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Abstract

Background: Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses
or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission,
rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays
potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into
polymeric materials, conferring them with potent biocidal properties.

Methodology/Principal Findings: We demonstrate that impregnation of copper oxide into respiratory protective face
masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and
copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.6660.51 and
6.1760.37 log10TCID50 of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated
breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper
oxide containing masks within 30 minutes (#0.88 log10TCID50), while 4.6761.35 log10TCID50 were recovered from the
control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were
#0.9760.01 log10TCID50 and from the control masks 5.0360.54 log10TCID50. The copper oxide containing masks
successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration
by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN
14683:2005 and NIOSH N95 standards.

Conclusions/Significance: Impregnation of copper oxide into respiratory protective face masks endows them with potent
anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may
significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper
handling and disposal of the masks.
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Introduction

Since the turn of the 20th century, when the presence of bacteria

in droplets from the nose and mouth was discovered along with

their role in disease transmission, masks have been used to protect

both health care providers and patients from respiratory diseases.

Surgical masks are used mainly during surgery to catch the

bacteria shed in liquid droplets and aerosols from the wearer’s

mouth and nose, and to protect the wearer from possible blood

splashes. In addition to health care facilities, simple, inexpensive

masks, which are similar in appearance to surgical masks, are

frequently worn in crowded areas. For example, such masks were

widely used, especially in China, Hong Kong, Vietnam, and

Toronto, Canada, during outbreaks of the SARS virus, during the

2007 avian bird flu pandemic in Japan and, more recently, in the

United States and Mexico City during the 2009 H1N1 flu (swine

flue) outbreak. The use of protective masks has been shown to

reduce the spread of respiratory viruses, especially when used by

individuals in enclosed spaces or in close contact with a person

with influenza-like symptoms [1,2]. The USA Centers for Disease

Control and Prevention (CDC) and the USA Occupational Safety

and Health Administration, among others, have recommended

their use to patients and health care providers [3–5]. Most of these

masks contain a nonwoven layer that, based on its pore size,

prevents the passage of pathogens through the mask, either from

the environment to the wearer or from the wearer to the

environment. Protective respiratory masks differ from respirators,

which are devices widely used in industry to protect the wearer

from noxious gases, vapors, and aerosols or to supply oxygen or

doses of medication to the wearer. It is important to be aware that

not all protective masks, especially those with exhalation valves,

prevent passage of pathogens from the wearer to the environment.
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Furthermore, not all N95 respirators, especially those with

exhalation valves, prevent passage of pathogens from the wearer

to the environment. This is especially critical in a health care

setting where a surgical respirator (a hybrid between a surgical

mask and a respirator) would be needed, requiring both NIOSH

and FDA approval.

The use of protective masks by the wide public received

significant impetus from the World Health Organization’s (WHO)

declaration regarding a global flu pandemic on the 11th of June

2009. This declaration came in the wake of the geographic spread

of a new human influenza A H1N1 virus strain, with genes derived

from human (PB1), avian (PA and PB2), classical swine (HA, NP

and NS) and Eurasian swine (NA and M) influenza viruses [6–8].

This strain appears to have circulated in swine for years [9].

However, the efficacy of such masks is dependent on their

proper use and disposal, since incorrect use and disposal may

actually increase the risk of pathogen transmission, rather than

reduce it [10]. The fact that healthcare workers (including doctors

and nurses) have not always complied with safe disposal and

handling practices, even after prolonged instruction on these

practices [11,12], is of grave concern. For example, poor hygiene

practices by healthcare professionals, such as failure to wash the

hands with sufficient rigor and frequency, is one of the main

sources of nosocomial infections [13,14]. Furthermore, the risks of

pathogen transmission due to improper disposal and mishandling

may be even greater when these masks are used by non-

professionals such as the lay public [15], as is the case in the

current influenza pandemic.

Copper has potent biocidal properties [16,17]. For example,

copper inactivates bacteriophages [18], bronchitis virus [19],

poliovirus [18,20], herpes simplex virus [20,21], human immuno-

deficiency virus (HIV) [22–25] and influenza viruses [26,27].

Recently a durable platform technology was developed, which

introduces copper oxide to textile fibers, latex and other polymer

products [24,28]. The copper oxide impregnated products possess

broad-spectrum anti-microbial properties [24,28,29] including

antiviral properties [24,25,30].

In the present report we demonstrate that the impregnation of

copper oxide into disposable N95 respiratory masks (masks that

filter 95% of 0.3 micron particles) endows them with potent anti-

influenza biocidal properties without altering their physical barrier

properties.

Materials and Methods

Masks
US National Institute for Occupational Safety and Health

(NIOSH) N95 face masks containing copper oxide particles,

hereafter referred to as test masks, were composed of the following

4 layers (Figure 1a): a) external layer A, made of spunbond

polypropylene fabric containing 2.2% weight/weight (w/w)

copper particles (Figure 1b); b) internal layer B, made of

meltblown polypropylene fabric containing 2% w/w copper oxide

particles (Figure 1c), which constitutes the barrier layer that

provides the physical filtration properties to the mask; c) internal

layer C, made of plain polyester, designed to give shape to the

mask; and d) external layer D, which is identical to layer A, but is

closest to the face of the wearer when the mask is used. Similar

NIOSH N95 face masks, without copper oxide particles, were

used as control masks and are hereafter referred to as control

masks. The external layers A and D of these masks were made of

spunbond polypropylene without impregnated copper oxide

particles and the internal layer B was made from meltblown

polypropylene without impregnated copper oxide particles.

Internal layer C, made of plain polyester, was identical to that

used in the test masks to give shape to the masks. The control and

test masks were sterilized by gamma radiation.

Challenge virus
Human influenza A virus (A/Puerto Rico/8/34 (H1N1)) and

avian influenza virus (Turkey/Wis/66 (H9N2)) were purchased

from Charles River Laboratories (Storrs, Connecticut, USA). The

viral stocks were stored at 260uC to 290uC. Frozen viral stocks

were thawed on the day of the test and diluted to a challenge

concentration of $106 infectious units/mL.

Challenge of mask with aerosolized virus. Three control

and 3 test masks were challenged with aerosolized human

influenza A virus (H1N1) or aerosolized avian influenza virus

(H9N2) based on the ASTM Method F 2101.01 ‘‘Standard Test

Methods for Evaluating the Bacterial Filtration Efficiency of

Figure 1. Copper oxide impregnated test mask composition. a) The test mask was composed of 2 external spunbond polypropylene layers (A
and D) containing 2.2% copper oxide particles (weight/weight), one internal meltblown polypropylene layer (B) containing 2% copper oxide particles
(w/w) and one polyester layer containing no copper oxide particles. b) Scanning electronic microscope picture and X-ray analysis of external layer A.
c) Scanning electronic microscope picture and X-ray photoelectron spectrum analysis of internal layer B.
doi:10.1371/journal.pone.0011295.g001
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Medical Face Mask Materials, Using a Biological Aerosol of

Staphylococcus aureus,’’ after customizing the method for virus

testing. Briefly, test masks preconditioned to a temperature of

25uC and a relative humidity of $85% for 4 hours were

hermetically clamped between a single stage Anderson impactor

(Thermo Electron Corporation, Franklin, Massachusetts, USA)

and an aerosol chamber under sterile conditions (Figure 2).

Approximately 25 mL of human influenza A virus and avian

influenza virus, respectively, were aerosolized (mean particle size:

3.0 mm60.3 mm per manufacturer) by using a 6-jet nebulizer (BGI

Incorporated, Waltham, MA USA). They were introduced into

the aerosol chamber by using an upstream air compressor for

1 minute and a downstream vacuum pump attached to the

impactor creating 28.3 L/min air flow through the masks. After

the 1-minute challenge, the air compressor was terminated and the

residual aerosol droplets were drawn through the masks for an

additional 2 minutes. The aerosol droplets which penetrated the

tested masks were collected from the upper surface of the stage

using a flush media (Earle’s Balanced Salt Solution (EBSS) +5%

Newborn calf serum) and a collecting petri dish placed underneath

the stage which contained semi-solid collection media (Sterile

deionized water +5% gelatin +2% Bovine Serum Albumin). The

semi-solid collection media were combined with the flush media

and liquefied at 3662uC for ,15 minutes and the viral titers were

determined by titration assay as detailed below. After 30 minutes

the masks were aseptically removed from the impactor and

transferred aseptically to a sterile stomacher bag containing 20 mL

extraction medium (EBSS +5% Newborn calf serum). After

stomaching, the extraction medium was transferred to appropriate

sterile tubes and the infectious viral titers were determined as

detailed below.

All media and equipment, including the impactor, nebulizer,

scissors and forceps, were steam sterilized. All tests were conducted

under a biological safety cabinet, disinfected with 70% ethanol

followed by UV radiation prior to the introduction of the aerosol

challenge apparatus and prior to the commencement of the

experiments.

Determination of infectious titers. The infectious virions

of each aerosol challenge as well as the retrieved virions from the

control and test masks were first determined by performing ten-

fold serial dilutions of each viral sample. Selected dilutions were

then inoculated intra-allantoically in embryonated chicken eggs at

0.2 ml per egg and incubated for 2–4 days at 3662uC. Four

replicate embryonated eggs were inoculated per dilution tested for

the titration samples. Forty replicate embryonated eggs were

inoculated at the lowest dilution for the large volume samples (see

below).

Following completion of the incubation period, the eggs were

candled to determine viability of the embryo and then placed at 2–

8uC for a minimum of 8 hours. Afterwards, the allantoic fluid was

harvested and reserved at 210uC for further evaluation. These

reserved allantoic samples were then assayed for the presence of

virus using standard hemagglutination assay using chicken red

blood cells.

The 50% Embryo Infectious Dose per ml (EID50/ml),

equivalent to 50% Tissue Culture Infectious Dose per ml

(TCID50/ml) in the context of this study, of the virus was

determined based on the Spearman-Karber method [31].

Large volume samplings (International Conference on Harmo-

nization (ICH), 1997; Darling, 2002) were used to increase the

lower limit of detection of the infectious titers. The increase in

sensitivity can be explained as follows: when samples contain a

very low virus concentration, there is a discrete probability that

since only a fraction of the samples is tested for virus infectivity,

that fraction may test negative due to the random distribution of

viruses throughout the total sample. The probability, p, that the

Figure 2. Viral aerosol challenge test apparatus scheme. Key: 1. High pressure air source; 2. Filter; 3. Nebulizer; 4. Aerosol chamber; 5. Test
material chamber; 6. Anderson impactor; 7. Filter; 8. Calibrated flow meter; 9. Filter; 10. 4L vacuum flask; 11. Filter; 12. 4L vacuum flask; 13. Filter; 14.
Vacuum pump.
doi:10.1371/journal.pone.0011295.g002
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sample analyzed did not contain infectious viruses is expressed by:

p = [(V2v)/V]y, where V is the total volume of the container, v is

the volume of the fraction being tested, and y is the absolute

number of infectious viruses randomly distributed in the sample. If

V is sufficiently large relative to v, the Poisson distribution can

approximate p:

P~e{cv or c~{½Ln(P)�=v

Where c is the concentration of infectious virus and v is the total

sample volume. The amount of viruses which would have to be

present in the total sample in order to achieve a positive result with

95% confidence (p = 0.05) is calculated as

c~{½Ln(0:05)�=v~3=v

If all n replicate eggs were negative, the virus titer after the process

was considered to be less than or equal to this value. The total

volume of samples assayed was v = v9nd, where v9 is the test

volume in a replicate, n is the number of replicates per sample,

and d is the sample dilution.

A one way ANOVA and Turkey Test were used to compare

between the treatments using SigmaStat 2.0 (Jandel Scientific,

Richmond, CA, USA).

Physical Barrier and Material Properties Tests
The following standard tests designed to test the filtration

properties of face masks were performed by Nelson Laboratories,

Inc, Salt Lake City Utah: Bacterial Filtration Efficacy (BFE) Test,

Differential Pressure (DP) Test, Latex Particle Challenge Test and

Resistance to Penetration by Synthetic Blood Test. All tests were

performed using GLP procedures and in accordance with ASTM

F2100-07 (Standard Specification for Performance of Materials

Used in Medical Face Masks. ASTM International, West

Conshohocken, PA), ASTM F2101-07 (Test Method for Evalu-

ating the Bacterial Filtration Efficiency of Medical Face Masks

Materials, Using a Biological Aerosol of Staphylococcus aureus.

ASTM International, West Conshohocken, PA), ASTM F2299-03

(Standard Test Method for Determining the Initial Efficiency of

Materials Used in Medical Face Masks to Penetration by

Particulates Using Latex Spheres. ASTM International, West

Conshohocken, PA), ASTM F1862-07 (Standard Test Method for

Resistance of Medical Face Masks to Penetration by Synthetic

Blood, ASTM International, West Conshohocken, PA) and the

European EN 14683:2005, CEN/TC 205 standard (Surgical

Masks – Requirements and Test Methods. European Committee

for Standardization, Brussels, Belgium).

Bacterial Filtration Efficacy (BFE) Test. Filtration

efficiency of bacterial particles is determined by comparing the

challenge collected downstream of the mask sample with the

known challenge delivered upstream of the mask sample. Testing

was conducted both as directed in Annex B of the EN 14683:2005

standard and in compliance with ASTM F2101. Briefly, a culture

of Staphylococcus aureus ATCC #6538 (designation FDA 209 strain)

was diluted in 1.5% peptone water to a concentration to yield

challenge levels of 22006500 colony forming units (CFU) per test

sample. The bacterial culture suspension was pumped through a

‘Chicago’ nebulizer at a controlled flow rate and fixed air pressure

(28.3 L/min; 1 cubic foot/min). The constant challenge delivery

at a fixed air pressure formed aerosol droplets with a mean particle

size (MPS) of 3.0 mm. The aerosol droplets were generated in a

glass aerosol chamber and drawn through a six-stage, viable

particle, Anderson sampler (Andersen 2000 Inc., Atlanta, GA) for

collection. According to the EN 14683:2005 standard, samples

were conditioned at 2062uC and a relative humidity of 6562%

for 4 hours prior to testing. Separate samples were conditioned for

4 hours at 2165uC and a relative humidity of 8565% prior to

testing, according to ASTM F2101. Test samples, positive controls

and reference material received a one minute challenge followed

by a one minute vacuum cycle. The samples were tested at normal

room temperature. The outside surface of each mask sample faced

the challenge aerosol. The area of each sample tested was

,3.0 inches (75 mm) in diameter. The delivery rate of the

challenge produced a consistent challenge level of 22006500 CFU

on the test control plates. A test control (no filter medium in the air

stream) and reference material were included at the beginning and

after the last test sample. A negative control run (without addition

of bacterial challenge) was also performed. The Andersen sampler,

a sieve sampler, impinged the aerosol droplets onto six soybean

casein digest agar (SCDA) plates based on the size of each droplet.

The agar plates were incubated at 3762uC for 4864 hours and

the colonies formed by each bacteria laden aerosol droplet were

counted and converted to probable hit values using the hole

conversion chart provided by Andersen. These converted counts

were used to determine the average challenge level delivered to the

test samples. The distribution ratio colonies for each of the six agar

plates were used to calculate the MPS of the challenge aerosol.

The filtration efficacies were calculated as a percent difference

between the test sample runs and the control average using the

following equation: % BFE = (C2T)/C6100, where C = average

of control values, and T = count of total for test material.

Differential Pressure (DP) Test. This test measures the

difference in pressure through a test mask by comparing the air

pressure downstream of the test mask with a known pressure

upstream of the test mask. Testing was conducted as directed in

Annex C of EN 14683:2005. Briefly, the DP test measured the

differential air pressure on either side of the test sample using a

manometer differential upstream and downstream of the test

material, at a constant flow rate. Test samples were conditioned at

2062uC and a relative humidity of 6562% for 4 hours prior to

testing. Separate samples were conditioned for 4 hours at 2165uC
and a relative humidity of 8565% prior to testing. Testing was

conducted at a flow rate of 8 liters per minute (Lpm)(volumetric).

This value represents a corrected flow rate, which compensates for

temperature and altitude differences. At least one reference

material was included with each set of test samples. The DP was

calculated using the following equation: DP = M/test area, where

M = average mm water of test replicates. The sampler holder used

in the DP test has a test area of 4.9 cm2. The DP value is expressed

in mm of water/cm2 of test area when testing according to ASTM

and as Pa/cm2 when testing according to CEN.

Latex Particle Challenge Test. This test is designed to

evaluate pass through of very small aerosol particles (sizes between

0.1 and 5.0 microns) through the masks. The test was conducted

according to ASTM F2299 in an ISO Class 5 (class 100) HEPA

filtered hood. Monodispersed polystyrene (latex) microspheres of a

particle size of 0.09760.003 mm were obtained from Duke

Scientific, Palo Alto, CA. These particles were nebulized, dried,

and passed through the test masks. The particles passing through

the test masks were enumerated using a laser particle counter.

Three one-minute counts were determined for each mask sample

and the results averaged. Three one-minute control counts were

performed, without a test sample in the system, before and after

each test sample run. More specifically, an aliquot of the latex

spheres was transferred to particle free USP water and then

atomized using a Particle Measuring System (PMS) Model PG-100

generator. The latex aerosol was mixed with additional filtered,
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dried air and passed through the test system. The flow rate

through the test system was maintained at 1 cubic foot per meter

(CFM)65%. The particles delivered were collected and

enumerated using a PS lased based particle counter. Extraneous

particulate ‘‘background noise’’ through the sample holder

produced an average of ,1 particle at 1 CFM with the

nebulizer output clamped off. A mask sample was placed into

the sample holder, the system was allowed to stabilize, and then

triplicate one-minute counts were recorded. Control count

averages were maintained at a level of 10,000–15,000 particles

per cubic foot. The percent filtration efficacy for the sample was

determined using the following equation: %FE = (Average

C2Average T)/Average C, where C = particle counts with no

test sample in system, and T = particle counts with test sample in

system.

Resistance to Penetration by Synthetic Blood. This

procedure simulates an arterial spray and then evaluates the

capacity of the material to protect the user from possible exposure

to blood and other body fluids. The penetration of synthetic blood

through 32 mask replicates was determined visually in compliance

with ASTM F 1862. The 32 mask samples were conditioned for

4 hours at 2165uC and a relative humidity of 8565%. A clean

canula was fixed onto the front of a valve and a reservoir was filled

with synthetic blood. Each sample was tested within one minute of

removing it from conditioning. Each face mask was mounted on

the specimen holding fixture and positioned 305 mm (12 in.) from

the canula. The mask was then subjected to the 2 ml volume spray

at a pressure of 160 mm Hg, which moved from the canula in a

horizontal path perpendicular to the face mask. The lab conditions

during testing were a temperature of 23uC and a relative humidity

of 28%. At the conclusion of the test, the backside of the mask was

observed for synthetic blood penetration. The Acceptable Quality

Level of this test at 120 mm Hg is 4.0%, i.e., at least 31 of the 32

masks tested needed to show no passage of synthetic blood through

them.

Results

Controls
Toxicity/Negative Control. Aerosolized media containing

no viruses were tested using the exact same test conditions

described above in the Materials and Methods section in the

absence or presence of the control and test masks secured between

the sampler and aerosol chamber. Post aerosol challenge, the

media were collected and diluted as described above and selected

dilutions were inoculated into host egg embryos and incubated in

the same manner as the rest of the test and control samples. As

expected, no infectious virus was detected in the presence or

absence of the control and test masks.

Virus Recovery Control. Human influenza A virus and

avian influenza virus aliquots, containing 6.9560.25 and

7.9660.25 log10TCID50 units per ml (titer 6 confidence limit

[CL]), respectively, were used per this and subsequent tests. The

average volume of the aerosolized virus delivered per run was

,0.3 ml. The infectious titers that could be retrieved in the

absence of any mask or barrier between the sampler and aerosol

chamber, determined as described in the Materials and Methods

section, were 5.6660.51 and 6.1760.37 log10TCID50 units for

human influenza A and avian influenza virus, respectively. Thus

all viral reduction calculations were based on these viral recovery

control titers.

Host viability/media sterility control. Eight eggs were

inoculated with an appropriate medium during the incubation

phase of the study. This control demonstrated that the eggs

remained viable throughout the course of the assay period. In

addition, it confirmed the sterility of the media employed

throughout the assay period.

Neutralizer effectiveness control. A test mask was

challenged with mock inoculum (Earle’s Balanced Salt Solution)

and then put in sterile stomacher bags containing 20 mL

extraction medium. After stomaching, the extraction medium

was serially diluted ten-fold. Then a low level of virus

(approximately 1,000 log10TCID50 units) was added to 4.5 mL

of each dilution of the extraction medium (2.3 log10TCID50

units/mL). A 0.2-mL aliquot was inoculated into the host eggs as

detailed in section 2.4. Infectious virus was observed in all

dilutions of the extracted sample, indicating that no copper or

other molecules eluted from the test masks that significantly

affected subsequent influenza infection and replication in the host

eggs.

Viral Filtration by the Mask
The number of infectious human influenza A virus and avian

influenza virus titers that passed through the masks (referred to as

‘‘pass through’’) are shown in Table 1. Both test and control

masks reduced the infectious titers that pass through the masks by

,3 logs (2.9161.19 and 3.5561.14, respectively) for human

influenza A virus and by ,4 logs (4.3560.95 and 4.1260.64,

respectively) for the avian influenza virus. No statistical significant

differences between the filtration efficiencies of the test and

control masks of human influenza A virus and avian influenza

virus were found.

Deactivation of virus remaining in the copper oxide
impregnated masks

The number of infectious human influenza A virus and avian

influenza virus titers recovered from the control and test masks

30 minutes after their challenge with the virus (referred to as

‘‘mask retrieved’’) are shown in Table 2. In contrast to the

filtration efficiencies of the test and control masks, there was a

statistically significant higher direct contact inactivation of both

the human influenza A virus and avian influenza virus by the test

masks than by the control masks. The infectious human influenza

A and avian influenza virus titers in the test masks were reduced by

$4.7860.88 log and 5.2060.84 log, respectively. In contrast, the

human influenza A and avian influenza virus infectious titers were

reduced via direct contact by the control masks by 1.9061.03 log

and 1.3460.84 log, respectively. The differences in the retrieved

infectious titers between the test and control masks were $2.88 log

for human influenza A (p,0.01 by ANOVA and p,0.05 by

Turkey Test) and 3.13 log for the avian influenza virus (p,0.05 by

both ANOVA and Turkey Test).

Filtration performance of the masks
Table 3 details the results obtained with the Bacterial Filtration

Efficacy (BFE), Differential Pressure (DP) and Latex Particle

Challenge standard test methods widely used in the mask industry

to determine the filtration efficacy of masks. The filtration

performance of the copper oxide impregnated masks met the

acceptance criteria as type IIR respiratory masks, as listed in

Table 1, section 5.2.3 of the EN 14683:2005 standard, and as

NIOSH N-95, as follows: %BFE = $98%; DP = ,49 Pa/cm2 and

,5.0 mm H2O/cm2. In addition, blood penetration was not

observed in any of the 32 masks subjected to a 2 minute spray of

synthetic blood at a pressure of 160 mm Hg. This pressure is even

higher than the 120 mm Hg pressure threshold of blood splash

resistance required by the EN 14683:2005 standard.
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Discussion

Based on a recently developed platform technology [24,28],

copper oxide particles were incorporated into 3 of 4 non-woven layers

that comprise N-95 respiratory masks or Type IIR FFP1-level

medical/patient respiratory masks. As demonstrated here in tests

designed to simulate consumer use, the inclusion of the copper oxide

particles in N-95 respiratory masks did not alter their physical

filtration properties (Tables 1 and 3), but did endow them with the

capacity to readily kill the virions that remain in the mask (Table 2).

This is of major significance as the high viral titers that remain

infectious in regular masks, as demonstrated in the control masks used

in this study, can be a source of viral transmission both to the mask

wearers and to others, as recently pointed out by the WHO [10].

Table 2. Mask Retrieveda Infectious Titers.

Sample Virus Initial Load (log10TCID50) Output Load (log10TCID50) Log10 Reduction

Test Mask 1 H1N1 5.65960.51 #0.87 $4.7860.51

Test Mask 2 H1N1 5.65960.51 #0.90 $4.75760.51

Test Mask 3 H1N1 5.65960.51 #0.88 $4.7760.51

Average $4.7760.88

Control Mask 1 H1N1 5.6660.51 4.7060.32 0.95960.60

Control Mask 2 H1N1 5.6660.51 3.3060.31 2.3660.60

Control Mask 3 H1N1 5.6660.51 6.0060.28 20.3460.58

Average 1.9061.03

Test Mask 1 H9N2 6.16960.37 0.9860.31 5.1960.48

Test Mask 2 H9N2 6.16960.37 #0.97 $5.2060.37

Test Mask 3 H9N2 6.16960.37 0.9760.44 5.2060.57

Average 5.2060.84

Control Mask 1 H9N2 6.1660.37 4.5060.00 1.6660.37

Control Mask 2 H9N2 6.1760.37 5.0060.35 1.1760.51

Control Mask 3 H9N2 6.16960.37 5.5860.41 0.5960.55

Average 1.3460.84

aThe viral load from the large volume inoculation was used as the viral load of the mask retrieved sample, since the large volume technique provides a more sensitive
determination method when virus concentration was lower than the detection limit of the titration method.

doi:10.1371/journal.pone.0011295.t002

Table 1. Pass Througha Infectious Titers.

Sample Virus Initial Load (log10TCID50) Output Load (log10TCID50) Log10 Reduction

Test Mask 1 H1N1 5.6660.51 2.4260.59 3.2460.78

Test Mask 2 H1N1 5.6660.51 3.4060.28 2.2660.58

Test Mask 3 H1N1 5.6660.51 2.9260.45 2.7461.19

Average 2.9161.19

Control Mask 1 H1N1 5.6660.51 2.6760.25 2.9960.57

Control Mask 2 H1N1 5.6660.51 2.2160.60 3.4560.78

Control Mask 3 H1N1 5.6660.51 1.8360.31 3.8360.60

Average 3.5561.14

Test Mask 1 H9N2 6.1760.37 2.2060.25 3.9760.45

Test Mask 2 H9N2 6.1760.37 2.6760.43 3.5060.57

Test Mask 3 H9N2 6.1760.37 1.4460.49 4.7360.61

Average 4.3560.95

Control Mask 1 H9N2 6.1760.37 4.9060.00 1.2760.37

Control Mask 2 H9N2 6.1760.37 1.5960.00 4.5860.37

Control Mask 3 H9N2 6.1760.37 2.9160.00 3.2660.37

Average 4.1260.64

aVirus that passed through the masks were recovered from both the collection petri dish and the upper surface of the stage. Here the combined viral loads, calculated
by combining the viral loads from both fractions, are presented. In the cases where no virus was detected, the theoretical maximum possible load was included in the
combined load as a worst-case scenario.

doi:10.1371/journal.pone.0011295.t001
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Development of a biocidal mask (and in general, all protective

personal equipment (PPE)) capable of rendering the pathogens

that come into contact with them non-infectious, may significantly

reduce pathogen transmission and contamination of the wearers

themselves and of the environment. This may happen when

healthcare workers touch their mask and then fail to wash their

hands properly or at all, or when they dispose of the mask without

proper safe disposal precautions. In addition to contamination

from poor hand-washing practices, there is evidence of other

problems such as pathogens shedding from surgical respirators

onto patients in the operating theater, increasing the risk of

nosocomial infections [32–36]. Additionally, the significantly

reduced viral load remaining on the mask should protect the

wearers from inhaling the virus during prolonged mask wearing.

The mechanisms of virus kill are achieved via the interaction of

copper ions with the virions that are entrapped in the mask or that

come into contact with the surface of the copper oxide

impregnated outer surfaces of the masks. The exact copper viral

kill mechanisms need to be deciphered. The capacity of copper

ions to render influenza virions, including H1N1 and H9N2

viruses, non-infective has already been demonstrated [26,27,30].

Interestingly, it was found that the infectivity of H9N2 virus was

reduced in a dose dependent manner at lower concentrations in

which neither neuraminidase (NA) nor hemagglutination inhibi-

tion occurred [26]. Electron microscopic analysis revealed

morphological abnormalities of the copper-treated H9N2 virus,

but the exact kill mechanism was not elucidated [26].

Importantly, in addition to the antiviral properties of the copper

oxide containing masks, the layers containing the copper oxide

also have potent antimicrobial properties (data not shown), in

accordance with the already reported broad-spectrum antimicro-

bial properties of fibers and fabrics containing copper oxide

[24,28,29]. A lesser infectious bacterial load in an antimicrobial

surgical respirator would at least reduce the risk of one potential

source of nosocomial infections.

Could the addition of copper oxide into the masks result in an

unsafe product for use? Several tests carried out in independent

laboratories using good laboratory practices, which are not

detailed in this report, have clearly shown that such is not the

case. The amount of copper that eluted to the air from the test

mask during 5 hours under simulated breathing conditions was

0.46760.47 pg, a level that is far below (.105 folds) the

respiratory copper permissible exposure limit (PEL) set by the

USA Occupational Safety and Health Administration (‘‘OSHA’’).

The lowest observed-adverse-effect levels (‘‘LOAELs’’) for chronic

copper inhalation exposure was determined to be 0.64 mg/m3

[37]. Again, the copper levels eluted during the simulated

breathing test from the copper containing masks (0.09 pg/m3)

are a tiny fraction (.106 folds) of this copper LOAEL.

Even when simulating a worst case scenario, in which the masks

would be soaked in saliva, and all the saliva would be ingested, the

amount of copper eluted from the mask into the saliva was

,7.24 mg/hr (average of three replicates minus the background),

which is significantly lower than 20.8 mg/hr, the minimal risk level

(MRL) for oral exposure for a person weighing 50 kg.

Importantly, the outer layers of the masks, which contain

,2.2% copper oxide particles, did not cause any skin sensitization

or skin irritation as determined in animal studies (data not shown).

Also similar fabrics containing 6 times higher amounts of copper

oxide did not cause any skin irritation [28]. These findings are in

accordance with the very low risk of adverse skin reactions

associated with copper [38] and with the lack of any adverse toxic

irritations on the facial skin with ointments containing up to 20%

copper [39]. In addition, the copper oxide containing masks

passed flammability tests in accordance with US FDA (21 CFR

Part 58) regulations, as determined in an independent FDA

approved lab (Nelson Labs) using GLP.

In summary, we demonstrate that copper oxide impregnated

masks safely reduce the risk of influenza virus environmental

contamination without altering the filtration capacities of the

masks. Due to the potent antiviral and antibacterial properties of

copper oxide, we believe that these masks also confer protection

from additional pathogens, and, as such, are an important

additional armament in the combat against the spread of and

infection by dangerous pathogens. It should be pointed out that

the production of the mask layers with copper oxide and the

manufacture of the mask using these materials do not add any

significant costs to the price of the masks. It is suggested that

copper oxide should be also included in other personal protective

equipment to further confer protection to the wearer and to the

environment.
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Table 3. Filtration performance of the masksa.

EN 14683:2005 ASTM F2101 ASTM F2299

Sample BFE (%) DP (Pa/cm2) BFE (%) DP (mm H2O/cm2) Average Sample Counts Average Control Counts Filtration Efficiency (%)

1 .99.9 41.5 98.2 4.6 1310 10438 87

2 .99.9b 39.5 98.6 4.3 422 10434 96

3 .99.9b 41.1 98.5 4.3 565 11636 95.1

4 99.2 38.1 98.6 4.3 681 12426 94.5

5 .99.9b 39.5 98.7 4.2 544 11153 95.1

Mean 99.7 39.94 98.52 4.26 704 11217 93.54

±SD 0.3 1.37 0.19 0.055 350 846 3.7

aEach test was done using 5 replicate masks. The result for each of the replicate mask is shown.
bThere were no detected colonies on any of the Andersen sampler plates for this sample.
doi:10.1371/journal.pone.0011295.t003
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