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Abstract

Background: Morphological innovations that significantly enhance performance capacity may enable exploitation of new
resources and invasion of new ecological niches. The invasion of land from the aquatic realm requires dramatic structural
and physiological modifications to permit survival in a gravity-dominated, aerial environment. Most fishes are obligatorily
aquatic, with amphibious fishes typically making slow-moving and short forays on to land.

Methodology/Principal Findings: Here I describe the behaviors and movements of a little known marine fish that moves
extraordinarily rapidly on land. I found that the Pacific leaping blenny, Alticus arnoldorum, employs a tail-twisting movement
on land, previously unreported in fishes. Focal point behavioral observations of Alticus show that they have largely
abandoned the marine realm, feed and reproduce on land, and even defend terrestrial territories. Comparisons of these
blennies’ terrestrial kinematic and kinetic (i.e., force) measurements with those of less terrestrial sister genera show A.
arnoldorum move with greater stability and locomotor control, and can move away more rapidly from impending threats.

Conclusions/Significance: My results demonstrate that axial tail twisting serves as a key innovation enabling invasion of a
novel marine niche. This paper highlights the potential of using this system to address general evolutionary questions about
water-land transitions and niche invasions.

Citation: Hsieh S-TT (2010) A Locomotor Innovation Enables Water-Land Transition in a Marine Fish. PLoS ONE 5(6): e11197. doi:10.1371/journal.pone.0011197

Editor: Vincent Laudet, Ecole Normale Supérieure de Lyon, France

Received February 17, 2010; Accepted May 19, 2010; Published June 18, 2010

Copyright: � 2010 Shi-Tong Tonia Hsieh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the National Geographic Society Research and Exploration Grant (http://www.nationalgeographic.com/field/grants-
programs/cre.html), a Student Travel Fellowship from the Society of Integrative and Comparative Biology (http://www.sicb.org/grants/fgst/), and the Putnam
Expedition Fund from the Museum of Comparative Zoology at Harvard University. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: sthsieh@temple.edu

¤ Current address: Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America

Introduction

Concepts of key innovation fall into two main categories: 1) the

causal role it plays in diversification [e.g. 1,2–7]; and 2) how it

promotes ecological opportunity [e.g. 5,7,8,9]. The integrated

pharyngeal jaw apparatus in cichlid fishes is a classic example of

key innovation enabling rapid species diversification and the

invasion and colonization of broad adaptive zones in lacustrine

environments [5]. Most cases of key innovation such as feathers in

birds [10], the turtle carapace [2,3], and the snapping claw in

alpheid shrimps [11], involve extreme morphological modifica-

tions that subsequently improve performance capacity [12]. The

far fewer examples of subtle novelties (e.g. directional asymmetry

in the feeding apparatus of snail-eating snakes [9] or the stabilized

jaw articulation in New World jays to withstand cracking acorns, is

likely due to the difficulty of their identification and discovery.

Moving from an aquatic to a terrestrial niche is challenging due

to the dramatically different demands each environment places on

the physiology and structure of an organism; yet this transition was

a necessary step in tetrapod evolution. Moving on to land requires

numerous innovations [13] to accommodate respiratory, structur-

al, and locomotor challenges absent in a buoyant, aqueous

environment. While there are numerous paleontological examples

of morphological innovations enabling a major ecological

transition [e.g., 13,14,15], their value is limited to inferences

based only on preserved, hard structures. Detailed examination of

extant organisms would thus facilitate a better understanding for

the selective pressures and challenges associated with major niche

or habitat shifts.

The highly-speciose ray-finned fishes (Actinopterygii), com-

prise more than 25,000 species. Although fishes ancestrally are

obligatorily aquatic, air-breathing capabilities and amphibious

behaviors are surprisingly widespread in this group [16]. On

land, amphibious fishes typically are from freshwater environ-

ments and tend to move very slowly [17–21]; yet two (of 53)

genera of comb-toothed blennies (Blenniidae) regularly move

about with great agility and rapidity on land [22]. Found above

the waterline in the intertidal zone, they have been the focus of

respiratory [22,23] and behavioral studies [24,25]. These fishes

feed on algae they scrape off of rocks above the water line,

migrate with tidal patterns [25,26], and even reproduce on land

[25,27]. The Pacific leaping blenny, Alticus arnoldorum, has such

terrestrial habits that it actively defends a terrestrial territory,

and will retreat into moist burrows in the rocks when the tide

recedes, to await its return. If threatened on land, these blennies

slip into crevices above the water line or porpoise across the

water surface to other rocky outcrops, and have never been

observed to escape into the water.

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11197



Six of the most closely-related genera to Alticus [28] exhibit

different degrees of amphibious behavior. For ease of analysis, I

have divided the genera into ‘aquatic,’ ‘amphibious,’ or ‘terrestrial’

groups based on field observations (Fig. 1). Although all of these

genera can breathe air, aquatic blennies are seldom found out of

water. When on land, they remain immobile until submerged by

the next wave, or will flip about, seemingly randomly, until they

return to water. Amphibious blennies can be periodically found

feeding on land during low tide, close to the water line. However,

they readily return to the water when disturbed and only make

short forays on to land. The terrestrial blennies are extremely

active on land, seldom submerge themselves under water, and

move about actively dodging waves, feeding, and defending

territories.

The goal of this study was to determine how two genera of

ancestrally marine fishes have adapted to a terrestrial lifestyle.

Initial high-speed videos showed that the terrestrial blennies

perform an unusual axial tail twisting movement, not previously

observed in any other known fish. By examining the kinematics

and kinetics of terrestrial locomotion in these blennies and their

non-terrestrial sister genera, I tested the hypotheses that this tail

twisting motion (1) is uniquely derived in the terrestrial blennies;

and (2) has facilitated their invasion of a terrestrial niche by

conferring greater jump performance in comparison to their

amphibious and aquatic sister genera. Results from comparative

kinematics of terrestrial jumps advance a theory for how tail

twisting evolved. Furthermore, these results present Alticus as a

potential living model for understanding structural and functional

challenges associated with a major environmental transition.

Methods

Animals
Blenny species examined in this study include Alticus arnoldorum,

Andamia reyi, An. tetradactyla, Blenniella caudolineata, Entomacrodus

niuafooensis, E. striatus, Istiblennius lineatus, and Praealticus labrovittatus.

Only Andamia spp. were collected in Taiwan. All of the remaining

species are from Guam. Data for Entomacrodus and Andamia were

pooled within each genus because I was interested in differences

among the blennies at the generic level. Intraspecific locomotor

performance comparisons and quantification of locomotor kine-

matics were conducted in field marine laboratories in Guam

(University of Guam Marine Lab) and Taiwan (Sun Yet Sen

University, Kenting National Park), and at Harvard University

(Cambridge, Massachusetts, USA). All experiments for this study

were approved by the Institutional Animal Care and Use

Committee at Harvard University. All animal collection was

conducted in accordance to permit no. C00-008-04 issued by the

Department of Agriculture in Guam and a permit issued by the

Taiwan Council of Agriculture.

For the experiments at Harvard University (i.e., detailed

kinematic and kinetics measurements), twenty live individuals

each of Alticus arnoldorum, P. labrovittatus, and B. gibbifrons were

shipped back to the laboratory. None of the other species were

imported because their conditions rapidly deteriorate in captivity,

or permits for live import were unavailable (i.e., Andamia spp. from

Taiwan). In the lab, blennies were housed in groups of three in

plastic shoeboxes modified to accommodate an airstone, a water

inlet, and drain. Boxes were fit with a drain opposite the inlet to

ensure cross-aquarium water flow. Fishes were fed twice daily with

a spirulina and marine flake fish food mix. Full spectrum lights

were set on a 12 hour light-dark cycle.

All locomotor trials were filmed at 250–1000 fps using one or

two high speed video cameras.

Alticus Terrestrial Kinematics
Since Alticus exhibited the most extreme terrestrial behavior,

detailed description of this species’ movements on land were

completed. Kinematics of Alticus locomotor modes were quantified

in three dimensions as individuals were induced to climb a vertical

piece of Plexiglas and hop or jump along a horizontal surface.

Each locomotor bout was divided into three phases based on body

position and kinematics (see Results for a description of phases).

Fish body midlines were manually digitized, then reconstructed

into three-dimensional coordinates using custom software in

MATLAB (Mathworks, Inc., USA). A fixed point on the body

was used for locomotor velocity calculations.

To determine whether Alticus moved on land using distinct

locomotor modes, 11 kinematic variables were quantified. These

variables included take-off angle, duration of each locomotor

phase as a percent of total bout duration, maximum body velocity

(i.e., ‘‘maximum velocity’’), and average three-dimensional body

velocity (i.e., ‘‘average velocity’’) and curling velocity for each

phase. Take-off angle was measured as the angle formed by a

straight line connecting the snout tip to the base of the tail and the

horizontal plane. Curling velocity was defined as the speed with

which the tail and snout moved with respect to one another.

Positive velocities indicated that they were moving away from each

other, representing speed of body extension. Linear regressions of

variables against body length yielded no size effects. All variables

were log-transformed before statistical analyses to satisfy assump-

tions of normality.

A principal components analysis (PCA) was first run to reduce

the dimensionality of the data and to determine which variables

were responsible for the greatest amount of variance in the data. A

90% trace criterion [29] was used to select the principal

components (PC) to be used for further analyses. Individual

variable loadings (i.e., the eigenvalues) and scatterplots of the

principal components (PC) facilitated interpretation of PCA

results.

The selected PCs were then analyzed with a descriptive

discriminatory analysis (DDA) to examine categorical separations

[e.g., 29,30,31]. Examination of a linear discriminant factor

(LDF) plot and results of an ANOVA/Tukey-HSD comparison

Figure 1. Tail twisting capability and ecological groupings of
blenny genera examined in this study. Field observations showed
that Alticus and Andamia are on land during both low and high tide. In
contrast, Paralticus [35] and Praealticus exit the water infrequently
during low tide (pers. observ.). Istiblennius, Blenniella, and Entomacrodus
all are fully aquatic in their habits and only periodically emerge from
water, despite being capable of breathing air. Tail twisting behavior in
Paralticus is unknown because individuals were not available for
examination. The phylogeny used here was obtained from Spring and
Williams [28].
doi:10.1371/journal.pone.0011197.g001

Axial Tail Twisting in a Fish
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established whether group differences were described in one or

two dimensions.

Comparative Jumping Performance and Kinematics
All jump behaviors were recorded within two days of capture in

Taiwan and Guam. For each jump, qualitative parameters (i.e.,

presence or absence of tail twisting and slipping) were recorded.

Jumps were pooled according to blenny ecotype (i.e., terrestrial,

amphibious, or aquatic). A total of 156 jump trials (i.e., 59

terrestrial, 49 amphibious, and 48 aquatic) were included in the

final analysis. Differences in jump stability (i.e., slipping frequency)

among ecotypes were assessed with a contingency analysis,

followed by a Pearson’s Chi-squared test.

Comparative Jump Kinetics
Comparative jump force production among A. arnoldorum, P.

labrovittatus, and B. gibbifrons – representing a terrestrial, amphib-

ious, and aquatic blenny – was assessed using a novel, tri-axial

optical force plate designed for these experiments [32]. Analog

force plate response data were sampled at 1000 Hz and converted

to digital form using an analog-digital converter (ADInstruments,

Colorado Springs, CO, USA). All force data were filtered with a

ninth-order, low-pass Butterworth filter set at a 20 Hz cut-off

frequency, in the forward and reverse directions to eliminate filter-

introduced time shifts. Force axes were assigned according to the

right-hand rule: +X pointed opposite the direction of motion (aft),

+Y pointed to the left of the jump, and +Z pointed down. Figure

S1 shows a representative, filtered force trace from a jump by the

terrestrial blenny, Alticus arnoldorum. All trials were also recorded

with a high-speed camera and consumer grade camcorder (Sony

Corporation) for general kinematics synchronization and quanti-

fication of jump distance. Activation of a trigger simultaneously

terminated high-speed video filming and added a step change in

electrical signal along a channel dedicated to recording trigger

response.

A total of 43 trials were recorded from the terrestrial A.

arnoldorum (10 individuals), 13 trials from the amphibious P.

labrovittatus (2 individuals), and 12 trials from the aquatic B.

caudolineata (3 individuals). Only those trials in which the blenny

jumped from the center of the force plate, without touching the

sides of the enclosure or the prod used to elicit the jump, were

accepted for analysis. As a result of such stringent screening

criteria, a highly-selective subset (21 total trials: aquatic = 5 jumps,

amphibious = 4 jumps, terrestrial = 12 jumps) of the 68 recorded

trials was selected for detailed analysis.

Multiple analyses of variance (MANOVA) tested the hypotheses

that 1) forces produced during the preparatory phases were not

statistically different among blenny ecotypes; and 2) terrestrial

blennies generate greater propulsive force impulses than do

amphibious and aquatic blennies. If significance was detected by

a Pillai’s Trace criterion, then an ANOVA and a post-hoc Tukey

HSD test established pairwise differences.

Statistics
All statistics were processed using JMP7.0.2 (SAS Institute,

Inc., Cary, NC). Where applicable, data are presented as

mean6S.E.M.

Results

Terrestrial locomotion is stereotyped
Although Alticus and Andamia exhibit the highest degrees of

terrestriality, high speed video revealed that the aquatic,

amphibious, and terrestrial blennies studied here all initiate

terrestrial movement from a stereotypic posture: the tail is curled

towards the head, forming a C-shape with the body, and then

extended to push the body forward (Fig. 2). Tail movements in

aquatic and amphibious blennies are limited to a side-to-side

motion, like those of most other fishes (Fig. 3b, c and Movies S1

and S2). In contrast, terrestrial blennies twist their tail axially 90u
before placement on the ground (Fig. 3d), using the lateral surface

of their tail – rather than the ventral surface – to propel themselves

forward (Movies S3, S4, S5). This unusual axial tail-twisting

movement is unique to the two terrestrial genera (Fig. 1), and thus

represents a kinematic innovation.

To facilitate kinematic comparisons, movements were divided

into three phases, based on body position and kinematics (Fig. 3d).

Phases 1 and 2 comprised the preparatory phases, whereas phase 3

comprised the propulsive phase. During phase 1, the tail is curled

towards the head. The pectoral fin on the ipsilateral (i.e., concave)

side of the body is folded against the body, whereas the

contralateral pectoral fin remains extended. There was no

detectable left-right preference for tail curling direction. Phase 2

is characterized by a pause in forward movement, during which

the blenny maintains the U-shaped tail-to-head position, (Fig. S2,

solid line). During this phase, terrestrial blennies twist their tail,

pressing its lateral surface against the substrate and spreading the

caudal fin rays. There may also be some slight body movement

(e.g. rolling or shifting) as the fish prepares for the next phase.

Phase 3 is the propulsive phase, starting with the first forward

movement of the body, and ending when the tail loses contact with

the surface.

Distinct terrestrial locomotor modes in Alticus
Alticus arnoldorum was the most terrestrial blenny examined in

this study. Hopping (Fig. 4a; Movie S3), jumping (Fig. 4b; Movie

Figure 2. Dorsal midline splines taken from high-speed video
of representative, stereotypical terrestrial jumps. Presented
midlines include a a, terrestrial (Andamia tetradactyla), b, amphibious
(Praealticus labrovittatus), and c, aquatic (Blenniella gibbifrons) blenny.
The head is indicated by the filled circle, and the darkest midline
corresponds to initial body position before movement. Lighter solid
midlines indicate the body is contact with the ground, whereas the
lightest dashed midlines indicate that the body is raised off the ground.
Note the large yaw of the aquatic blenny, c, as its body leaves the
surface. Dotted arrows indicate tail movement or overall body
movement.
doi:10.1371/journal.pone.0011197.g002

Axial Tail Twisting in a Fish
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Figure 3. Comparison of aquatic escape and terrestrial jump maneuvers in aquatic, amphibious, and terrestrial fishes. a, An aquatic
C-start escape response by a fully-aquatic fish, Polypterus senegalensis, modified from Tytell and Lauder [43]. b, An aquatic blenny (Blenniella
gibbifrons) jumping on land. Note the lack of tail twisting and similar body position to the fish in panel a. c, An amphibious blenny (Praealticus
labrovittatus) showing the stereotyped tail to head movement used for terrestrial locomotion. d, A terrestrial blenny, Alticus arnoldorum,
demonstrating axial tail twisting. The numbered vertical bars to the right of panel d correspond to jump phases 1, 2, and 3, as shown in panels c and
d. See text for descriptions of the phase kinematics. Blennies shown in panels b–d jumped off the same balsa wood surface. The terrestrial blenny
never slipped, whereas all others did. Sketches were produced for greater visible clarity, and were traced from high-speed video frames. The gray
circle serves as a fixed point. Five mm scale bars are provided at the bottom of panels b–d; panel a serves as a generic kinematic reference for a C-
start escape response.
doi:10.1371/journal.pone.0011197.g003

Figure 4. Three terrestrial locomotor modes performed by Alticus arnoldorum. a, Hopping, b, jumping, and c, climbing. d, Results of a
discriminatory analysis on four principal components derived from two principal components analysis (PCA) models of preparatory and propulsive
kinematics. All three locomotor modes are distinct (Wilks’ Lambda: P,0.0001; ANOVA: F = 159.37, P,0.0001) and categorized with 93.7% accuracy (14
of 15 correct). See Tables 1 and S1 for a list of variables included in the PCA models.
doi:10.1371/journal.pone.0011197.g004

Axial Tail Twisting in a Fish
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S4), and climbing (Fig. 4c; Movie S5), are distinct with respect to

the speed with which they are performed (Table 1; ANOVA:

F = 56.16, P,0.0001). Climbing and hopping are the two slowest

locomotor modes used when foraging. On average, these blennies

achieved a peak velocity of 0.3860.06 m/s while climbing (range:

0.25–0.53 m/s), and 1.0860.06 m/s while hopping (range: 0.93–

1.29 m/s). Although hopping is similar to jumping in its positional

characteristics, jumping is used for escaping threats and when

fighting while defending territories, representing a much faster

locomotor mode (peak velocity: 1.5860.08 m/s; range: 1.39–

1.87 m/s).

Two principal components analysis (PCA) models were

developed for the preparatory and propulsive phase measures.

The kinematic variables used in these models are presented in

Table 1. Six phase 1 and 2 variables were included in the

preparatory PCA model and the remaining five variables were

included in the propulsive PCA model (Table S1). Using the 90%

trace criterion [29], four principal components (PCs) for the

preparatory model (96.73% variance) and two PCs for the

propulsive model (93.88% variance) were selected for further

analysis. The results of an ANOVA and Tukey HSD on each of

the PC scores, and their kinematic interpretations are shown in

Table 2.

Preparatory phase kinematics were indistinguishable among the

three locomotor modes, supporting the descriptive observation

above that the initial body movements are stereotyped, regardless

of locomotor mode. In contrast, the propulsive PCA model

separated jumping and hopping from climbing. PC1 for the

propulsive phase model showed that jumping and hopping

exhibited significantly greater Phase 3 velocities (i.e., body,

curling, and maximum velocities) than climbing (Table 2).

However, jumping and hopping had statistically similar means

to each other.

A descriptive discriminatory analysis (DDA) determined whether

a combination of the preparatory and propulsive PC scores

could be used to discriminate among the three locomotor modes

[e.g., 29,30,31]. Interestingly, the amount of variance explained by

each of the PCs in their respective models did not dictate their

importance in discriminating among the locomotor modes. A

stepwise discrimination procedure revealed that a minimum of four

PCs (preparatory phase PC2 and PC4, and propulsive phase PCs)

were necessary to distinguish among the three locomotor modes with

93.7% accuracy (Wilks’ Lambda: P,0.0001; ANOVA: F = 159.37,

P,0.0001). Propulsive PCs were the most discriminatory, with PC1

(body linear and curling velocities), and PC2 (take-off body angle)

having comparable discriminatory power (Table S2).

Terrestrial blennies exhibit the greatest jump
performance on land

As hypothesized, terrestrial blennies outperformed both amphib-

ious and aquatic blennies when moving on land. Terrestrial blennies

jumped significantly farther than aquatic blennies (terrestrial:

12.561.4 cm; aquatic: 1.860.2 cm; ANOVA: F = 6.010,

P = 0.012), but not significantly farther than amphibious blennies

(5.360.7 cm). A second proxy for jump performance, slipping rate,

indicated that terrestrial blennies also performed superior to the other

two ecotypes (contingency analysis and Pearson’s Chi-squared:

x2 = 123.396; P,0.0001). Whereas aquatic blennies slipped in

87.5% of the trials (N = 48) and amphibious blennies slipped in

73.5% of the trials (N = 49), terrestrial blennies never slipped in 59

total trials.

Comparative Jump Kinetics
Based on the kinematic results above, two specific hypotheses

were tested regarding comparative jump kinetics: 1) forces

produced during the preparatory phases (1 and 2) among

terrestrial blennies are identical to those produced during the

same phase for amphibious and aquatic blennies, reflecting the

stereotyped kinematics of initial movements during jumping on

land; and 2) terrestrial blennies generate greater propulsive force

impulses (X and Z) than do amphibious and aquatic blennies

during the propulsive phase 3, reflecting the greater jump

distances. Forces produced in the medio-lateral directions (Y) do

not contribute to overall jump distance, so were not included in

the calculation of propulsive force impulses.

Results from a MANOVA on preparatory phase jump kinetics

(X, Y, Z, and total force impulse during phases 1 and 2) yielded

no significant differences among blenny ecotypes (Pillai’s Trace:

F = 1.53, P = 0.17), indicating that the locomotor mechanics

during the preparatory phase are similar among all these

blennies.

Comparisons of propulsive phase jump kinetics (X, Y, and Z

force impulse during phase 3, and jump distance) yielded more

Table 1. Select kinematic variables characterizing climbs, hops, and jumps in the Pacific leaping blenny (Alticus arnoldorum).

Variable Phase Units Climb (N = 4) Hop (N = 6) Jump (N = 5)

Phase Duration 1 % 47.663.4 58.964.4 54.763.5

2 % 10.664.4 15.163.2 21.563.2

3 % 41.863.1*{ 26.062.1* 23.862.4{

Mean Curl Velocity 1 m/s (L/s) 20.1860.02 (23.3660.46) 20.2360.05 (24.0060.88) 20.3260.07 (25.5661.27)

2 m/s (L/s) 0.0560.01 (0.9860.24) 0.0760.02 (1.1660.27) 0.0860.02 (1.3360.36)

3 m/s (L/s) 0.1860.04 (3.4560.68)*{ 0.5560.05 (9.7160.91)* 0.7560.07{ (12.9661.12)

Mean Body Velocity 1 m/s (L/s) 20.1860.02 (23.3660.46) 20.2360.05 (24.0060.88) 20.3260.07 (25.5661.27)

2 m/s (L/s) 0.0560.01 (0.9860.24) 0.0760.02 (1.1660.27) 0.0860.02 (1.3360.36)

3 m/s (L/s) 0.1860.04 (3.4560.68)*{ 0.5560.05 (9.7160.91)* 0.7560.07 (12.9661.12){

Take-off Velocity m/s (L/s) 0.0660.08 (1.1860.64)* 0.9960.07 (17.3161.33)* 1.4660.07 (25.1761.37)*

Take-off Angle degrees 22.27610.95 23.2668.94 50.9269.79

L/s: Lengths per second. Data are presented as mean6S.E.M.
*{Values marked with the same symbol indicate a significant difference between/among locomotor modes.
doi:10.1371/journal.pone.0011197.t001
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PLoS ONE | www.plosone.org 5 June 2010 | Volume 5 | Issue 6 | e11197



complicated results, mostly supporting the second hypothesis. On

average, terrestrial blennies produced greater fore-aft (X-axis)

force impulses (4.6760.36 mN?s) during phase 3 than both

aquatic (2.2560.6 mN?s) and amphibious blennies

(2.1260.49 mN?s; ANOVA: F = 10.57, P,0.0009). However, no

significant differences were detected among the ecotypes for

medio-lateral (Y; F = 0.71, P = 0.50) and vertical (Z; F = 1.03,

P = 0.38) force production, despite the significantly greater jump

performance by terrestrial blennies.

Discussion

The intertidal zone is a particularly challenging environment in

which to live due to unpredictable and powerful wave impact on

exposed rock [33,34]. Although blennies frequently inhabit the

intertidal, most are aquatic and benthic in their habits [35]. The

terrestrial blennies (Alticus and Andamia) studied here have taken

terrestriality to an extreme, in spite of extremely demanding

conditions. Terrestrial blennies perform many essential behaviors

on land, including feeding and reproducing, and they even defend

terrestrial territories. Observations in the field showed that Andamia

tetradactyla and A. reyi sleep at night in rock depressions above the

water line but within the splash zone. When periodically wetted by

spray from waves, Alticus sp. is reported to remain indefinitely out

of the water [24]; pers. observ.], breathing through highly-

vascularized skin [22]. This study shows that terrestrial blennies

exhibit a key kinematic innovation that likely facilitated this major

ecological transition. Their unique ability to twist their tail axially

allows them to place the broad, lateral tail surface against the

ground for propulsion, increasing their jump distance while also

improving traction on frequently slippery, algae-covered rock

surfaces. I present below some general observations of their

territorial behavior, to emphasize the necessity of a mechanism for

rapid and effective movements on land.

Terrestrial blennies are highly territorial
Territories consisted of rock faces containing numerous short

tunnels (usually less than 3 cm depth), holding a shallow volume of

fluid accumulated during high tide. Whereas non-territorial

blennies regularly moved over the entire rock face during high

tide and disappeared during low tide, presumably migrating with

the tide cycle, territorial individuals remained inside an exposed

burrow during low tide. Blennies were not observed leaving the

tunnels during low tide, suggesting the accumulated water within

the tunnels is sufficient for keeping the fish moist – facilitating

cutaneous respiration [24] – until the tide returned.

The highly terrestrial Pacific leaping blennies (Alticus arnoldorum)

rely on rapid and acrobatic maneuvers to aggressively defend their

terrestrial territories. Initial territorial displays consisted of rapid

head-bobbing movements, resembling those displayed among

lizards [36], with only the head exposed and the remainder of the

body still within the burrow. Escalation of conflict led to

emergence of the defender followed by tensing of the body,

flaring of the dorsal, pectoral, and caudal fins, and lateral

posturing towards the offender. Physical combat was common,

rapid, and acrobatic, sometimes resulting in one or both of the

blennies being knocked into the water. Blennies knocked off a rock

immediately re-emerged on to land. None of the blennies were

observed voluntarily entering the water during low or high tide.

Greater performance on land among terrestrial blennies
The combination of living in the wave-swept intertidal and

aggressive defense of terrestrial territories necessitates an effective

means of moving about on land. Jumping is the fastest mode of

locomotion measured for Alticus, most frequently used during

territorial encounters and when escaping from impending threats

(e.g., predators, waves, and aggressive conspecifics). It thus would

be reasonable to expect terrestrial blennies to demonstrate

kinematic or morphological specialization reflecting their more

terrestrial lifestyle.

Qualitative kinematic comparisons yielded stereotyped kine-

matics of terrestrial movements on land, irrespective of ecotype.

Among all ecotypes, movements were initiated by bringing the tail

towards the head, curling their body into a C-shape then

straightening the body to move forward. Using such stereotyped

movements, detailed kinematic analyses showed that the terrestrial

Alticus performed two to three distinct locomotor modes: hopping,

jumping, and climbing. Hops and jumps were indistinguishable in

both principal components models, but were differentiated in the

discriminant analysis with 93.7% accuracy, suggesting that these

two locomotor modes are distinct despite being very similar

kinematically. It is nevertheless possible that jumping and hopping

represent opposite extremes of a velocity continuum that is

behaviorally modulated. While additional focal point studies are

necessary to formalize when each locomotor mode is used, initial

observations indicate that the diversity of locomotor modes

facilitates slow, stable locomotion when feeding and fast, acrobatic

locomotion when escaping large waves or competing for resources.

Comparisons among six closely-related genera showed that

axial tail twisting is a kinematic innovation unique to the two

terrestrial genera, and that these blennies are furthermore

characterized by significantly greater jump performance on land.

Table 2. Principal components (PC) interpretations and means for each locomotor mode for preparatory and propulsive PCA
models.

Phase PC Feature Climb Hop Jump F-ratio p-value

Preparatory PC1 Body velocities 20.6660.71 20.3060.58 0.8960.63 1.58 0.2468

PC2 Phase 1 duration and curling velocity 20.9560.55 0.2660.45 0.4560.49 2.09 0.1668

PC3 Interpretation unclear 0.2960.46 0.0260.38 20.2360.41 0.33 0.7243

PC4 Duration of Phase 2 pause in body
movement

20.5960.33 0.2760.27 0.1560.29 2.29 0.1435

Propulsive PC1 Phase 3 velocities (body and curling) 22.8160.43*{ 0.4760.35* 1.6860.39{ 31.76 ,0.0001

PC2 Take-off body angle 0.5260.38 20.4960.31 0.1760.34 2.32 0.1411

Results of an ANOVA for significant differences among locomotor means along each principal component are shown in the final two columns.
*{Locomotor mode means with the same symbol are significantly different from each other (p,0.05), as determined by post-hoc Tukey-HSD pairwise comparisons.
doi:10.1371/journal.pone.0011197.t002
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On average, terrestrial blennies jumped nearly seven times farther

than aquatic blennies, and over twice as far as amphibious

blennies. Greater jump performance in terrestrial blennies is likely

due to the greater stability and traction afforded by planting the

lateral aspect of the tail against the substrate, rather than the

narrow, ventral surface. On identical substrata terrestrial blennies

never slipped when jumping in comparison to both aquatic and

amphibious blennies. Furthermore, if terrestrial blennies roll when

airborne, they display a remarkable ability to correct body

position, which permits landing upright and launching into the

next jump almost immediately. Amphibious and aquatic blennies

land on their side if they roll mid-air.

The kinetic data are consistent with greater jump performance

among terrestrial blennies, showing that these blennies generated

greater fore-aft force impulses, facilitating increased jump distance.

In contrast, when considering their shorter jump distances,

amphibious and aquatic blennies tended to generate proportion-

ately greater vertical and medio-lateral force impulses. These

forces contribute less to increasing jump distance [37,38] and can

be destabilizing [39,40], by causing yawing and rolling about the

center of mass.

Evolutionary Implications
The stereotyped body movements when moving on land for all

blenny genera studied here suggest a derivation from the C-start

escape, an evasion maneuver common to most aquatic fishes [41].

A C-start is a reflexive, Mauthner cell-initiated response that

involves curling the head towards the tail into a tight C-shape and

rapidly straightening the body for propulsion [Fig. 3a; 42,43].

When startled on land, the aquatic blenny kinematic response

closely resembled an aquatic C-start (12 of 48 jumps; Fig. 3b);

although the opposite kinematic sequence, in which the tail is

curled towards the head, was also used. Amphibious blennies

reacted similarly in response to a stimulus (Fig. 3c), but would also

frequently roll their body onto the side of their tail to jump. This

resulted in a similar tail position as that achieved by axial tail

twisting in terrestrial blennies (Fig. 3d) without actually twisting the

tail. Whereas terrestrial blennies always jumped farther and

generated greater propulsive forces than aquatic blennies,

amphibious blennies were intermediate to these two ecotypes.

This jump performance ‘enhancement’ in terrestrial and amphib-

ious blennies, as compared to aquatic blennies, supports the

interpretation that pushing with the lateral surface of the tail

promotes terrestrial locomotor performance.

Similar locomotor strategies, when employed both underwater

and on land, may lead to a decrement in locomotor performance.

For example, Gillis [20] showed that American eels utilize a lateral

undulatory motion when swimming and when on land. The

dramatic decrement in locomotor performance (i.e., lower

velocity) on land was accompanied by significantly higher

amplitude body undulations and higher-intensity electromyo-

graphic bursts in the axial musculature [44].

In contrast, whereas mudskippers (Periophthalmus sp., Family

Gobiidae or ‘‘gobies’’) rely on a combination of lateral undulations

and pectoral fin locomotion underwater [19], they perform at least

two distinct types of locomotion on land: crutching and jumping

[17,18]. Crutching involves using the pectoral fins and tail as a

tripod, providing stabilization while planting the pectoral fins to lift

the body off the ground to move forward [18]. While crutching

tends to be slow, jumping is employed as a rapid, terrestrial escape

response, remarkably similar to the terrestrial kinematics observed

among the aquatic blennies studied here. When jumping,

mudskippers simultaneously bring their head and tail together

before rapidly extending the body to propel the fish away from a

threat [19]. Timing characteristics of water versus terrestrial escapes

indicate that the maneuvers performed underwater may be

Mauthner-mediated, whereas those on land are not – suggesting

the use of a novel motor pathway for land-based escape behaviors

[17].

Key innovations afford enhanced performance [9,45,46],

promoting ecological opportunity. These innovations are some-

times credited with subsequent species diversification [5,47] and

radiation into new environmental niches [6,8]. Although the

terrestrial blennies studied here do not represent a case of dramatic

species diversification, the large populations and widespread

occurrence of these terrestrial blennies in the tropical Pacific

Ocean is a testament to their remarkable success occupying a new

niche on land. The axial tail twisting behavior serves as a

kinematic innovation in this group of fishes [6], occurring

simultaneous with a level of stability and maneuverability when

moving on the intertidal coastline that other known fishes have yet

to achieve. Initial preliminary analyses of axial skeleton (pers.

observ.) and myosepta morphology (pers. comm., S. Gemballa)

have yielded no obvious morphological modification enabling tail

twisting. Yet, the kinematic trends of jump behavior among non-

terrestrial and terrestrial blennies suggest potential morphological

or neuromuscular modifications, warranting further study. The

similarity in the preparatory curling motions in genera distributed

among two largely aquatic fish families (i.e., blennies and gobies)

suggests that these basic terrestrial movements have an ancestral

origin preceding amphibious behavior, and may be more broadly

observed among other amphibious genera. It furthermore suggests

a case of convergent evolution of motor patterns, facilitating

terrestrial locomotion. Active axial tail twisting remains unreport-

ed in any other genus of which I am aware. Therefore, future

studies comparing tail use and muscle function during aquatic and

terrestrial locomotion in the terrestrial blennies may provide

greater insight into whether axial tail twisting is an adaptation for

land locomotion, or if it was co-opted from another aquatic

function. This lineage of fishes thus provides a unique glimpse of

an evolutionary pathway by which a group of aquatic vertebrates

has moved on to land, serving also as an appropriate system for

understanding the evolution of locomotor control mechanisms

enabling effective locomotion in two distinct environments.

Supporting Information

Figure S1 A representative force trace recorded from a jumping

terrestrial blenny, Alticus arnoldorum. All force data were filtered

with a ninth-order, low-pass Butterworth filter set at a 20 Hz cut-

off frequency, in the forward and reverse directions to eliminate

filter-introduced time shifts. Force axes were assigned according to

the right-hand rule: +X pointed opposite the direction of motion

(aft), +Y pointed to the left of the jump, and +Z pointed down.

Found at: doi:10.1371/journal.pone.0011197.s001 (0.61 MB TIF)

Figure S2 Time-dependent plots quantifying the different

locomotor modes on land for the terrestrial Alticus arnoldorum.

Graphs show body displacement and velocity, and curling velocity

from a representative a, jump, b, hop, and c, climb. Curl velocity

(solid curve, see Materials and Methods for definition) and body

velocity (circles) correspond to the left y-axis, whereas body

displacement (dashed line) corresponds to the right y-axis. Positive

curl velocity indicates body extension. Circles are spaced at 4 ms

intervals. Arrows pointing at gray circles indicate the start of each

locomotor phase (see Fig. 3d and text). The fourth arrow indicates

‘tail off’ (‘to’) when the tail loses contact with the locomotor

surface.

Found at: doi:10.1371/journal.pone.0011197.s002 (4.34 MB TIF)
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Table S1 Eigenvector results for each of the principal compo-

nents in the preparatory and propulsive kinematic models.

Found at: doi:10.1371/journal.pone.0011197.s003 (0.05 MB

DOC)

Table S2 Features selected by stepwise linear discriminant

analysis.

Found at: doi:10.1371/journal.pone.0011197.s004 (0.03 MB

DOC)

Movie S1 A jump performed by an aquatic blenny, Blenniella

gibbifrons, off a balsa wood surface. Note that axial tail twisting is

absent in this species and that it yaws uncontrollably once

airborne.

Found at: doi:10.1371/journal.pone.0011197.s005 (0.98 MB

MOV)

Movie S2 The amphibious blenny, Praealticus labrovittatus,

performing a jump on a balsa wood surface. Note that it also

curls the tail towards the head before propulsion; however, it does

not twist its tail and therefore pushes off the substrate with the

ventral tail surface.

Found at: doi:10.1371/journal.pone.0011197.s006 (1.18 MB

MOV)

Movie S3 Lateral view of hopping in the terrestrial blenny,

Alticus arnoldorum. Video was filmed at 250 fps, covering approx-

imately 550 ms of movement. Notice the stereotyped curling of the

tail to the head before body extension and that the fish lands in

position to immediately execute a subsequent hop.

Found at: doi:10.1371/journal.pone.0011197.s007 (2.05 MB

MOV)

Movie S4 Lateral view of jumping in the terrestrial blenny,

Alticus arnoldorum. Video was filmed at 250 fps. The full movement

takes place in approximately 600 ms. This locomotor mode is

similar to a hop, but the body is extended at a much higher

velocity. Blennies can jump over 3 body lengths in one leap.

Found at: doi:10.1371/journal.pone.0011197.s008 (2.12 MB

MOV)

Movie S5 Ventral view of a terrestrial blenny, Alticus arnoldorum,

climbing up a vertical piece of Plexiglas. Video was filmed at

250 fps, and this sequence occurs within 700 ms. Plexiglas was

used so that the attachment of the fish to the locomotor surface

could be visualized. In their natural environment, fishes climbing

up rocks do not slip as is seen here.

Found at: doi:10.1371/journal.pone.0011197.s009 (2.44 MB

MOV)
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