mice that are devoid of

CD4+CD25+T cells [44]. A word of caution is however needed

concerning CD28 invalidation as it may alter a number of other

immune parameters than the production/differentiation of

CD4+CD25+FoxP3+ regulatory T cells and 3) the involvement

of NKT cells demonstrated by the absence of diabetes protection

in CD1d2/2NOD mice that are deprived of NKT cells [45]. It is

interesting to speculate at this point that, independently form the

precise mechanism(s) mentioned above involved in the ‘induction’

phase of the TLR ligand therapeutic effect and which per se are not

antigen-specific, over long-term ‘maintenance’ of protection from

allergy and autoimmunity may involve bona fide immune tolerance

i.e an antigen-specific effect. Among the TLR agonists protective

for diabetes, it is interesting to highlight that the regulatory

mechanisms involved differed. Thus, TLR3 stimulation by

Poly(I:C) required the presence of NKT cells but not that of

CD4+CD25+FoxP3+ T cells. Conversely, TLR4 stimulation by

LPS required the presence of CD4+CD25+FoxP3+ T cells but not

that of NKT cells. It is also striking that diabetes protection by

TLR3 stimulation required the presence of IL-4 which was not the

case for TLR4-induced protection. It is to note that the role of

CD4+CD25+ T cells could not be tested in the allergic asthma

model since CD282/2 mice do not develop OVA-induced asthma

[43].

Finally, the role of cytokines is difficult to associate with a given

TLR since TLR-induced cytokine production, which was

consistently observed, varied with each agonist: one should note

however that TLR2, TLR3 and TLR7 agonists preferentially

stimulated IL-10 and TGF-b production which was not the case

Figure 8. Probiotic administration prevents from both allergic asthma and autoimmune diabetes: a TLR/MyD88 pathway-
dependent effect. A. NOD mice received 5 days a week for 6 weeks a preparation of probiotics (VSL#3, 5.109 bacteria/mouse) and underwent the
conventional OVA immunization/challenge protocol previously described. AHR as well as eosinophil counts in BALF and IL-4 levels in lung
homogenates were measured. Results showed that probiotic treatment significantly prevented from experimental allergic asthma (** p,0.01;
*** p,0.005). B. The same probiotic preparation (VSL#3; 5.109 bacteria/mouse) was administered orally by gavage to female NOD mice three times a
week starting at 4 weeks of age (n = 8 per group). Results obtained demonstrated a very significant disease protection (*** p,0.005). C. In vitro
incubation for 24 hrs of peritoneal macrophages from NOD mice with increasing concentrations of the VSL#3 probiotic preparation induced a dose-
dependent production of TNF-a and IL-10. The MyD88 dependency of the effect was demonstrated by the lack of effect when macrophages from
MyD882/2 mice were analyzed. D. The probiotic-induced protection from allergic airway inflammation was MyD88-dependent as illustrated by the
comparative results obtained in MyD88+/+ mice. The effect was illustrated here by the data on eosinophil counts in BALF showing that MyD882/2

mice (immunized and challenged according to the infraoptimal protocol, see figure 5) were completely refractory to the probiotic-treatment effect as
compared to MyD88+/+ mice (** p,0.01). Results are representative of one experiment out of two.
doi:10.1371/journal.pone.0011484.g008
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Figure 9. Probiotic treatment and immune regulation. A. The VSL#3 probiotic preparation was administered orally to female NOD mice 5
days a week for 2 weeks (n = 5 per group). Twenty four hrs after the last administration sera were collected and circulating TGF-b was measured:
increased levels were found in mice treated with the active compound as compared to controls (* p,0.05). B. Mice underwent the conventional OVA
immunization/challenge protocol previously described and were treated prior to the first OVA challenge with either a neutralizing monoclonal
antibody to the IL-10R or an isotype-matched control. Results show that neutralization of IL-10 did not alter allergic inflammation (as assessed by
eosinophil recruitment in BALF and IL-4 production). One representative experiment out of two is shown. C. NOD mice received 5 days a week for 6
weeks either the VSL#3 probiotic preparation or PBS and then underwent the conventional OVA immunization/challenge protocol previously
described. Results obtained showed that the probiotic-protective effect was completely reversed (both in terms of reduction of AHR (** p,0.01) and
of eosinophil recruitment in BALF (* p,0.05, ** p,0.01)) following IL-10 neutralization upon administration of an anti-IL-10 receptor monoclonal
antibody prior to the first challenge. One representative experiment out of two is shown. D. Experimental allergic asthma was induced according to
the conventional OVA immunization/challenge protocol already described in normal NOD recipient mice transferred with CD4+ cells purified from the
spleen of probiotic- or control-treated syngeneic mice. Purified CD4+ cells were transferred 24 hrs before the first challenge. Results obtained showed
that both AHR and eosinophil recruitment in BALF were significantly decreased (** p,0.01 for both parameters) in recipients of CD4+ cells recovered
from probiotic-treated donors. One representative experiment out of two is shown.
doi:10.1371/journal.pone.0011484.g009
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for the TLR4 agonist LPS. More generally these data emphasize

the complexity and the importance of TLR-mediated stimulation

of immunoregulatory cytokines as also recently shown by S.

Cohen et al. in experimental allergic encephalomyelitis [46].

In the context of this study we were faced with a dilemma

between attempting to reproduce ‘real life’, which means using

intact microorganisms or their extracts, or using a more reductionist

and contrived approach taking advantage of well defined

components of the microorganisms, such as the TLR ligands we

discussed, to get further insights into the fine cellular and molecular

mechanisms underlying the protective effects. Therefore, we

conducted the studies discussed above using well defined TLR

ligands in parallel to probiotics which we selected among

other microorganisms inasmuch as they have been shown to

have a significant therapeutic effect in clinical atopic dermatitis

[47–49].We provide evidence showing that probiotics function

through TLR stimulation as first, in vitro probiotics failed to induce

cytokine production by spleen cells from MyD882/2 NOD but not

from wild-type NOD mice and second, they did protect MyD882/2

NOD from allergic asthma in clear contrast with the significant

therapeutic effect observed in wild-type NOD mice. This model

allowed us to perform complementary mechanistic studies that

showed tranfer of protection by CD4+ T cells, stimulation of IL-10

production and loss of the protective effect following administration

of a neutralizing anti-IL-10 receptor antibody.

The association of a defined mechanism with a specific TLR is

further complicated by the fact that for a given TLR distinct

agonists do not show the same pharmacological profile: for

instance in the case of TLR4, LPS is protective whereas lipid A is

not. In our initial screening of various TLR ligands it appeared

that lipid A, as compared to LPS, had a lower capacity to induce

cytokine production. This ‘lower’ stimulating capacity might be

the explanation for the lack of ‘therapeutic’ activity of this TLR4

ligand. In any event these data indicates that all ligands of a given

TLR do not have the same protective effect paving the way for an

immunopharmacology of each individual TLR ligand. Concern-

ing the molecular basis for these differential behavior, as

mentioned above, it has been well established that different

adaptor proteins i.e. MyD88 and TRIF mediate TLR4 signaling

[39]. One may speculate that signaling by given TLR4 ligands

may differentially involve these adaptors.

The whole of these data pave the way for a new pharmacology

of TLR stimulation in allergy and autoimmunity with contrasting

effects depending not only on the nature of the TLR receptor but

also on that of the specific ligand.

If it were confirmed that TLR stimulation modulates the

function of regulatory CD4+CD25+FoxP3+ T cells or NKT cells, it

would be of central importance to determine whether this effect is

direct or indirect (e.g. through dendritic cells) [50,51]. Studies

from different laboratories indicate the presence of TLRs on

various subsets of regulatory T cells with however some

contradictory data [52–54]. One should also note that mecha-

nisms other that those discussed above could operate notably IL-

10 production by B cells [55–58]

The relevance of these results for the evolving epidemiology of

asthma and autoimmune type 1 diabetes is intriguing for the

search of new preventive treatments of these diseases. Results

presented in this manuscript indicate that TLR ligands present in

infectious agents could contribute to the protection afforded by

these agents against these diseases according to the hygiene

hypothesis. At the therapeutic level, our results suggest the

possibility of using TLR ligands or probiotics in the prevention

of allergic and autoimmune diseases inasmuch safety is fully

documented. The clinical relevance of the approach described is

based on the widely accepted concept that in the future major

breakthrough in the management of these diseases will come from

prevention rather than treatment of established disease. This

approach has already been implemented in atopic dermatitis,

using probiotics, and insulin-dependent type 1 diabetes in subjects

at risk of developing the disease (children with family history of

disease and, when available as in insulin-dependent diabetes

expressing at risk genetic alleles and/or autoantibody markers)

using candidate autoantigens in particular insulin delivered orally,

parenterally or intranasally [59,60]. In both situations these studies

involved long-term daily treatments (several months) as in our

present studies. It is important to mention with regard to our own

study that the promising but still to be confirmed encouraging

results obtained with probiotics in atopic dermatitis [47–49]. One

would certainly prefer, in the future, to use well-defined chemical

synthetic TLR agonists as those used in our work. Probiotics

present the interest of direct accessibility and low toxicity but suffer

from poor standardization. TLR agonists are probably more

potent but are confronted with the potential risk of stimulating

undesirable immune responses which would necessitate further

safety studies.
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