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Abstract

Background: The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced
thermogenesis.

Methodology/Principal Findings: Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are
crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown
adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and
by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed b-adrenergic induction of
UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2

receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white
adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and
adipose tissue mass in obesity-resistant mice kept at thermoneutrality.

Conclusions/Significance: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not
in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that
cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced
thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity
development.
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Introduction

The two types of adipose tissues, white (WAT) and brown (BAT),

have opposite functions in whole body energy homeostasis. Whereas

white adipocytes store excess energy as fat, brown adipocytes

contain a large number of mitochondria dedicated to convert fat

into heat through uncoupled respiration. The uncoupling of

respiration and the resulting heat dissipation depend on the

expression of the uncoupling protein 1 (UCP1). UCP1 is an integral

membrane protein unique to brown adipocyte mitochondria, where

it acts as a proton channel to uncouple oxidative phosphorylation by

dissipating the proton gradient across the inner mitochondrial

membrane [1]. In mice, an increased content of UCP1 in adipose

tissue mitochondria is strongly linked to protection against diet-

induced obesity. This is true whether increased UCP1 expression is

induced by transgenic expression of UCP1 itself [2;3], of forkhead

box 2 (FOXC2) [4], of PR domain containing 16 (PRDM16) [5] or

by disruption of the RIIb subunit of protein kinase A [6;7],

eukaryotic translation initiation factor E4-binding protein 1 (4E-

BP1) [8], cell death inducing DFFA like effector A and C (Cidea and

Cidec/Fsp27) [9], the p160 coregulator TIF2 [10] or retinoblasto-

ma Rb [11–13].

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11391



Although it has been estimated that 50 g of brown adipocytes

would be sufficient to burn 20% of the daily energy intake [14],

BAT has traditionally been considered to be virtually absent and

of no physiological relevance in adult humans. This view has

recently changed dramatically with the demonstration of func-

tional BAT in adult humans [15–19] adding to the observation of

brown-like multilocular adipocytes expressing UCP1 interspersed

within human WAT [20–22]. Actually, UCP1 mRNA has been

detected in all adipose tissues in adult humans, and it has been

estimated that 1 in 100–200 adipocytes in human intraperitoneal

adipose tissue expresses UCP1 [23].

Classic interscapular brown adipocytes and brown-like adipo-

cytes found in WAT depots appear to originate from distinct

lineages. Brown pre-adipocytes derived from the interscapular

region (iBAT) demonstrate myogenic gene expression [24] and

classic brown adipocytes arise from Myf5 expressing progenitors

[25]. In contrast, brown-like adipocytes appearing in white

adipose tissue by b-adrenergic stimulation (‘‘brite adipocytes’’)

appear to originate from another lineage, much closer to white

adipocytes [26–29] and display different molecular markers [30].

Several lines of evidence suggest that the number of brown-like

adipocytes in WAT depots might influence whole body energy

balance. Increased occurrence of brown-like adipocytes within

WAT depots is a feature of mouse strains resistant to dietary

obesity, such as the A/J strain [31;32], and reduced adiposity

associated with aP2-transgenic expression of UCP1 is linked to

increased energy dissipation in white, but not interscapular brown,

adipose tissue [33]. Human obesity is associated with a reduced

expression of UCP1 and other thermogenesis related genes in

WAT depots [34;35]. Thus, identification of factors controlling

induction of UCP1 expression and an increase in the number of

brown-like adipocytes in white depots obviously deserves further

attention.

It is intriguing that the cold-induced occurrence of brown-like

adipocytes and UCP1 requires the presence of the b3-adrenocep-

tor in previously white adipose tissue, but not in interscapular

brown adipose tissue [36]. Furthermore, the presence of the b3-

adrenoceptor is required for full stimulation of energy expenditure

and oxygen consumption in white adipose tissue [37].

Adipocytes from lean rats have higher isoprenalin-stimulated

prostaglandin E2 (PGE2) synthesis, than adipocytes from obese

Zucker rats [38]. We therefore hypothesized that prostaglandins

or related products synthesized by cyclooxygenases (COXs)

might be involved in the recruitment of brown adipocytes in

white depots. The COXs have previously been implicated in

adipogenesis [39–41], but no specific role has been assigned. Here,

we demonstrate that COX activity is crucially involved in the

induction of UCP1 expression in WAT providing further evidence

for a role of COXs in the control of energy balance and obesity

development. In view of the worldwide epidemic of obesity and

associated metabolic disorders it is obviously of importance to

identify pathways that can be manipulated genetically or

pharmacologically and regulate the induction of UCP1 expression

and recruitment of brown-like adipocytes in white adipose tissues.

Results

COX1 and COX2 protein expression is upregulated in
iWAT during cold treatment

When mice are kept at 28uC, close to thermoneutrality, the

majority of the adipocytes in the inguinal white adipose depot

(iWAT) – the major subcutaneous depot in the mouse – appear as

UCP1-negative, spherical unilocular adipocytes [42]. In iWAT

from warm-acclimated mice, only endothelial cells and macro-

phages stained positive for COX1 and COX2, respectively

(Figure 1A and B). However, when mice were transferred to a

cold environment, the emerging multilocular adipocytes stained

positive for COX1 and COX2. In particular, cells that appeared

to be in a transition state between uni- and multilocular cells

stained strongly (Figure 1A and B). Western blotting demonstrated

increased expression of COX1 and COX2 in iWAT, and also in

iBAT, after cold exposure (Figure 1C). Real time qPCR analysis

verified that genes preferentially expressed in brown vs. white

adipose tissue, such as UCP1, peroxisome proliferator activated

receptor gamma coactivator 1a (PGC1a), type II thyroxine

deiodinase (Dio2), cytochrome C oxidase subunit 8b (Cox8b),

epithelial V like antigen 1 (Eva1) and Cidea were all highly

induced in iWAT upon cold exposure, whereas expression of 4E-

BP1 and of nuclear receptor interacting protein 140 (Nrip1/

RIP140) was reduced (Figure 1D). Immunohistochemical staining

of iBAT from cold-treated mice demonstrated that adipocytes

stained positive for COX2, whereas only endothelial cells stained

positive for COX1 (Figure S1A). The lack of COX1 and COX2

expression in adipocytes from iBAT in warm-acclimated mice was

verified by analysis of protein and RNA isolated from fractionated

adipose tissue, in which COX1 and COX2 was detected solely in

the stromal vascular fraction (Figure S1B).

Inhibition of COX activity represses induction of UCP1
expression

Differentiated mouse embryo fibroblasts (MEFs) lacking the

retinoblastioma (Rb) gene, resemble brown or brown-like

adipocytes in demonstrating b-adrenergic induction of UCP1

expression [43]. To achieve a robust induction of UCP1

expression, differentiated Rb2/2 MEFs were treated with a

combination of isoproterenol and 9-cis retinoic acid [44]. Just as

cold exposure increased COX1 and COX2 mRNA and protein

levels in brown-like adipocytes (Figure 1), isoproterenol/9-cis

retinoic acid treatment increased COX1 and COX2 mRNA and

protein expression (Figure 2A and B) in this model system.

Upregulation of COX1 and COX2 expression in Rb2/2

adipocytes was accompanied by increased production of PGE2,

the primary prostaglandin produced by mature adipocytes

[45;46], but not of PGF2a and 6-keto-PGF1a (Figure 2C). This

indicates that Rb2/2 adipocytes resemble mature adipocytes in

producing PGE2 as the major prostaglandin species.

To investigate the importance of COX activity for induction of

UCP1 expression, we treated differentiated Rb2/2 adipocytes

with isoproterenol/9-cis retinoic acid in the absence or presence of

the general COX inhibitor indomethacin. Indomethacin prevent-

ed induction of UCP1 mRNA and protein expression (Figure 2D

and E), thus suggesting the intriguing possibility that COX activity

is required for induction of UCP1.

To examine if COX activity was required also in primary

adipocytes, we induced cells from the stromal vascular fraction of

iBAT and iWAT to differentiate and then treated the mature

adipocytes with the b-adrenergic agonist isoproterenol in the

absence and presence of indomethacin. Interestingly, indometh-

acin inhibited isoproterenol-induced UCP1 expression in cells

derived from iWAT but not from iBAT (Figure 3A), indicating

that COX activity is required for b-adrenergic induction of UCP1

expression in adipocytes from iWAT, but not in iBAT adipocytes.

In keeping with this notion, indomethacin only marginally

attenuated induction of UCP1 expression in the WT-1 cell model

representing interscapular brown adipocytes (Text S1, Figure S2)

[47].

To investigate the role of COX activity during induction of

UCP1 expression in iWAT and iBAT in vivo, we treated warm-

Cyclooxygenases and UCP1
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acclimated mice with the COX inhibitor indomethacin and

transferred the mice to 4uC. Measurements of rectal temperature

revealed that mice treated with indomethacin had slightly, but

significantly lower body temperature (Figure 3B). As expected,

UCP1 expression was induced in both iBAT and iWAT in

vehicle-treated mice (Figure 3C and D). While indomethacin

treatment only slightly attenuated cold-induced UCP1 expression

in iBAT, it almost completely prevented the induction of UCP1

expression in iWAT (Figure 3C and D). Thus, COX activity

appeared to be necessary for cold-induced UCP1 expression in

iWAT, but not in iBAT. In addition, indomethacin treatment

attenuated cold-induced enhancement of PGC1a, Dio2, Cox8b,

Eva1 and Cidea expression in iWAT, while preventing cold-

induced repression of RIP140 and 4E-BP1 expression in iWAT

(Figure 3D).

Forced expression of COX2 induces UCP1 expression in
Rb2/2 adipocytes

Since indomethacin attenuated b-adrenergically stimulated

UCP1 expression in Rb2/2 adipocytes and primary inguinal

Figure 1. Cold exposure induces COX1 and COX2 expression in iWAT and iBAT. Sv129 mice were warm-acclimated at 28–30uC for 6 days
and then transferred to 4–6uC. Samples for cryosections, RNA and protein extractions were prepared from iBAT and iWAT after 2, 4 and 6 days at 4–
6uC. A–B. Representative COX1 (A) and COX2 (B) immunoreactivity in iWAT from mice kept at 28–30uC for 6 days and after 6 days of cold exposure. C.
Proteins were isolated from warm-acclimated mice (lane 1) and after 2, 4 and 6 days of cold exposure. COX1 and COX2 expression were determined
by Western blotting. D. RNA was harvested from iBAT and iWAT from individual mice (n = 4 in each group) that were warm-acclimated or cold-
exposed for 6 days. Expressions of genes were measured by RT-qPCR in duplicates and normalized to TBP (TATA box binding protein). The bars
represent mean 6 standard error. * indicates statistical difference (p,0.05) compared to expression in warm acclimated mice.
doi:10.1371/journal.pone.0011391.g001
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adipocytes, but not in WT-1 cells and primary interscapular

brown adipocytes, we again used Rb2/2 adipocytes as a model

system for ‘‘brite’’ adipocytes. To investigate the relative

importance of COX1 and COX2 activities in mediating induction

of UCP1 expression in such cells, we treated Rb2/2 adipocytes

with isoproterenol/9-cis retinoic acid in the absence and presence

of selective COX1 and COX2 inhibitors. As shown in Figure 4A,

selective inhibition of COX1 and COX2 with SC560 or NS398,

respectively, partially prevented UCP1 induction, whereas a

combination of these inhibitors or treatment with the non-selective

inhibitor indomethacin fully prevented UCP1 induction. Accord-

ingly, activities of both COX1 and COX2 seem necessary for full

UCP1 induction.

To further examine the relative importance of COX1 and

COX2 for prostaglandin synthesis and UCP1 expression, these

enzymes were retrovirally expressed both singly and in combi-

nation in Rb2/2 MEFs (Figure 4B). The cells were induced to

differentiate, and on day 8, the medium was replaced by fresh

medium, which was harvested 24 h later and analyzed for PGE2

content. The level of PGE2 was higher when the cells were

transduced with COX2 alone or in combination with COX1,

than with COX1 alone (Figure 4C). These results, together with

the fact that PGE2 formation in adipose tissue in COX2 KO

mice is significantly lower than in COX1 KO mice [48], point to

COX2 expression as being of major importance for PGE2

production. In accordance with this, forced expression of COX1

alone was unable to induce UCP1 expression (Figure 4D).

However, UCP1 expression was significantly induced by forced

expression of COX2 alone or in combination with COX1

(Figure 4D). Increased expression of UCP1 was accompanied

with increased expression of PGC1a, Dio2, Cox8b, Eva1 and

Cidea, as well as reduced expression of RIP140, but not 4E-BP1

(Figure 4D).

Cold-induced UCP1 expression is attenuated in iWAT in
COX2 KO mice

To confirm the importance of COX2 for UCP1 induction in

iWAT, wild-type and COX2 KO mice were challenged with a

cold environment after warm acclimation. The wild-type mice

defended their body temperature better than the COX2 KO mice

(Figure 5A). The COX2 KO mice develop severe nephropathy

and are susceptible to peritonitis in early life [49]; therefore, KO

and wild-type littermates 6 weeks of age were used in this

experiment. Unfortunately, we were unable to collect sufficient

amounts of iWAT from these young mice to detect UCP1 or COX

by Western blotting. However, as expected, cold-induced UCP1

mRNA expression was attenuated in iWAT in COX2 KO mice

(Figure 5B). Cold-induced expression of Dio2 and Cidea was also

attenuated in iWAT in the COX2 KO mice and PGC1a
expression also tended to be attenuated (Figure 5B). Moreover,

the cold-induced reduction of RIP140 expression was prevented in

the COX2 KO mice (Figure 5B). Expression of Cox8b, Eva1 and

4E BP1 was, however, not significantly different in iWAT from

wild-type and COX2 KO mice, suggesting that inhibition of both

COX1 and COX2 might be necessary to attenuate cold-induced

changes in the expression of these genes. As expected, we observed

no differences in UCP1 expression in iBAT in COX2 KO and

wild-type mice, and surprisingly, cold-treated COX2 KO mice

had significantly higher expression of PGC1a in iBAT than did

wild-type mice (Figure 5B).

PGE2 induces UCP1 expression via activation of the EP3/
EP4 receptors

PGE2 is reported to mediate its action by interacting with four

subtypes of PGE receptors, the EP1, EP2, EP3 and EP4 receptors

[50], but may also bind to the prostaglandin F (FP) receptor with an

Figure 2. Indomethacin prevents isoproterenol-induced UCP1 expression in Rb-negative adipocytes. Rb-negative mouse embryo
fibroblasts were induced to differentiate as described in experimental procedures. Differentiated cells were treated with vehicle or isoproterenol
(100 nM) and 9-cis-retinoic acid (1 mM) for 24 h. Indomethacin (1 mM) was included when indicated in the figure. A and D. RNA was isolated and
expressions of genes were measured by RT-qPCR in duplicates and normalized to TBP. C. The levels of prostaglandin E2, F2a and 6-keto-prostaglandin
F1a were determined in cell medium using ELISA kits after 24 h. B and E. Proteins were harvested and expressions of COX1, COX2 and UCP1 were
measured by Western blotting. The bars represent mean 6 standard error. The experiments were performed in triplicates and performed 3–5 times.
* indicates statistical significant difference (p,0.05).
doi:10.1371/journal.pone.0011391.g002
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affinity that is only 10–30 fold lower than that of PGF2a [51]. In

order to probe the relative importance of these receptors in

mediating the possible effect of PGE2 on induction of UCP1,

expression of the EP and FP receptors was measured in adipose

tissue and in Rb2/2 adipocytes. All receptors were expressed in

both white and brown adipose tissue, whereas no expression of the

EP3 receptor could be detected in Rb2/2 adipocytes (Figure 6A),

implying a minor if any role of this receptor in mediating the PGE2

response in those cells. Thus, Rb2/2 adipocytes were treated with

isoproterenol and 9-cis retinoic in the absence or presence of

AL8810, AH6809, or AH23848, that are FP-, EP1/EP2 and EP4

receptor antagonists, respectively. Isoproterenol-stimulated UCP1

expression was not affected by the FP receptor antagonist, but

slightly attenuated by the EP1/EP2 receptor antagonist and strongly

attenuated by the EP4 antagonist (Figure 6B). Reduced expression

of UCP1 was accompanied by reduced expression of PGC1a and

Cidea (Figure 6B). To verify the importance of PGE2 signaling via

the EP4 receptor with a possible minor contribution by the EP3

receptor, mice were injected with an EP3/EP4 receptor agonist [52],

the stable PGE2 analogue 16,16-dimethyl-PGE2 As predicted,

qPCR analysis revealed that UCP1 expression was induced in

iWAT, but not in iBAT (Figure 6C). Together, the in vitro and in vivo

results suggest that PGE2-induced UCP1 expression at least in part

is mediated via the EP3/EP4 receptors with EP4 being the

predominant receptor involved.

Inhibition of COX activity increases adiposity and energy
efficiency in obesity resistant Sv129 mice

Diet-induced thermogenesis protects several mouse strains

against obesity [53–55]. Since it appears that the protection

against diet-induced obesity is related to increased occurrence of

brown-like adipocytes in white depots [56;57], we aimed to

investigate the hypothesis that indomethacin could also attenuate

diet-induced UCP1 expression and thereby increase the propen-

sity for diet-induced obesity in Sv129 mice. Since it was recently

demonstrated that UCP1-deficient mice become obese when

housed at thermoneutrality [58], we predicted that the most

pronounced effect of COX inhibition would be observed for mice

kept under thermoneutral conditions. Accordingly, we fed Sv129

mice a very high-fat diet with or without indomethacin

Figure 3. Indomethacin prevents cold-induced UCP1 expression in iWAT. A. Stromal vascular fractions (SVFs) were isolated from mouse
iWAT and iBAT, cultured and induced to differentiate as described in experimental procedures. Differentiated adipocytes were treated with vehicle or
isoproterenol (100 nM) in the absence or presence of indomethacin (1 mM) for 24 h. Expression of UCP1 was measured by RT-qPCR in duplicates and
normalized to PPARc. The bars represent mean 6 standard deviation. The experiment was performed in triplicates and repeated 3 times. B–D. C57Bl/
6 mice were warm-acclimated at 28–30uC for 10 days and then transferred to 4–6uC for 48 h. Mice were injected with vehicle or indomethacin
(2.5 mg/kg) 2 h prior transfer to 4uC and thereafter every 12 h. Rectal temperature was measured before the mice were transferred and after 24 and
48 h (B). Protein and RNA extractions were isolated after 48 h. UCP1 expression was measured by Western blotting (C) and expressions of genes were
measured by RT-qPCR and normalized to TBP (D). The bars represent mean 6 error (n = 5–6). * indicates statistical significant difference (p,0.05).
doi:10.1371/journal.pone.0011391.g003

Cyclooxygenases and UCP1
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Figure 4. UCP1 expression is induced by forced expression of COX2 alone or in combination with COX1 in cultured cells. A. Rb2/2

MEFs were induced to differentiate as described in experimental procedures. Differentiated adipocytes were treated with vehicle or isoproterenol
(100 nM) and 9-cis-retinoic acid (1 mM) in the absence and presence of the COX1 inhibitor SC560 (50 nM) or the COX2 inhibitor NS398 (5 mM), alone
or in combination, or with indomethacin (1 mM), for 24 h. Expression of UCP1 was measured by RT-qPCR. The bars represent mean 6 standard error.
The experiment was performed in triplicates and repeated 2 times. B–D. Rb2/2 MEFs were retrovirally transduced with empty vector, vector
encoding COX1 or COX2, or both. The transduced cells were selected and induced to differentiate and analyzed for COX1 and COX2 expression by
Western blotting (B). PGE2 levels were measured in cell media (C). RNA was isolated on day 8 and expressions of genes were measured by RT-qPCR
(D). The bars represent mean 6 standard error. Different letters indicate statistically significant difference (p,0.05). The experiments were performed
in triplicates.
doi:10.1371/journal.pone.0011391.g004

Cyclooxygenases and UCP1
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supplementation for 4 weeks while keeping the mice at 28–30uC.

As demonstrated in Figure 7A, indomethacin supplementation led

to a higher weight gain. Energy intake was slightly, but not

statistically significantly lower (data not shown). However, energy

intake relative to body weight gain was significantly lower in mice

that received the indomethacin-supplemented high-fat diet

(Figure 7A). Mice fed the diet supplemented with indomethacin

also had more WAT in different depots, but not iBAT (Figure 7B).

Histological analysis revealed that the adipocytes in both iWAT

and iBAT appeared normal, but adipocytes in iWAT in mice fed

the high-fat diet supplemented with indomethacin were slightly

larger (Figure 7C and D). As expected, feeding mice a high-fat diet

lead to augmented expression of UCP1 in both iBAT and iWAT

in vehicle-treated mice (Figure 7E). Importantly, diet-induced

UCP1 expression was prevented in iWAT, but not in iBAT in the

indomethacin-treated mice (Figure 7E). Reduced expression of

UCP1 in iWAT in mice fed a high-fat diet supplemented with

indomethacin was accompanied with reduced expression of

Cox8b. Expression of PGC1a, Dio2, Eva1, Cidea, 4E-BP1 and

RIP140 was not affected by inclusion of indomethacin with the

high-fat diet (Figure 7E). Collectively, these results underscore the

notion that inhibition of COX activity attenuates the acquisition of

‘‘brite’’ adipocytes in white adipose depots with an accompanying

increase in feed efficiency leading to accumulation of more adipose

tissue. Obviously, other mechanisms may contribute to the

increase in feed efficiency, but the lack of ‘‘brite’’ adipocyte

recruitment seems a key player.

Discussion

The unique energy-dissipating ability of UCP1 makes control of

its expression and activation potential targets for the development

of novel drugs for the treatment of obesity and obesity-associated

diseases. Here we present evidence that COX activity and COX-

derived PGE2 are intimately linked to induction of UCP1

expression in iWAT, but not in iBAT. Thus, cold-induced

expression of UCP1 in iWAT was repressed in mice treated with

the general COX inhibitor indomethacin, and in COX2 KO

Figure 5. Cold-induced UCP1 expression is attenuated in iWAT in COX2 KO mice. A B COX2 KO mice and wild-type littermates were warm-
acclimated at 28–30uC for 10 days and then transferred to 4–6uC for 48 h. Rectal temperature was measured before transfer and after 24 and 48 h (A).
RNA was extracted and expressions of genes were measured by RT-qPCR (B). The bars represent mean 6 standard error (n = 5–6). * indicates
statistical significant difference between wild-type and KO mice (p,0.05).
doi:10.1371/journal.pone.0011391.g005
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mice. Also, injection of a stable analog of the COX2 downstream

product PGE2, 16,16-dimethyl-PGE2, induced UCP1 expression

in iWAT. Forced expression of COX2, alone or in combination

with COX1, induced UCP1 expression in a cell model resembling

inguinal adipocytes. Finally, the inhibition of COX activity not

only attenuated diet-induced UCP1 expression in iWAT, but also

increased weight gain in Sv129 mice kept at thermoneutrality.

The association between diet-induced thermogenesis and the

recruitment of brown adipose tissue was first noted more than 30

years ago and believed to involve the classical brown adipose tissue

located in the interscapular region [59]. The anti-obesity role of

UCP1 was challenged by the finding that UCP1 KO mice were

not obese [60]. However, the recent demonstration that UCP1

ablation per se induced obesity when the mice were kept at

thermoneutrality [61] clearly indicates that UCP1 is important in

diet-induced energy dissipation at thermoneutrality. Our data

indicate that inhibition of COX activity increased weight gain and

concomitantly attenuated diet-induced UCP1 expression in

iWAT, but not iBAT in Sv129 mice kept at thermoneutrality,

pointing to a novel role of COX activity in the control of energy

balance and the development of obesity. These results are in line

with our earlier observation that enhanced cAMP signaling in

response to an increased glucagon/insulin ratio led to an increased

COX-mediated PGE2 production. This was accompanied by

increased expression of UCP1 in iWAT, but not in iBAT, and

decreased feed efficiency [62]. Although neither COX1 KO nor

COX2 KO mice are obese, COX2+/2 KO mice have more

adipose tissue than wild-type littermates when fed an obesogenic

diet [48]. The reason why COX2+/2, but not COX2 KO mice

were reported to be prone to obesity is not clear. However, these

studies were not performed at thermoneutrality [48]. A similar

phenomenon is actually seen in GLUT4 KO mice, where the

majority of GLUT42/+, but not GLUT42/2 mice develops

diabetes [63]. Moreover, release of PGE2 from adipose tissue in

COX2+/2 mice was reported to be reduced compared to adipose

tissue from wild-type mice [48] and adipose tissue cultures

obtained from obese rats have lower PGE2 release rates than

cultures from lean rats [38]. In addition, microsomal prostaglandin

Figure 6. UCP1 expression is attenuated by an EP4 receptor antagonist in Rb2/2 adipocytes and induced by the EP4 receptor
agonist 16,16dmPGE2 in vivo. A. Expressions of EP1, EP2, EP3, EP4 and FP receptors were measured by RT-qPCR in iBAT and iWAT isolated from
warm- and cold-acclimated mice, and in Rb2/2 adipocytes treated with vehicle or isoproterenol (100 nM) and 9-cis-retinoic acid (1 mM). B. Rb2/2

adipocytes were treated with vehicle or isoproterenol (100 nM) and 9-cis-retinoic acid (1 mM) by RT-qPCR in absence and presence of AL8810,
AH6809, or AH23848, which are FP, EP1/EP2 and EP4 receptor antagonists, respectively. Expressions of genes were measured by RT-qPCR. The bars
represent mean 6 standard error. Different letters indicate statistically significant differences (p,0.05). C. C57BL/6J mice were subcutaneously
injected with vehicle or 16,16dmPGE2 (50 mM/kg) every 12 h for 48 h. Expressions of genes were measured by RT-qPCR. The bars represent mean 6
standard error (n = 5). * indicates statistical significant difference between vehicle and 16,16 dmPGE2 treated mice (p,0.05).
doi:10.1371/journal.pone.0011391.g006

α

Figure 7. Indomethacin prevents high-fat diet-induced UCP1 expression in iWAT but not iBAT in the obesity-resistant Sv129 mouse
strain. Mice were fed a very high-fat diet (VHF) with or without indomethacin supplementation (16 ppm) for 4 weeks at a temperature of 28–30uC.
One group of mice was killed before the experiment started. A. Body weight gain and energy intake relative to body weight gain. B. Different
adipose tissue depots were dissected and weighed. C and D. Representative paraffin-embedded representative sections from iWAT and iBAT were
stained with hematoxylin and eosin. The scale bars represent 50 mM. E. Expressions of genes in iWAT and iBAT were measured by RT-qPCR. The bars
represent mean 6 standard error (n = 6). * indicates statistical significant difference (p,0.05) between different groups.
doi:10.1371/journal.pone.0011391.g007
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E synthase1 (mPGES1) expression is reported to be downregulated

in iWAT and eWAT in obese mice [64], suggesting a

dysregulation of prostaglandin synthesis in obesity.

PGE2 mediates its action by interacting with four subtypes of

PGE2 receptors, the EP1, EP2, EP3 and EP4 receptors [50]. Using

the Rb2/2 brown-like adipocytes, we show that b-adrenergic

stimulation of UCP1 expression is attenuated by an EP4 receptor

antagonist. This combined with our finding that injection of the

EP3/EP4 receptor agonist 16,16-dimethyl-PGE2 increased expres-

sion of UCP1 in iWAT indicates that the action of PGE2 is

predominantly mediated via the EP4 receptor with a possible minor

contribution by the EP3 receptor. Most EP4 KO mice die shortly

after birth, and no adipose tissue phenotype has been reported for

the few surviving pups [65]. Similarly, to our knowledge, no adipose

tissue phenotype has been reported for the EP3 KO mice.

Collectively, our findings strongly indicate that both cold- and

diet-induced expression of UCP1 in iWAT, but not in iBAT,

requires COX activity and most likely PGE2 formation.

Furthermore, our results point to differential roles of induction

of UCP1 expression in iWAT and iBAT in the context of diet- and

cold-induced thermogenesis. We suggest that whereas UCP1 in

iWAT plays an important role in protection against obesity, UCP1

in iBAT is essential for temperature adaptation. Upon cold

challenge, body temperatures were only slightly lower in wild-type

mice treated with indomethacin and in COX2 KO mice

compared to non-treated wild-type mice. This is in line with the

earlier finding that UCP1 expression is blunted in iWAT, but not

in iBAT, in cold-adapted b3 adrenoreceptor KO mice [66].

The importance of COX in diet-induced expression of UCP1 in

iWAT and diet-induced thermogenesis is underscored by our

demonstration that inclusion of the general COX inhibitor

indomethacin in the diet augmented high-fat diet-induced obesity

in Sv129 mice kept at thermoneutrality irrespectively of UCP1

expression in iBAT. Increased expression of UCP1 in WAT with

accompanying increased thermogenic activity coupled with un-

changed or even reduced BAT activity has been observed in several

genetically modified lean mouse models such as RIP140 [67],

Caveolin 1 [68], Fsp27 [69], hormone sensitive lipase [70] and

vitamin D receptor [71] KO mice. Further, in RIIb mice [72], pRb-

deficient mice [11;73] and in mice overexpressing FOXC2 [74],

protection against diet-induced obesity is accompanied by an

increased RIa/RIIb ratio, rendering PKA somewhat more sensitive

to cAMP, which is accompanied by an increased occurrence of

brown adipocytes in WAT. Last, it should be recalled that in aP2-

UCP1 transgenic mice, both endogenous UCP1 expression and

respiration are actually reduced in iBAT [75]. UCP1 expression,

respiration and total oxidative capacity are, however, strongly

induced in WAT and the oxidative capacity of WAT is sufficient for

the changes of total energy balance induced by the transgene [76].

In keeping with the earlier notion that i) mouse strains that have

more UCP1-expressing adipocytes in their WAT depots are

protected against diet-induced obesity [77;78] and ii) brown-like

multilocular adipocytes expressing UCP1 are detected interspersed

within white adipose tissue in humans [20;21;79], we suggest that

factors influencing UCP1 expression in white adipose tissue are of

particular importance for the regulation of energy balance and the

development of obesity also in humans.

Materials and Methods

Ethics Statement
The animal experiments were approved by the Norwegian

Animal Health Authorities, ID 819 and 888. Care and handling

were in accordance with local institutional recommendations.

Cell culture, transduction and differentiation
Mouse embryo fibroblasts (MEFs) were prepared from wild-type

and Rb2/2 embryos [80]. The cells were grown and differentiated

in AmnioMax Medium as described earlier [81]. Retrovira

expressing pLXSN-hygro, pBabe-puro, pLXSN-COX1 or

pBabe-COX2 were harvested from Phoenix–Eco cells, plated at

30–40% confluence in DMEM supplemented with 10% fetal

bovine serum, and transductions performed as described [82].

Isolation of the stromal vascular fraction and adipocytes
from mice

The stromal vascular fraction and adipocytes were obtained

from iWAT and iBAT dissected from 8-week old C57BL/6J mice

as earlier described [83]. Contaminating erythrocytes were

eliminated from the stromal-vascular fraction by a wash with

sterile distilled water. Cells were plated and induced to

differentiate as described [83].

Cold acclimation experiments
Groups (n = 5–8) of 10-week old male mice were acclimated at a

temperature of 28–30uC for at least 1 week and transferred to 4uC
for 1, 2, 3 or 6 days. Where relevant, mice were injected with

indomethacin (2.5 mg/kg) 2 h prior transfer to 4uC. The mice

received a dose of indomethacin every 12 h. Injections were

performed subcutaneously from a 0.75 mg/ml solution. Final dose

was 5 mg/kg/day. Control mice received vehicle. Animals were

housed individually with a 12 h light/dark cycle and free access to

pellet food and water. Mice used for immunohistochemical

analyses were immediately perfused intracardially with 4%

paraformaldehyde. iBAT, iWAT, lung and skin were dissected

and frozen for immunohistochemistry on cryosections. For

morphology experiments, the mice were immediately perfused

with 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 for

5 min. COX2 KO mice (B6;129P2 Ptgs2 tm1Unc) and correspond-

ing wild-type littermates were obtained from Taconic. C57BL/6J

used in indomethacin experiments were obtained from Møllegård

breeding laboratories.

16,16dmPGE2 injections
Male, C57BL/6J approx 10-weeks old from Møllegård

breeding laboratories, Denmark were divided into two groups

(n = 5). The mice received a dose of 50 mg/kg 16,16dmPGE2 every

12 h for 48 h. Injections were performed subcutaneously and the

total dose was 0.1 mg/kg/day. Control mice received vehicle.

Animals were housed individually with a 12 h light/dark cycle and

free access to pellet food and water.

High-fat feeding
Male Sv129 mice, 11 weeks old, were obtained from Taconic.

The mice were acclimated for 1 week at a temperature of 28–30uC
and divided into three groups (n = 6 in each). One group of mice

was sacrificed before dietary intervention while the remaining

mice were fed a very high-fat diet (ssniff EF R/M acc D12492)

with or without indomethacin supplementation (16 ppm) for 4

weeks at a temperature of 28–30uC. Body weight and feed intake

were recorded twice a week. Mice were anesthetized using

isoflurane, cardiac puncture was performed and mice were killed

by cervical dissociation. Tissues were immediately frozen in liquid

N2.

Real time qPCR
Total RNA was extracted from cultured cells or mouse tissue

using TRIzol (Invitrogen). Reverse transcription and qPCR were
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performed in duplicates as described earlier [83]. Primer

sequences are available on request.

Western blotting
Preparation of extracts from mouse tissues or whole cell dishes,

electrophoresis, blotting, visualization and stripping of membranes

were performed as described [84]. Primary antibodies used were

goat anti-COX1, goat anti-COX2, rabbit anti-UCP1 and rabbit

anti-TFIIB antibodies (Santa Cruz Biotechnology). Secondary

antibodies were horseradish peroxidase-conjugated anti-mouse,

anti-goat or anti-rabbit antibodies obtained from DAKO.

Immunohistochemistry
COX1 (M-20; sc 1754) and COX2 (M-19; sc 1747) antibodies

were obtained from Santa Cruz Biotechnology, diluted 1:300 on

cryosections and 1:100 on paraffin-embedded sections (for

COX1). Lung [85] and skin [86] were used as positive control

for both COX1 and COX2 antibodies.

Histological analyses
Parts of adipose tissue were fixed in 4% formaldehyde in PB

buffer for 24 h, washed in PB, dehydrated in ethanol, embedded

in paraffin after 2610 min xylen treatment. Sections (8 mm thick)

of the embedded tissue sections were subjected to standard

hematoxylin and eosin staining.

Supporting Information

Text S1 Experimental.

Found at: doi:10.1371/journal.pone.0011391.s001 (0.04 MB

DOC)

Figure S1 COX1 and COX2 are mainly expressed in the

stromal-vascular fraction of iBAT in warm-acclimated mice. A.

Sv129 mice were warm-acclimated at 28–30uC for 6 days and

then transferred to 4–6uC. Samples for cryosections were prepared

from iBAT and iWAT after four days of cold exposure.

Representative COX2 immunoblots in iBAT B. iBAT from

warm-acclimated mice was fractionated into SVF and adipocyte

fractions, respectively. Expression levels of COX1 and COX2

were determined by RT-qPCR and Western blotting.

Found at: doi:10.1371/journal.pone.0011391.s002 (15.01 MB

EPS)

Figure S2 Inhibition of COX does not prevent isoproterenol/9-

cis-retinoic acid-induced UCP1 expression in WT-1 cells.

Differentiated WT-1 cells were treated with a combination of

isoproterenol (100 nM) and 9-cis-retinoic acid (1 mM) for 24 h.

When included, indomethacin (1 mM) were added 2 h before

isoproterenol and 9-cis retinoic acid. UCP1 and PGE1a
expressions were determined by RT-qPCR.

Found at: doi:10.1371/journal.pone.0011391.s003 (2.44 MB EPS)
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