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Abstract

Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a
biochemical response, including production of cytokines and activation of various signaling pathways.

Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them
at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density
(25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell
size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To
understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on
large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated
with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis.

Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC
osteogenic differentiation.
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Introduction

Connective tissue growth factor (CTGF, CCN2), a member of

the CCN family of proteins, is a cysteine-rich pro-adhesive

matricellular protein that plays an essential role in the formation

of blood vessels, bone, and connective tissue [1]. The angiogenic

inducer, 61 protein (Cyr61) and connective tissue growth factor

(CTGF) are structurally associated with secreted matrix cellular

proteins, and function in cell adhesion, migration, proliferation

and extracellular matrix (ECM) synthesis [2]. As an example of

context-dependent activity, functions of CTGF largely depend

on the interactions with other molecules in the microenviron-

ment [3]. Thus, instead of being a growth factor in the original

sense of the word, CTGF is better described as a modulator of

complex activities for other growth factors. In addition, CTGF

induces chondrogenesis and determines osteoblast differentia-

tion [4,5]. Previous studies have shown that CTGF is highly

expressed by osteoblasts, and CTGF null mice exhibit impaired

chondrocytic cell proliferation and angiogenesis resulting in

neonatal skeletal defects [6–9]. These observations suggest that

CTGF is important in bone and cartilage physiological events

and repair.

Studies reveal that tension in the actin cytoskeleton, which is

modulated by the RhoA/Rock signaling pathway, is a key player

in many cellular processes including proliferation, differentiation,

stabilization of cell-matrix adhesion and modulation of gene

expression. For example, diverse events such as branching

morphogenesis during lung development [10,11], and corneal

epithelial wound healing are both regulated by cytoskeletal tension

through the RhoA/Rock pathway [12]. In another recent study,

inhibition of the RhoA/Rock pathway in mesenchymal limb bud

cells altered chondrogenic gene expression, indicating that

cytoskeletal tension and chondrogenic differentiation are interre-

lated [13]. One mechanism by which cells regulate the mechanical

loads generated by their actin cytoskeleton is through cell

morphology; larger cells that are more spread contracted a flexible

substrate beneath them, while smaller cells did not. In bone

marrow-derived mesenchymal cells (BMSCs), cell shape and

cytoskeletal mechanics, mediated through the RhoA/Rock

signaling pathway, drove commitment to the osteogenic or

adipogenic lineages: large spread cells underwent osteogenesis

with high levels of active RhoA, while small unspread cells

underwent adipogenisis with limited RhoA activation [14,15].

Thus, cell size and its associated mechano-environment are key
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attributes in mesenchymal cell differentiation; however, the precise

cellular signaling events that lead to the transition in lineage

commitment remain unaddressed.

Mesenchymal cells obtained from adipose tissue contain a large

number of progenitor cells with capabilities of osteo-, chondro-,

and adipogenic differentiation [16]. Moreover, an inverse

relationship between osteogenic and adipogenic commitment

within the whole adipose-derived stromal cell (ASC) progenitor

pool has been observed [17,18]. Studies using ASCs offer great

promise for skeletal tissue reconstitution and replacement [19,20].

Thus, understanding the mechanisms involved in the cellular

signaling of lineage commitment is an important step toward the

regulation of mesenchymal cell differentiation. In this study, we

manipulated the in vitro cell seeding densities of ASCs, resulting in

large and small cells with distinguished microenvironments

associated with actin cytoskeletal tension, and subsequently

explored the influence on osteogenic and adipogenic differenti-

ation of ASCs. Through the results of a gene array and siRNA

knock-down experiments, we determined that CTGF is highly

induced in large ASCs and is a pro-osteogenic effector that plays

an important role in RhoA mediated cytoskeletal tension-

associated osteogenesis.

Methods

Chemicals and Medium
Dulbecco’s Modified Eagles Medium (DMEM) and penicillin/

streptomycin were purchased from Invitrogen, Inc. (Carlsbad,

CA). Fetal bovine serum (FBS) was purchased from Omega

Scientific, Inc. (Tarzana, CA). All cell culture wares were

purchased from Corning Inc, (San Mateo, CA). Unless otherwise

specified all other chemicals were purchased from Sigma-Aldrich,

(St. Louis, MO). Recombinant CTGF was from ProSpec Protein

Specialists (Rehovot, Isreal).

ASC Harvesting and Seeding
All experiments were performed in accordance with Stanford

University Animal Care and Use Committee (IACUC) guidelines.

The IACUC protocol number for our study is 9999/7373. Mouse

adipose-derived stromal cells (ASCs) were isolated as described

previously [16]. ASCs were expanded in growth media contain-

ing DMEM (Mediatech, Herndon, VA), 10% FBS (Invitrogen,

Carlsbad, CA), 1% penicillin/streptomycin. Growth media were

changed every two days and cells were subcultured by trypsin/

EDTA. Passage one cells were used for the following experiments.

ASCs were seeded in 12-well dishes with different seeding

densities; a low density of 1,250 cells/cm2; a medium density of

2,500 cells/cm2, or a high density of 25,000 cells/cm2. Crystal

violet staining was performed to show the microscopic cell

morphology and measure the cell sizes at different seeding

densities. Image J software was utilized to trace the cell shape

and calculate the cell size at different density seeding.

In Vitro proliferation
ASCs were seeded at low, medium and high densities as

described above. After attachment, cells were cultured in bipotent

medium containing both osteogenic and adipogenic factors. At

days 1, 3 and 7, cell proliferation was assessed via MTT (3-[4,5-

Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay

(n = 3 wells per condition). Into each well, 50 ml of 5 mg/ml

MTT solution was added and allowed to incubate for three hours

at 37uC. The colored formazan product was dissolved in DMSO

and absorbance was measured at 570 nm.

In Vitro Osteogenic Differentiation
ASC osteogenesis was induced by treatment with basic

osteogenic differentiation medium (ODM) containing DMEM,

10% FBS, 100 mg/ml ascorbic acid, 10 mM b-glycerophosphate,

1% penicillin/streptomycin. The ODM was replenished every

three days. After one week of differentiation, early alkaline

phosphatase activity staining was performed and quantification of

alkaline phosphatase activity was assessed by normalizing to the

total protein quantity. After two weeks of osteogenic differentia-

tion, terminal osteogenic differentiation was evaluated by staining

the extracellular matrix (ECM) mineralization with Alizarin red S.

To inhibit cytoskeletal tension, cytochalasin D (0.5 ug/ml) and

Y-27632 (10 uM) were used to the differentiation medium block

the actin plymorlization and Rock/Rho pathways, respectively.

Recombinant CTGF (100 ng/ml) was supplemented to the

differentiation media in order to rescue the cytoskeletal tension.

To assess the effect of secreted factors from different density-

seeded cells, condition medium collected from low-, mediun- and

high-density-seeded ASCs was used. After attachment (approxi-

mately 12 hours post-seeding), media from each seeding density

was collected; 100 mg/ml ascorbic acid and 10 mM b-glycero-

phosphate was added to collected media. In a separate 12-well-

dish, in order to observe differences in differentiation with the use

of conditioned media, ASCs were seeded at a relatively higher

density of 20,000 cells/cm2. Upon attachment, the same density-

seeded cells were treated with conditioned ODM generated by

different density seeding. After one week, early alkaline phospha-

tase activity staining and quantification were assessed to study the

effects of secret factors.

Staining and Quantification of Alkaline Phosphatase
Activity

After one week of osteogenic differentiation, medium was

removed and differentiated cells were washed twice with

phosphate buffered saline. Cells were then fixed with 60% acetone

and 40% Citrate working solution for 30 seconds at room

temperature. Following a brief rinse with deionized water, cells

were stained with a diazonium salt solution comprised of Fast

Violet B (0.024%) and 4% Naphthol AS-MX Phosphate Alkaline

Solution (Sigma Aldrich, St. Louis, MO) in the dark for 30 minutes

at room temperature. Positively stained cells were observed using

phase-contrast microscopy (Leica, San Jose, CA).

Alkaline phosphatase activity of differentiated cells was also

determined using a biochemical colorimetric assay kit (Sigma

Aldrich, St. Louis, MO) as described by the manufacturer. Briefly,

cells were washed with cold phosphate buffered saline. Cells were

scraped into a radioimmunoprecipitation assay (RIPA) buffer

(containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5%

Glycerol, 1 mM EDTA, 1% NP-40, 0.1% SDS and 0.25% Na-

deoxycholate) and centrifuged. The enzymatic alkaline phospha-

tase activity in the supernatant of cell lysate was assayed by

measuring the p-nitrophenol formed from the enzymatic hydro-

lysis of p-nitrophenylphosphate, used as the substrate, at 405 nm.

In order to consider the protein turnover during the differentia-

tion, the quantity of alkaline phosphatase activity was normalized

to total protein, as measured by BCA protein assay reagent kit

(Pierce, Rockford, IL.). Experiments were performed in triplicate

wells and means and standard deviations were calculated. A

Student’s t-test was used to assess significance (*p#0.05).

Alizarin Red Staining and Quantification
After two weeks osteogenic differentiation, matrix mineraliza-

tion and calcium deposition were stained by Alizarin red. Cultured
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cells were washed briefly with phosphate buffered saline. Next,

cells were washed briefly with deionized water, to minimize

potential for binding of Alizarin stain to PBS. As well, untreated

cells were washed with PBS in the same manner, so as to serve as

a control. Next, cells were fixed for 15 minutes in 100% ethanol

and stained with 0.2% Alizarin red S solution (PH 6.4) for 30

minutes. Stained cells were extensively washed with deionized

water to remove the nonspecific precipitation. The positive red

staining represents calcium deposits of matrix formation on the

mineralized cells. The matrix mineralization was quantified by

extraction of Alizarin red S staining with 100 mM cetylpyridi-

nium chloride solution and measuring the absorbance at 570 nm.

Experiments were performed in triplicate wells. Photographs were

obtained and presented for the analysis of late stage osteogenic

differentiation.

In vitro Adipogenesis and Assessment
ASCs were seeded at different densities as described above.

After attachment, adipogenic differentiation was induced with

adipogenic differentiation media (ADM) containing 10 mg/ml

insulin, 1 mM dexamethasone, 0.5 mM methylxanthine, and

200 mM indomethacin. ADM was replenished with growth media

containing 10 ug/ml insulin after three days of differentiation.

Adipogenic differentiation was assessed by staining with Oil Red

O at one week of differentiation. Briefly, cells were fixed in 10%

formalin/PBS for 30 minutes at room temperature and then

incubated in 60% Oil Red O solution (0.3% Oil Red O in

isopropanol) for 30 minutes in 37uC. Cells that developed lipid

accumulation were stained red. Images of adipogenic differenti-

ation were obtained microscopically. The quantification of Oil

Red O was performed by extracting the stain with isopropanol and

measuring the absorbance at 510 nm. Experiments were per-

formed in triplicate wells. A Student t-test was calculated to assess

the significance (*p#0.05).

The bipotent media, which was used to provide an environment

for both lineage differentiation, contained both osteo- and

adipogenic components [16].

Micropatterning: Stretching Cells in Defined Cell Sizes
In order to verify the expression of CTGF affected by cell size,

we applied micropatterning and managed seeding cells with

defined sizes [21]. Briefly, polydimethylsiloxane (PDMS) stamps

with different size of islands (ranging from 10 um,100 um in

diameter) were immersed in fibronectin at a concentration of

50 mg/ml in PBS for one hour, and allowed to dry. The stamps

were then placed in contact with the non-coated dish surface for

at least five seconds before being peeled off. The entire surface

was subsequently immersed in pluronic F-127 (0.2% w/v) in PBS

for three hours at room temperature in order to block the

nonprinting area [22]. Following a brief rinse with deionized

water, ASCs were seeded on the surface and allowed to settle on

the fibronectin (final concentration of 100 ug/ml in PBS) printed

area. After crystal violet staining, ASCs were observed to be

spread at sizes that corresponded to the printed areas. Only single

cells landed in the defined printed area were analyzed by

immunofluorescence.

Immunofluorescence
Cells were fixed with 4% paraformaldehyde/4% sucrose and

were blocked with a non-protein blocker (Dakocytomation,

Carpinteria, CA) for one hour at 37uC, and incubated with

primary antibodies (CTGF and RhoA were from Santa Cruz

Biotechnology, Santa Cruz, CA) for overnight at 37uC. Then, a

FITC- conjugated secondary antibody (Molecular Probes, Eugene,

OR) was applied to the cells for one hour at 37uC. Cells were then

mounted using Vectashield fluorescent mounting solution with

DAPI (Vector Labs, Burlinghame, CA) and analyzed by

fluorescence microscopy at 406 magnification (Carl Zeiss,

Thornwood, NY).

ASC morphology with RhoA/Rock inhibitors
ASCs were seeded at low or high density and treated with

cytochalasin D or Y-27632 as above. After 24 hours of treatment,

cells were fixed in a 4% paraformaldehyde/4% sucrose solution.

Phalloidin conjugated to rhodamine (Molecular Probes, Eugene

OR) was applied for one hour at 37uC to visualize F-actin. Cells

were then mounted using Vectashield fluorescent mounting

solution with DAPI (Vector Labs, Burlingame, CA) and visualized

by fluorescence microscopy at 406 magnification (Carl Zeiss,

Thornwood, NY).

RNA isolation and microarray hybridization
Total RNA was isolated using TRIzol solution (InvitrogenTM)

according to manufacturer’s instructions. RNA from three

separate treatments of low and high seeding in growth media,

and low and high seeding in bipotent media were harvested for

microarray analysis. Fluorescently labeled DNA probes were

prepared from 50 to 70uC total RNA isolated from low density-

seeded and high density-seeded cells (Cy5-labeled) and Universal

Human Reference RNA (Stratagene, La Jolla, CA) (Cy3-labeled)

by reverse transcription using an Oligo dT primer 50-

TTTTTTTTTTTTTTT-30 (Qiagen, Valencia, CA) as described

[23]. Labeled probes from low and high density seeded cell RNA

and reference RNA were mixed and hybridized overnight at 65uC
to spotted cDNA microarrays with 41,126 elements (Stanford

Functional Genomics Facility, Stanford, CA). Microarray slides

were then washed to remove unbound probe and scanned with a

GenePix 4000B scanner (Axon Instruments, Inc., Union City,

CA).

Data processing and analysis
The acquired fluorescence intensities for each fluoroprobe were

analyzed with GenePix Pro 5.0 software (Axon Instruments, Inc.).

Spots of poor quality were removed from further analysis by visual

inspection. Data files containing fluorescence ratios were entered

into the Stanford Microarray Database (SMD) where biological

data were associated with fluorescence ratios and genes were

selected for further analysis [24]. Hierarchical clustering was

performed by first retrieving only spots with a signal intensity

.150% above background in either Cy5- or Cy3 channels in at

least 70% of the microarray experiments from SMD. We selected

clones whose expression levels varied at least threefold in all three

samples. The genes and arrays in the resulting data tables were

ordered by their patterns of gene expression using hierarchical

clustering analysis, and visualized using Treeview software

(http://rana.lbl.gov/EisenSoftware.htm) [25]. Genes with poten-

tially significant differential expression in ASCs from low- and

high-density seeding were identified using the Significance

Analysis of Microarrays (SAM) procedure, which computes a

two-sample T-statistic (e.g., for low-density-seeded cells vs. high-

density-seeded cells) for the normalized log ratios of gene

expression levels for each gene. We used a selection threshold

that gives a relatively low false discovery rate and identifies a

relatively high number of significant genes [26]. Array data is

publicly accessible at http://www.ncbi.nlm.nih.gov/geo/info/

linking.html, accession number GSE19924. All raw data has

been deposited in GEO data base.
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Quantitative Real-time Polymerase Chain Reaction
Total RNA was harvested from ASCs of low-density and high-

density seeding by using an RNAeasy Mini kit (Qiagen, Valencia,

CA), and treated with DNAse I (Ambion, Austin, TX). Reverse

transcription was performed using the TaqmanH Reverse Tran-

scription Kit from Applied Biosystems, Foster City, CA.

Quantitative real-time PCR was carried out using the Applied

Biosystems Prism 7900HT Sequence Detection System. The

Sequence for CTGF gene (NM_010217) primers is as following,

forward, 5-GGGCCTCTTCTGCGATTTC-3; reverse, 5-ATC-

CAGGCAAGTGCATTGGTA-3. Primers were first tested to

determine optimal concentrations, and products were run on a 2%

agarose gel to confirm the appropriate size and RNA integrity.

Gene expression values were normalized to 18S ribosomal RNA

quantity. All reactions were performed in triplicate. Representa-

tive graphs are shown with error bars indicating standard

deviation of the triplicate reactions. Multiple independent

experiments were conducted with similar trends. Statistical

analysis was performed using Student’s t test with *p#0.05

considered significant.

siRNA transfection
CTGF knock down experiments were performed by transfec-

tion of CTGF siRNA in ASCs, three pairs of the double strand

RNA were purchased from Ambion (Ambion, Austin, TX.).

According to the real time PCR results, the sequences of 5 -

GGUGAUAAAGCUAUGUAUUtt-3, 5-AAUACAUAGCUUU-

AUCACCtg-3 showed maximal knock-down efficiency of CTGF

in cells. ASCs seeded in low- and high-density were transfected

with CTGF siRNA (siCTGF), non-silencing siRNA (as a control)

(Invitrogen, Carlsbab, CA) or lipofectamine alone (LIPO) as

indicated above. Four hours of post-transfection, cells were washed

briefly with PBS and ODM was then changed to the transfected

cells. Meanwhile, RNA and protein were harvested from the cells

of 24 and 48 hours post-transfection for the evaluation of CTGF

knock-down. Transfection efficiency was determined by quantita-

tively assessing gene expression and protein expression of CTGF.

At 48 hours post-transfection, 80% of knock-down efficiency was

achieved shown by the expression of gene and protein.

Transfection was performed in multiple individual wells (N = 6).

Experiments were repeated at least three times with different

isolation of the cells.

Statistical analysis
Means and standard deviations were calculated from numerical

data. In figures, bar graphs represent means and standard

deviation. Student t-test was performed to calculate the signif-

icance. *P#0.01 was considered to be significant.

Results

Different density seeding results in different sizes of ASCs
and influences osteogenesis and adipogenesis

To correlate osteogenesis and adipogenesis to ASC size, cells

were seeded in low, medium and high densities and induced to

osteogenic and adipogenic differentiation in either osteogenic

differentiation media (ODM) or adipogenic differentiation media

(ADM), respectively. Bipotent media, which contains both

osteogenic and adipogenic components, was used to concurrently

observe the bipotent potential of ASCs’ differentiation with

different seeding density [16]. ASC adipogenesis was assessed by

Oil Red O after one week of differentiation. Osteogenesis was

assessed at one week based on alkaline phosphatase activity

staining and quantification.

As demonstrated by crystal violet staining, ASCs spread into

large cells when they were seeded at a lower density (1,250 cells/

cm2) and a medium density (2,500 cells/cm2); conversely, when

ASCs were seeded at high density (25,000 cells/cm2), they were

smaller in size microscopically (Figure 1A). To quantitatively

determine the relationship between the cell size and seeding

density, we utilized Image J software, and traced 10 different cells

from the pictures taken from low-, medium- and high- density

seeding. Average areas of the cells from different seeding density

were calculated separately. Cells seeded at low- and medium-

density were significantly larger in size as compared to the cells

seeded at high-density (*p#0.05).

Upon osteogenic induction, enhanced alkaline phosphatase

activity staining was observed in the low- and medium-density-

seeded, larger cells at one week of early osteogenesis (Figure 1B).

A quantitative alkaline phosphatase activity assay was performed

in order to consider the cell number presented in different density-

seeded samples. Data demonstrated significantly higher alkaline

phosphatase activity in the low- and medium-density-seeded cells

as compared to the high-density-seeded cells cultured in osteogenic

medium for one week (*p#0.05) (Figure 1C). Conversely, robust

adipogenesis was observed by Oil Red O staining in the high-

density-seeded, smaller cells after one week of adipogenic

differentiation (Figure 1B). The quantification of Oil Red O

demonstrated significant differences between the high- density-

seeded and low-/medium- density-seeded cells (*p#0.05)

(Figure 1C). Thus, enhanced osteogenesis was observed in larger

cells versus significant adipogenesis in the high-density-seeded,

smaller cells (*p#0.05). We found that Alizarin Red staining of

late stage mineralization correlated with the alkaline phosphatase

activity staining (data not shown). Similarly, when ASCs were

cultured in bipotent differentiation medium with different density

seeding, cell size affected osteogenesis and adipogenesis with the

same trend. Therefore, we observed that cell size was tightly

associated with the outcome of mesenchymal cell differentiation.

Increasing evidence suggests that mechanical deformation due

to shear forces or cell spreading plays an important role in

differentiation by influencing cell function. The hypothesis is that

growth factors and cytokines induced by such mechanical strain

act as modulators stimulating cell differentiation within the

microenvironment. To confirm the paracrine regulatory mecha-

nism, ASCs were seeded at the same density of 20,000 cells/cm2.

Subsequently, conditioned media generated by low-, medium- and

high-density-seeded cells were used to induce osteogenesis in these

ASCs seeded at the same density. After differentiation, alkaline

phosphatase activity staining and quantification showed that large,

spreading cells secreted growth factors and cytokines in the

conditioned medium that contribute to osteogenic differentiation

in vitro when ASCs were seeded at the same density (Figure 1D).

These results demonstrated this mechanical stimulus regulated

mesenchymal cell differentiation via a paracrine mechanism.

Expression of Connective Tissue Growth Factor (CTGF)
Associated with Cell Size

To further determine which specific growth factors were

responsible for the observed paracrine effect, we performed

microarray assays on cells that were seeded at two distinct

densities (low and high). Twenty-four hours after seeding, RNA

was isolated from low-density-seeded larger cells and high-density-

seeded smaller cells. Based upon the data from microarray

analysis, the expression of connective tissue growth factor (CTGF)

was shown to be 17-fold higher in low-density-seeded, larger cells

(Figure S1 of microarray summary). To validate the results from

microarray, quantitative real-time PCR was performed on a

CTGF and ASC Osteogenesis
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Figure 1. ASC seeding, morphology, cell size, osteogenic and adipogenic differentiation. A) Crystal violet staining of ASCs seeded at
different densities. Cells featured large morphology at a low density (L) seeding (1,250 cells/cm2) and a medium density (M) seeding (2,500 cells/cm2);
in contrast, ASCs were compressed into small cells at a high density (H) seeding (25,000 cells/cm2). Calculated average cell sizes (n = 10) by Image J
software are shown in the graph. The arbitrary number read by Image J for average area of low density seeding was 41752.4, medium density seeding

CTGF and ASC Osteogenesis
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separate isolate of ASCs seeded at different densities. Data showed

significantly higher expression of CTGF in large cells as compared

to small cells (*p#0.05) (Figure 2A).

In order to more precisely determine the effect of cell size and

area, we applied a micropatterning technique to quantitatively

control the size of the cells. As described previously, the technique

allowed us to compare large cells (50–100 um) to small cells (10–

20 um) and evaluate CTGF expression. ASCs were allowed to

spread into different, defined sizes of fibronectin coated islands

(10 um,100 um in diameter) in growth media. To detect the

CTGF expression on larger and small cells, immunofluorescence

staining was performed and intense staining of CTGF was shown

on ASCs that were larger in size as compared to the small cells

(Figure 2B). In addition, we detected up-regulation of RhoA

(green) in low-density-seeded large cells, which provide an

evidence of tight connection between small GTPase Rho A and

CTGF. Interestingly, rhodamine phalloidin (red), which stained F-

actin in the cells, showed the distinguished ruffled actin filament

pattern in high-density-seeded small ASCs (Figure 2B). These

data indicated that cell size manipulated by the seeding density

resulted in an induction of CTGF as well as changes in actin

cytoskeletal dynamics in vitro.

To follow up with the immunofluorescence staining, a semi-

quantitative Western blot was performed on low-density-seeded

and high-density-seeded cells in growth medium and in the

presence of ODM. Data showed abundant CTGF protein

expression in low-density-seeded ASCs as compared to high-

density-seeded cells in both culture conditions (Figure 2C).

Similarly, RhoA, an important mediator of mechanical force and

cytoskeletal tension, was highly expressed in the low-density-

seeded larger cells. Although ODM appeared to induce a trace

amount of RhoA in high-density-seeded cells, the difference in

RhoA expression between low- and high- density seeded cells

remained substantial in the presence of ODM (Figure 2C). The

image of the Western blot was analyzed semi-quantitatively with

Image J software (Figure 2D). These data suggested that the cell

size and its associated mechanical environment induced up-

regulation of CTGF at both gene and protein levels, perhaps

modulated by actin cytoskeletal tension through the RhoA

pathway.

Deficiency of CTGF expression affects osteogenic
differentiation in ASC cells

Given that up-regulation of CTGF in large cells was associated

with osteogenic commitment in ASCs, we sought to assess the

effect of CTGF deficiency in cytoskeletal tension-associated

osteogenesis [27]. Utilizing a siRNA transfection in reduced-

serum medium (Invitrogen), CTGF gene and protein expression

was successfully knocked-down with approximately 80% efficiency

(*p#0.05) (Figure S2), as demonstrated by quantitative real-time

PCR and Western blot, respectively. These ASCs were then

differentiated in ODM at different seeding density. After one

week, alkaline phosphatase staining and quantification of enzy-

matic activity was significantly decreased, particularly in large,

low-density-seeded cells which expressed higher amounts of

CTGF (Figure 3A). After two weeks of osteogenic differentiation,

a significant decrease in mineralization was also observed by

Alizarin Red staining and quantification in CTGF siRNA

transfected cells as compared to the control transfected cells,

particularly in large cells (Figure 3B). The differences were

significant in low-density- and medium-density-seeded cells where

CTGF was highly expressed upon seeding (*p#0.05) (Figure 3B).

Thus, knock-down of CTGF, a multifunctional matricellular

protein, led to an insufficient signal transduction for mineralized

ECM formation. As a result, these cells exhibited impaired

osteogenesis.

Alteration of Osteogenesis and Adipogenesis by
Disruption of Cytoskeletal Tension with Rho/Rock
Inhibitors

Cell size as a result of plating density may affect mesenchymal

cell differentiation, which was observed to be a RhoA mediated

actin cytoskeletal tension associated function. Hence, we applied

cytochalasin D, chemical inhibitor of actin polymerization to block

the cytoskeletal tension; and Y-27632, an inhibitor of Rock, the

downstream target of RhoA. These two reagents were used to

block cytoskeletal tension at different stages and to examine their

possible roles in osteogenic and adipogenic differentiation. As

shown in Figure 4A, the morphologies of ASCs were dramatically

changed upon the treatments of cytochalasin D and Y-27632.

For example, cytochalasin D (0.5 ug/ml) disrupted cytoskeletal

filaments, resulting in small cells in all seeding densities; however,

Y-27632 (10 uM) blocked Rock, the downstream of RhoA,

only showed modest effect on ASC morphology. The profound

effect of cytochalasin D on cell size and morphology indicated that

the cytoskeletal tension was also altered by blocking RhoA

pathway.

Subsequently, we observed changes in ASC morphology with

RhoA/Rock inhibitors. Actin filaments were stained with

phalloidin conjugated to rhodamine (red) and counterstained with

DAPI for cell nuclei (blue). Cells treated with cytochalasin D were

small with disrupted actin structures in both low and high seeding

densities, while treatment with Y-27632 had only a modest effect

on ASC morphology (Figure 4B).

To explore the influence on differentiation, osteogenesis was

induced by treating different density-seeded cells with ODM in the

was 26565.7 and high density seeding is 5471.5. Graph shows the fold changes in cell size for low- and medium- density seeded ASCs as compared to
high-density seeded cells (*p#0.05). B) Scanned and microscopic images of cells plated at a low density (L) of 1,250 cells/cm2, a medium density (M)
of 2,500 cells/cm2, or a high density (H) of 25,000 cells/cm2 cultured for one week in osteogenic differentiation media (ODM), adipogenic
differentiation media (ADM), or a bipotent media containing both osteogenic and adipogenic factors (bipotent). Cells in osteogenic media were
stained for alkaline phosphatase activity, cells in adipogenic media were stained with Oil Red O, and cells in bipotent media were stained for both.
Substantially higher alkaline phosphatase activity staining was shown in low density and medium density (large cells) seeding conditions in both
ODM and bipotent media. Conversely, high-density-seeded small cells committed to adipogenesis in both ADM and bipotent media. C) Quantitative
analysis of alkaline phosphatase activity (normalized to total protein content per well) for cells plated at low, medium and high density in ODM and
bipotent media and quantification of Oil Red O staining after one week in ADM. Low- and medium-density-seeded ASCs showed significantly higher
osteogenic differentiation potential in both ODM and bipotent media as compared to high-density-seeded ASCs after normalizing to the total
protein content (n = 3 and *p#0.05). The extracted Oil Red O from high-density-seeded cells was significantly higher than the low- and medium-
density-seeded cells (n = 3 and *p#0.05). D) Paracrine regulatory effect of osteogenesis by different density seeded cells. Although ASCs were seeded
at same density of 20,000 cells/well, alkaline phosphatase activity staining and quantification showed abundant staining in ASCs treated with
condition medium generated by low- and medium- density seeded cells as compared to high density-seeded cells (n = 3 and *p#0.05).
doi:10.1371/journal.pone.0011279.g001
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presence of cytochalasin D and Y27632. In the control group, as

previously observed, low-density-seeded cells underwent robust

osteogenesis as indicated by intense Alizarin Red staining whereas

the high-density-seeded cells showed no mineralization. Interest-

ingly, cytochalasin D treatment (0.5 ug/ml) in ODM completely

altered the osteogenic effect caused by cell size. However,

inhibition of downstream Rock by Y-27632 (10 uM) in ODM

did not affect this cell size related osteogenesis (Figure 5A).

Meanwhile, adipogenic differentiation was also assayed by using

adipogenic medium (ADM) with Rock/Rho inhibitors on different

density-seeded cells. We found that adipogenesis was completely

blocked by cytochalasin D (0.5 ug/ml) but not Y-27632 (10 uM)

(Figure 5B). Thus, these data suggested that cell size related

osteogenesis and adipogenesis are directly modulated by the RhoA

mediated action cytoskeletal tension.

Given that cytochalasin D robustly affected cell morphology

and differentiation (low density-seeded cells showed diminished

mineralization; high density- seeded cells showed increased

mineralization), we next explored how CTGF was involved in

this cytoskeletal tension associated function (Figure 5C). Quan-

titative real-time PCR demonstrated that the up-regulation of

CTGF in low density-seeded large cells was diminished by

treatment of cytochalasin D. This correlated with more mineral-

ization observed in large cells (Figure 5A). Conversely, cytocha-

Figure 2. Increased CTGF expression in low-density-seeded, large cells. A) Quantitative real-time PCR demonstrated significantly higher
levels of CTGF expression in low-density-seeded cells as compared to high-density-seeded cells (*p#0.05). Values were normalized to the expression
in high-density-seeded cells. B) Immunofluorescent images of CTGF staining. ASCs spread in a large microprinted (larger than 50 um in diameter) area
(a) showed intense staining of CTGF (green) as compared to ASCs spread in a small printed (smaller than 20 um in diameter) area (b). DAPI (blue)
counter staining indicates nuclei. RhoA and cytoskeletal filaments stained by rhodamine-conjugated phalloidin (staining for F-actin) at low (c) or high
(d) density. Cells were simultaneously stained for F-actin (red) and for RhoA with a FITC-conjugaed anti-RhoA (green) antibody and counterstained
with DAPI for cell nuclei (blue). ASCs seeded at low density displayed a higher expression of RhoA whereas ASCs seeded at high density showed more
overt actin ruffles within each cell. C) Western blot confirmed the changes in protein expression for both CTGF and RhoA. Abundant expression of
CTGF was shown in low-density-seeded ASCs after attachment in growth media (Growth); the difference remained significant when osteogenesis was
induced by ODM. In addition, the expression of cytoskeletal protein, RhoA was also higher in low-density-seeded cells in growth media; a minimal
amount of expression was detected in high density culture upon osteogenic induction by ODM (Low: low density seeding culture; High: high density
seeding culture). D) Quantitative analysis of scanned images of western blot. Graphs demonstrated a higher expression of CTGF and RhoA in low-
density-seeded cells (ODM: osteogenic differentiation media; Growth: growth media).
doi:10.1371/journal.pone.0011279.g002
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lasin D increased mineralization in high density-seeded small cells

and there was a dramatic increase of CTGF in cytochalasin D

treated cells. On the other hand, the pattern of CTGF expression

remained unchanged with treatment of Rock inhibitor Y-27632

(high CTGF expression in large cells and low CTGF expression in

small cells) (Figure 5C). Thus, we concluded that the expression

of CTGF was altered by blocking RhoA mediated actin

cytoskeletal tension and the expression of CTGF contributes to

osteogenesis in ASCs.

Next, in order to determine the specific role of CTGF in

regulating the actin cytoskeletal tension associated osteogenesis, we

supplemented the recombinant CTGF (100 ng/ml) in ODM to

different density-seeded cells that are treated with and without

cytochalasin D. Data showed that recombinant CTGF could

partially rescue the osteogenesis modulated by the cytoskeletal

tension (Figure 5D).

Discussion

Strategies for directing mesenchymal stromal cell (MSC)

differentiation are not yet well defined. The emergent physical

microenvironment or niche where MSCs reside largely contributes

to the regulation of lineage commitment [28–30]. Primarily

isolated ASCs consist of osteo-, chondro- and adipogenic

progenitors which will commit to their specific lineages under

particular circumstances [31–33]. Recently, promising studies

have explored the broad applications in using ASCs as a cell

source for tissue engineering of cartilage and bone [34,35]. Thus,

Figure 3. Changes in ASC osteogenic differentiation with CTGF knock-down. A) Alkaline phosphatase staining and quantification. Low-
density-seeded ASCs transfected with CTGF-siRNA demonstrated decreased alkaline phosphatase activity compared to control (control siRNA-
transfected ASCs) low-density-seeded cells (n = 3, *p#0.05). B) Alizarin Red staining and quantification. CTGF inhibition with siCTGF carried longer
term consequences in osteogenic differentiation. Alizarin red staining showed impaired late-stage osteogenesis in CTGF-deficient cells. Significant
differences were observed at both low- and medium-density-seeded ASCs after CTGF knockdown (n = 3, *p#0.05).
doi:10.1371/journal.pone.0011279.g003
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the fundamental biology of these cells remains a current focus for

translational research.

The transfer of mechanical strain results in activation of diverse

signaling cascades, culminating in the reprogramming of certain

gene expression and the production of growth factors and

cytokines [27]. Mcbeath et al. proposed that soluble factors

secreted from the MSCs were regulated by cell size associated

cytoskeletal tension and maintained tissue homeostasis [14].

However, little is known about which growth factors contribute

to the mechano-transactivation. Herein, utilizing in vitro manipu-

lation of cell size by seeding at different densities, we showed

dynamic differences in ASC morphology and actin cytoskeletal

tension demonstrated by RhoA kinase and F-actin expression

patterns. These differences were observed even though ASC

growth was largely unaffected (Figure S3). Subsequently,

differentiation potentials (osteogenesis and adipogenesis) were

influenced by cell size and their associated microenvironment.

Furthermore, we identified CTGF, a mechano-sensitive gene,

which provides unique binding domains for growth factors (i.e.

TGF-beta) and integrins, is involved in this cytoskeletal tension-

associated ASC differentiation.

CTGF gene expression is known to be induced through

mechanical stimulation and in particular through mechanical

stretch. For example, in vitro uniaxial tension increases the

expression of CTGF in chondrocytes, fibroblasts, and osteocytes

[36–38]. In vivo, CTGF is upregulated in stretched tendon and in

distraction osteogenesis of various cell types [39,40]. Additionally,

mechanical stretch stimulates osteogenic differentiation: stretched

BMSCs have greater osteogenic gene expression, increased

alkaline phosphatase activity, and enhanced mineralization

[41–44]. Studies have shown that diminishing CTGF expression

affects primarily the skeletal development as a result of impaired

skeletal proliferation and ECM production. Consistent with these

in vivo findings, we have demonstrated that CTGF deficiency in

vitro is sufficient to influence osteogenesis. Since CTGF does not

work independently, other growth factors, integrin family proteins

Figure 4. Changes in ASC morphology and differentiation with Rock/RhoA inhibitors. A) Microscopic images of cells plated at a low (L),
medium (M) or high density (H) with and without addition of cytochalasin D or Y-27632. Cytochalasin D disrupted cell tension (resulting in flat cells)
and significantly changed the morphologies of ASCs at all seeding densities. Y-27632 inhibited the downstream target Rock and did not lead to
changes in cell morphology in either low-, medium- or high- density conditions (406). B) Changes in ASC morphology with RhoA/Rock inhibitors.
Actin filaments were stained with phalloidin conjugated to rhodamine (red) and counterstained with DAPI for cell nuclei (blue). Cells treated with
cytochalasin D were small with disrupted actin structures in both low and high seeding densities, while treatment with Y-27632 had only a modest
effect on ASC morphology.
doi:10.1371/journal.pone.0011279.g004
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and possible regulatory mechanisms linking this signaling cascade

remain to be investigated.

Most mechanical sensors are integrin family proteins linking

ECM proteins to intracellular signaling. Modulations of these ECM

proteins are coupled with intergrin-linked kinases such as small

GTPases [15]. The small GTPases of the Rho family are central in

mechano-transduction mediating the formation of focal complexes,

transducing signals intracellularly, and subsequently inducing

changes in gene expression, cellular shape and morphology [15].

In our study, blocking the arrangement of actin cytoskeletal tension

by cytochalasin D led to the reorganization of cytoskeletal proteins

that predominately influence cell tension and cell size in ASCs. The

rearrangement of actin cytoskeletal tension subsequently influenced

the lineage differentiation in these cells. Although inhibiting

ROCK, the down stream target of RhoA demonstrated a modest

change in ASC morphology, the differentiation capacity was

not significantly affected. Therefore, we concluded that RhoA

mediated actin cytoskeletal tension largely contributes to the

regulation of mesenchymal cell diffrentiation.

The molecular connection between the RhoA mediated actin

cytoskeletal tension and CTGF expression was revealed by

examining the expression of CTGF in cells after the treatment

of cytochalasin D. CTGF was significantly suppressed by the

disruption of RhoA mediated cytoskeletal tension. As a result of

effect, these cells were directed into alternative lineages. Given the

fact that recombinant CTGF partially restored this osteogenic

capability, we propose that multiple signaling cascades are

involved in this RhoA mediated cytoskeletal tension associated

osteogenesis and influence the cell fate decision in such

microenvironment [45,46]. Although we have demonstrated a

novel function of CTGF in our cell system, diverse signaling into

the molecular and cellular interaction between CTGF and Rho/

Rock pathway remains to be further elucidated.

Through our microarray analysis, multiple molecular signaling

pathways were identified to be potentially involved and complex

interdependent signaling networks are likely coordinated into this

cytoskeletal tension-associated regulation. In addition to up-

regulation of CTGF, our data showed that calponin-2, an actin-

binding protein implicated in cytoskeletal reorganization was

expressed five times higher in large cells [47,48]. Other studies

have demonstrated that calponin-2 expression was increased in

bone morphogenesis with retinoic acid-induced osteoblastic

differentiation [47]. Furthermore, colony stimulating factor-1

(CSF-1), tropomyosin-2 (TM-2) and SWI/SNF were all increased

over three fold in large cells. These genes are well described in

either bone remodeling or actin reorganization [49–51]. In

contrast, chemokine (C-X-C motif) ligand 12/SDF-1was highly

expressed in small cells seeded at a high density. This gene was

proved to be associated with hypoxia gradient response and

contributes to maintaining cells in undifferentiated stage [52,53].

These data highlighted the formation of cytoskeletal tension with

multiple interdependent signaling cascades.

Understanding in vitro models of micromechanical regulation will

advance the knowledge of how ASCs respond to various cellular

signaling. Fully comprehending these mechanisms can bridge the

chasm between developmental biology and tissue regeneration.

Supporting Information

Figure S1 Results of microarray analysis of up-regulated and

down-regulated genes in low-density-seeded cells. Table lists the

genes that show substantial expression differences in low-density-

seeded cells as compared to high-density-seeded cells. Positive fold

changes indicate up-regulation in low-density-seeded, large cells.

Negative values indicate down-regulation of the genes in the low-

density-seeded cells.

Found at: doi:10.1371/journal.pone.0011279.s001 (0.03 MB

DOC)

Figure S2 Efficiency of the CTGF knock-down by siRNA

transfection. A) Quantitative real-time PCR analysis after

48 hours of transfection. Approximately 80% of decrease in

CTGF gene expression was shown (*p,0.05). B) Western blot

analysis of CTGF protein expression. CTGF protein expression

was significantly decreased after CTGF SiRNA transfection.

Minimal amount of CTGF expression was detected after 48 hours

of transfection.

Found at: doi:10.1371/journal.pone.0011279.s002 (4.75 MB TIF)

Figure S3 MTT assay for cell proliferation analysis (n = 3 wells

per condition). At day 7, cell proliferation had increased in all

density conditions with similar growth overtime.

Found at: doi:10.1371/journal.pone.0011279.s003 (7.23 MB TIF)
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