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Abstract

For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the
degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects,
such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger
fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more,
non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal
value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used
stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation
of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new
selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection
equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-
term, highly optimized populations containing little variability respond better to environmental changes upon an increase
of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing
the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual
organisms that replicate their genomes under broadly different mutation rates.
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Introduction

Mutations constitute the main source of genetic diversity in

asexual populations. Although most of them have deleterious

effects on fitness [1–3], natural selection increases the represen-

tation of those having beneficial effects, which can become fixed in

a population. This combined action of mutation and selection

promotes the adaptation to environmental changes, and in the

long term leads to the evolution of populations.

In the framework of the fitness landscape described by Wright

[4], populations placed near the top of a fitness peak will

experience less beneficial mutations than populations placed far

from the adaptive optimum [2,5–9]. This dependence of the

mutation effects on the degree of adaptation of populations led to

the theoretical prediction that mutation rates would be reduced

in constant environments, in which the population has had

enough time to adapt. Once the optimum has been attained, a

homogeneous population of individuals with the optimal

phenotype is the best adaptive solution, so the generation of

further diversity is not necessary. Nevertheless, the actual

situation is that environments never remain static. They

continuously undergo changes that alter the fitness landscapes,

displacing populations towards suboptimal fitness regions, where

the amount of mutations with positive effects increases. These

poorly-adapted populations could benefit from having higher

than standard mutation rates.

The variation of mutation effects with fitness, together with the

fact that error rates can be easily modified as a consequence of

mutations producing genotypes with variable capacity to cause

errors, suggest that mutation rates are a character subjected to the

action of natural selection [10,11]. Stable environments would

favour low mutation rates (anti-mutator genotypes), constrained

only by the costs of error-repair mechanisms [12,13]. In contrast

to this, environments subjected to frequent changes would select

for increased mutation rates (mutator genotypes) that permit faster

adaptation to the new conditions [14–16]. However, the

optimization of the mutation rate is not only determined by its

impact on adaptation but also by the consequences that the

variation of this character has on fitness. High mutation rates can

increase the number of deleterious mutations, whereas low

mutation rates can have metabolic costs associated. The existence

of these opposing forces causes that natural selection often fails to

fully optimize this character [17]. The study of the evolution of

mutation rates has been addressed theoretically [13,18–21], and

using digital organisms [17]. There are also many reported

examples of natural and experimental bacterial populations with

higher than standard mutation rates [22–26], showing that there

are multiple situations in Nature in which being a mutator confers

a selective advantage. Although mutator variants have also been

isolated in the DNA phage T4, they have been rarely observed in

the case of RNA viruses [27,28]. A possible explanation is that

RNA viruses replicate their genomes at the maximum error rate
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compatible with the preservation of genetic information, and

additional increases would lead to fitness losses that could cause

the extinction of the population [29,30]. Despite this almost

absence of mutators in RNA viruses, it has been observed that low

fitness clones of an RNA bacteriophage increase their replicative

ability when infections take place in the presence of a mutagen, a

clear example of the adaptive advantages arising from an increase

in the mutation rate in low fitness populations [31].

Anti-mutator mutants, with lower than normal mutation rates,

have been observed in bacteria [32], in the phage T4 [33], and in

RNA viruses evolving in the presence of mutagens [34]. In the

latter case, the anti-mutator phenotype can be produced by single

changes in the viral polymerase, without requiring the expression

of corrector activities. These observations suggest that RNA

viruses could easily evolve to lower mutation rates. If they do not,

it could be due to the major adaptive advantages provided by high

mutation rates. The finding that high-fidelity genotypes of an

RNA virus have lost some of their adaptive properties in mice

constitutes a strong support of this hypothesis [35,36]. Other

studies, however, point to the existence of a trade-off between

rapid replication and fidelity to explain the high mutation rates of

RNA viruses [37].

Asexual populations of replicators, such as RNA molecules

evolving in silico, with selection acting on their folded conforma-

tion, constitute a simple system to study how the variation of the

mutation rates influences adaptation. After a sufficiently long time,

these virtual populations reach a stationary state characterized by

mutation-selection equilibrium and a quasispecies structure [38].

Populations of RNA molecules have been very successfully used as

a computational model for the study of evolutionary processes

[39–41]. The influence of the mutation rate on the degree of

adaptation attained at the stationary state, and on the genotypic

and phenotypic diversity of the population are questions that have

been addressed previously with this model [9,42]. In this work we

focus on the adaptability of populations of RNA molecules that

reached the stationary state at different error rates, and that are

affected by a sudden environmental change. To this end, we

determine those mutation rates promoting maximal adaptation

after a short number of generations. In practice, our population

evolves under selection for folding into a given secondary structure

until mutation-selection equilibrium is reached. At that point, it is

confronted with a new selective pressure, represented by a new

target structure, towards which it evolves under a second mutation

rate. Our results show that, before reaching the new equilibrium,

and especially at the early stages of the adaptive process, there is

no simple relationship between the momentary degree of

adaptation and the new error rate at which a population evolves.

There is also a strong influence of the mutation rate at which

populations evolved towards the previous stationary state in their

ability to adapt to new selective pressures. Our results are of

relevance to understand the adaptive process in changing

environments when variations of the mutation rate are allowed.

Some actual examples of this situation are the in vitro evolution of

structural or catalytic RNA molecules and proteins -where the

experimenter can manipulate the extension of the genetic diversity

generated- the selection of mutator variants of pathogenic bacteria

in response to antibiotics, hampering the treatment of many

diseases [43,44], and also RNA viruses in which even very mild

mutator or antimutator phenotypes can have important conse-

quences in shaping not only virus evolution, but also pathogenesis,

transmission, and emergence [28,35,36]. A deeper knowledge of

how mutation rates can affect fitness and adaptive ability can be of

great importance to evaluate the effectiveness and long term

consequences of therapies, especially those based on the increase

of the mutation rate through the use of mutagens [45].

Methods

Evolutionary algorithm
The system used in our simulations consists of a population of

N = 1000 RNA sequences, each of length l = 50 nucleotides. At the

beginning of the simulation, each molecule of the population is

initialized with a random sequence. Every time that a sequence

replicates, each of its nucleotides has a probability (defined by the

mutation rate m) to be replaced by another nucleotide, randomly

chosen among the four possibilities. We define a target secondary

structure which is endowed with the highest replication rate. After

each replication event, the molecules are folded into secondary

structures with help of the Vienna package, version 1.5 [46] and

the base pair distance di between each molecule i in the population

and the target is calculated. The base pair distance is defined as

the number of base pairs that have to be opened and closed to

transform a given structure into the target structure. The

probability p(di) that a molecule i in the population replicates

depends on the distance di according to the following equation:

p(di)~Z{1exp({2bdi=l) ð1Þ

where Z is the overall normalization factor Z =
PN

i~1

exp({2bdi=l).

The parameter b denotes the selection pressure and takes the

value b = 1 for all the simulations carried out in this study; l is the

length of the molecule. Generations are non-overlapping and the

offspring generation is selected following a Wright-Fisher sampling

at each time step.

At any time point, the population can be characterized by two

main quantities: the fraction of molecules correctly folded (those

with di = 0) and the average distance of the population to the target

structure. Because of the dependence of the probability of

replication of each molecule on its di value, we chose the average

distance to the target as an estimator of the degree of adaptation of

a population (the higher the distance the lower the degree of

adaptation).

Stationary, non-adapted, and adapting populations
A general scheme showing the main evolutionary characteristics

of the different populations used in our simulations is represented

in Fig. 1.

The initial random populations R replicate with different

mutation rates (m1 = 0.001, 0.002, 0.005, 0.01, 0.02, and 0.05)

during 8000 generations (g), a number large enough to reach a

statistically stationary state, which is determined by the selective

pressure represented by the target structure S1 (the hairpin

structure shown in Fig 1). We performed r = 50 independent

realizations of this process for each value of the mutation rate. The

resulting equilibrated populations (populations E) experience a

sudden change in the selective pressure implemented as a change

of the target structure from S1 to S2 (the hammerhead represented

in Fig. 1b). At this point, populations become non-adapted

(populations NA), as they have not been optimized in the new

environment defined by S2. We randomly choose one of the 50

non-adapted populations as the starting point of a new adaptive

process towards S2. The population evolves during 200 genera-

tions under 6 different values of the mutation rate (m2 = 0.001,

0.002, 0.005, 0.01, 0.02, and 0.05) giving rise to the adapting

populations (populations A) shown in Fig. 1. We performed

Mutation Rate and Adaptation
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r = 1000 independent realizations for each value of the mutation

rate. The average distance was determined for each adapting

population at every generation, and averaged over the 1000

independent runs.

Nomenclature
We focus our analyses in the three populations E, NA, and A. In

the following, we will call di,j
E(S1) the set of base pair distances

between each molecule i in populations E and the target structure

S1 for each realization j. Likewise, we call di,j
NA(S2) the set of base

pair distances between each of the molecules in populations NA

and S2 for each of the realizations. It is important to remark that

populations E and NA have the same composition. The only

difference between them is the structure used to calculate the di,j

values, which in populations E has been the target of a completed

optimization process whereas in populations NA has not.

Analogously, we define di,j
A(S2) as the base pair distance between

molecules in the adapting populations A and the target structure S2

for each realization j. Note that the latter set of distances is a time-

dependent quantity, while di,j
E(S1) correspond to populations at the

mutation-selection equilibrium, and are thus independent of time.

Average values are calculated over the N = 1000 molecules in the

population and over r independent realizations of the process. We

first define the average distance to target for each realization j as,

vdE
j (S1)w~N{1

PN

i~1

dE
i,j(S1). The average over the r indepen-

dent realizations is d
E

(S1)~r{1
Pr

j~1

vdE
j (S1)w. As indicated, this

is an important quantity used as a measure of the degree of

adaptation of populations. Similar quantities are defined for non-

adapted NA and adapting populations A. The number of

realizations is r = 50 for E and NA populations and r = 1000 for

A populations. For adapting populations A we calculate the

standard deviation sA(S2) of the average distances vdA
j (S2)w

with respect to d
A

(S2) in order to measure the variability among

realizations. The statistical significance of the differences between

average distance values was determined with the Student’s t-test.

To get a deeper characterization of populations E and NA, we also

determined several additional statistical parameters. We call

SDE
j (S1) the standard deviation of the distances dE

i,j(S1) with

respect to vdE
j (S1)w. The average over standard deviations for

the r realizations is SD
E

(S1)~r{1
Pr

j~1

SDE
j (S1). The minimum

and maximum distances in each set dE
i,j(S1) are called dE

Min,j(S1)

and dE
Max,j(S1), respectively. The averages over realizations are

Min
E

(S1)~r{1
Pr

j~1

dE
Min,j(S1) and Max

E
(S1)~r{1

Pr

j~1

dE
Max,j(S1).

The skewness of the set dE
i,j(S1) is called SkE

j (S1), and the average

over realizations is Sk
E

(S1)~r{1
Pr

j~1

SkE
j (S1). Analogous quan-

tities are defined for NA populations. All statistical calculations

were performed with the program Mathematica 5.0 (Wolfram

Research).

Results

Distributions of distance values in equilibrated and non-
adapted populations

The structure of the populations used in this study can be

described through the distribution of distance values (see

Methods), which depends on the value of the mutation rate, the

selective pressure dominant, and the time of evolution. The

statistical parameters characterizing the distribution of distances to

targets S1 and S2 in equilibrated and non-adapted populations are

reported in Tables 1 and 2, respectively. Given the population

structure at the stationary state, dE
i,j(S1), and the new selective

pressure, S2, the set dNA
i,j (S2) is completely determined, illustrating

how the composition of populations at equilibrium influences its

subsequent evolution.

Equilibrated populations are optimized at a mutation rate m1

towards the target structure S1 (Fig. 1). At the stationary state, the

average distance of these populations to the target structure S1

depends on m1 (see values for d
E

(S1) in Table 1). The higher m1,

the larger is the average distance to the target at the mutation-

selection equilibrium. This result illustrates the dependence of the

degree of adaptation on the mutation rate, as previously reported

[42]. When the selective pressure is changed by choosing a new

target structure (S2, see Fig. 1), populations optimized to reach

target structure S1 are non-adapted when confronted to S2. As a

rule, �ddNA(S2) values in non-adapted populations (see Table 2) are

Figure 1. Schematic representation of the protocol undergone
by the populations of RNA molecules. The simulation begins with
a population of random sequences (R). It evolves towards the target
structure S1 under a mutation rate m1. After a number of generations
that depends on the population size and on the mutation rate,
mutation-selection equilibrium is attained. These are populations E,
which after a sudden change in the target structure become non-
adapted (populations NA) and are used as the initial condition for
adaptation to the new environment. Then the mutation rate changes to
m2 and the populations adapting to the new secondary structure (A) are
analysed during 200 generations. The degree of adaptation is
quantified through the average distance of the population to each of
the targets. In this work we pay particular attention to the distribution
of distance values of populations at equilibrium, E, to target structure
S1, dE

i,j(S1), of non-adapted populations to target structure S2, dNA
i,j (S2),

and to that of the adapting population A to target structure S2, dA
i,j(S2).

See main text for further details.
doi:10.1371/journal.pone.0011186.g001

Table 1. Statistical parameters describing the distribution of
dE

i,j(S1) values (see Methods and Fig. 1).

m1 ddE (S1) SD
E

(S1) Min
E

(S1) Max
E

(S1) Sk
E

(S1)

0.001 0.760.1 2.560.6 0.060.0 27.561.8 7.560.9

0.002 1.360.2 3.460.4 0.060.0 28.361.8 5.260.4

0.005 3.260.3 5.160.5 0.060.0 29.661.1 3.260.3

0.01 6.060.4 6.660.5 0.060.0 30.361.2 1.960.1

0.02 10.560.5 7.860.3 0.360.4 30.961.0 0.960.1

0.05 19.060.6 6.860.3 3.261.2 31.460.6 20.460.1

The values of the statistical parameters correspond to the average over 50
independent runs for each value m1 and were calculated as described in
Methods. The standard deviation for each determination is shown after the sign
6.
doi:10.1371/journal.pone.0011186.t001
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much higher than �ddE(S1) values in equilibrated populations (see

Table 1), although the two populations differ much more at low

than at high error rates. Actually, if the target structures S1 and S2

are at a large base pair distance of each other, optimized

populations are typically farther from S2 than a population of

randomly chosen sequences, especially for small m1 (results not

shown).

In addition to the the average distance, we have evaluated the

average standard deviations [SD
E

(S1) and SD
NA

(S2)] as a

measure of the relative phenotypic diversity, the average minima

[Min
E

(S1) and Min
NA

(S2)] and maxima [Max
E

(S1) and

Max
NA

(S2)], and the average skewness parameters [Sk
E

(S1)

and Sk
NA

(S2)], the latter standing for the bias of the distribution.

The comparison between the corresponding values permits us to

make several conclusions. Min
E

(S1) values shows that populations

optimized at m1 between 0.001 and 0.01 contain at least one

molecule folding into the target, meaning that there is a finite

fraction of molecules folding into S1 once the mutation-selection

equilibrium has been reached. There is a fixation threshold m1
F

above which on average no molecule in the population folds into

the target structure. Once the target structure changes, the range

of dNA
i,j (S2) becomes much narrower, due to an increase in the

minimum distance values. In general, in non-adapted populations,

the larger the mutation rate m1 the lower Min
NA

(S2), a behaviour

clearly different from that observed in optimized populations,

where Min
E

(S1) increases with the mutation rate m1. The values of

SD
E

(S1) and SD
NA

(S2) also increase with the mutation rate,

although in optimized populations this increase is bound,

decreasing above the fixation threshold, and suggesting that most

molecules in populations evolved at high error rates have high

dE
i,j(S1) values, thus reducing population diversity. Finally,

Sk
E

(S1) indicates that populations optimized at m1 between

0.001 and 0.02 present a bias towards distance values above

average. At m1 = 0.05 this bias becomes negative, indicating the

predominance of molecules with distance values below average.

For non-adapted populations Sk
NA

(S2) behaves in a way

qualitatively similar to that of E populations.

Adaptive dynamics of stationary-state populations
We have analyzed the adaptive dynamics of the stationary-state

populations described in Table 1 when the selective pressure is

changed by choosing a new target structure (S2, see Fig. 1), as

described. Populations optimized to reach target structure S1 are

non-adapted when confronted to S2, and constitute the initial

condition (g = 0) of a new adaptive process (see Table 2). With the

aim of determining the optimal mutation rates that promote

adaptation to S2, each population was allowed to replicate under a

range of values of the new error rate (m2) between 0.001 and 0.05.

The variation of the value of �ddA(S2) was evaluated through 200

generations. The results obtained for three representative

populations differing in the value of m1 at which they reached

the previous stationary state are shown in Fig. 2. In the three cases

considered we observe large differences in the adaptive dynamics

depending on the value of m2 used to adapt to the new selective

pressure. For the largest value of m2 considered (0.05), �ddA(S2)
decreases only slightly as the number of generations increases,

showing that too high error rates strongly hinder adaptation. For

m2 values lower than 0.05, there is a noticeable decrease in the

average distance as time elapses. In general, the variation of
�ddA(S2) is faster at the beginning of the adaptive process, slowing

down later. The initial decay occurs more rapidly for populations

that reached the previous stationary state at moderate to high

mutation rates than for those that were previously optimized at

low mutation rates.

An interesting result observed in the evolution of the three

populations represented in Fig. 2 is that, during the transient, the

value of m2 that promotes the maximum degree of adaptation to S2

(or the minimum value of �ddA(S2) at a given time) depends on the

number of generations elapsed. There are also differences among

the three populations depending on the value of m1 at which they

were optimized towards S1. We can draw the general conclusion

that the optimal mutation rate promoting maximal adaptation to a

new selective pressure before reaching the new stationary state

depends on the number of generations elapsed under the new

conditions and on the previous mutation rate at which the

population had evolved. In other words, the evolutionary history

of populations has important consequences in their posterior

adaptive capacity.

Previous state of the population and optimal mutation
rates at early stages of adaptation

To explore the relationships between the value of m1 at which

populations adapted to S1 and the value of m2 that promotes

maximal adaptation to S2 after a short number of generations, we

evaluated �ddA(S2) after 40 generations in populations that differed

in m1 and evolved at increasing values of m2 (Fig. 3). We have

chosen g = 40 to observe populations that are still far enough from

equilibrium but have undergone a significant degree of adaptation.

Other values of g meeting these requirements would be

appropriate as well and do not qualitatively change our results.

In all populations the variation of �ddA(S2) as a function of m2 shows

a non-monotonic behaviour, with important differences depending

on the value of m1 at which they reached the previous stationary state.

For populations previously evolved at m1#0.005 there is a range of m2

values across which �ddA(S2) decreases significantly as the mutation

rate increases (p%0.001 for the comparisons of the difference of
�ddA(S2) in populations optimized at m1 = 0.001, 0.002, and 0.005 and

evolving at m2 = 0.001 and 0.01 for each value of m1). There is a limit

for these benefits, and at values of m2 around 0.01, any additional

increase of the mutation rate gives the same or higher value of
�ddA(S2). In contrast to these results, populations previously evolved at

m1$0.01 (i. e. above the fixation threshold) keep an almost constant

value of �ddA(S2) for low m2 values (p.0.05 for the differences between
�ddA(S2) in populations optimized at m1 = 0.01 and evolving at

m2 = 0.001 and 0.01, and in populations optimized at m1 = 0.02 and

0.05 and evolving at m2 = 0.001 and 0.005), while larger m2 makes

adaptation more difficult. As a consequence, it is not possible to

establish a simple relationship between the value of m1 at which

Table 2. Statistical parameters describing the distribution of
dNA

i,j (S2) values (see Methods and Fig. 1).

m1 ddNA(S2) SD
NA

(S2) Min
NA

(S2) Max
NA

(S2) Sk
NA

(S2)

0.001 25.160.1 0.960.1 20.962.5 32.161.2 2.461.3

0.002 25.160.1 1.360.2 19.563.6 32.961.3 1.761.2

0.005 25.260.2 1.860.2 18.163.0 33.760.8 1.060.4

0.01 25.760.3 2.460.1 16.962.7 34.360.9 0.660.2

0.02 26.560.4 2.860.1 15.163.0 35.260.8 0.160.1

0.05 27.360.3 3.160.2 12.862.1 35.160.8 20.660.1

The values of the statistical parameters were determined from the same 50
populations of Table 1, recalculating the distance values with respect to S2.
doi:10.1371/journal.pone.0011186.t002
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populations evolved and the value of �ddA(S2) obtained under the new

selective pressure, for any of the values of m2 considered. This

behaviour clearly differs from that observed in stationary state

populations, where the higher the mutation rate, the higher also the

value of �ddE(S1) attained at equilibrium (Table 1) [42]. Our results

clearly show that, for out-of-equilibrium populations, increases of the

mutation rate may bring about adaptive advantages.

Another observation emerging from the results of Fig. 3 is that

the influence of m1 is maximal at low values of m2. As this

parameter increases, populations behave more similarly, and at

m2 = 0.1 all of them converge to approximately the same value of
�ddA(S2) (results not shown). That is, the lower the value of the

mutation rate m2, the higher the influence of the previous state of

the population.

The lowest values of �ddA(S2) reached in all the cases after 40

generations, and the value of m2 at which it is obtained, are shown

in Table 3. We observe that the maximal degree of adaptation

appears in two quite different situations. The first one corresponds

to a population that reached the previous stationary state at

m1 = 0.002. When adapting to the new selective pressure, this

population attains a very low �ddA(S2) value in a short number of

generations without altering the mutation rate (�ddA(S2) = 13.3 for

m2 = 0.002; see Fig. 3). The increase of m2 to 0.005 results in a

decrease of �ddA(S2) to the lowest value observed at g = 40

(�ddA(S2) = 11.5). The second situation is represented by the

population previously evolved at the highest mutation rate

(m1 = 0.05), having the lowest degree of adaptation to S1 at the

stationary state (see values for �ddE(S1) in Table 1). That

population, when confronted with the new selective pressure S2,

displays the almost lowest value of �ddA(S2) obtained in our

simulations at g = 40 for all m2,0.01. Interestingly, the population

that performs worst for any value of m2 is that with the lowest value

of m1 (Table 1), which permitted the highest degree of adaptation

to S1. As indicated above, a small increase in the value of m1 (from

0.001 to 0.002) yields a considerable increase in the adaptive

capacity of this population (p%0.001 for the difference of �ddA(S2)
between populations evolved at the same m2 and optimized at

m1 = 0.001 or 0.002), highlighting once more the significative non-

proportional effects that small changes in the mutation rate might

produce.

Discussion

The observation that mutation rates per nucleotide vary by

orders of magnitude across species suggests that this character

has not an optimal universal value [10,47,48]. Each species

Figure 2. Temporal development of ddA(S2). Results are shown for
m1 = 0.001 (A), 0.002 (B), and 0.05 (C), and for different values of m2 (see
legends). Each curve corresponds to an average over 1000 realizations.
Insets: probability distributions of dE

i,j(S1) (black) and dNA
i,j (S2) (red),

representing the initial state (see also Tables 1 and 2).
doi:10.1371/journal.pone.0011186.g002

Figure 3. Average distance ddA(S2) at g = 40 as a function of the
mutation rate m2 for different values of m1. Each point corresponds
to an average over 1000 realizations. The error bars yield the standard
deviation sA(S2) of the average distances obtained over all realizations,
see Methods.
doi:10.1371/journal.pone.0011186.g003
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evolves under a mutation rate arising from many factors that are

not universal. Among the most relevant we find the variability of

the environment, the effect that mutations have on fitness, the

metabolic costs of having more faithful replication machinery,

the population size, and the replication rate [49]. Variations in

any of these factors can modify the optimal value of the

mutation rate, with the result that natural selection has to carry

out a continuous fine tuning of this parameter and under the

action of non-compatible trends may fail to find an optimal

solution [11,17].

In this paper we have focused on the study of the values of the

mutation rates that promote maximal adaptation in a short

number of generations when populations previously optimized at

different error rates experience a single environmental shift. The

model system we have used is constituted by ensembles of RNA

molecules that evolve through mutation and selection towards a

defined target structure. This system permits to establish direct

correspondences between the genotype (the sequence of the RNA

molecule), the phenotype (the structure into which it folds), the

replicative ability (inversely related to the distance to the target),

and the degree of adaptation of the whole population. Although in

our simulations, mutation rates are imposed by the researcher, the

relative amount of beneficial and deleterious mutations is not a

fixed parameter, as it varies through the evolutionary process as a

consequence of the variation in the degree of adaptation [9].

Consequently, the optimal mutation rate at the stationary state

does not necessarely coincide with the optimal mutation rate

before mutation-selection equilibrium is reached.

The populations considered in this paper have first evolved with

different error rates (between 0.001 and 0.05) for a number of

generations, large enough to reach mutation-selection equilibrium.

Their degree of adaptation at equilibrium decreases with the

mutation rate. However, when confronted with a new selective

pressure, these populations can experience adaptive advantages if

they vary their mutation rate. This means that the optimal

mutation rate for an adapting population can be quite different

from the optimal mutation rate under conditions that remain

constant for a long time. In particular, for populations optimized

at low mutation rates an increase of this parameter may be

favourable, while for populations replicating under high mutation

rates a decrease would be advantageous. These results can be

partially explained as a consequence of the different dynamics of

the adaptive process at different mutation rates, and by the

influence of the composition of the population in its subsequent

ability to adapt to new selective pressures. Adaptation is a complex

phenomenon in which, in addition to the diversity generated de

novo, the nature and distribution of existing mutants plays an

important role. In our simulations, populations able to attain a

high degree of adaptation to a new selective pressure in a short

time were those previously optimized at moderate (0.002) to high

(0.05) values of m1 (Fig. 3 and Table 3). After changing the target

structure, populations optimized at high mutation rates give rise to

highly diverse, non-adapted populations, which contain in their

mutant distributions molecules closer to S2 at g = 0 than

populations optimized at lower error rates. These populations

respond better when the mutation rate is decreased, thus

enhancing the presence of structures close to S2. On the other

hand, populations optimized at m1 = 0.002 benefit from an

increase in the mutation rate to rapidly adapt to the new target

structure. At g = 0, these populations display lower diversity, and

the molecules closest to S2 have typical distances larger than those

in populations optimized at high error rates. Increases of the error

rate promote the appearance of better adapted structures, the

substrate of further optimization. These results provide good

examples of the importance of pre-existent and newly generated

diversity in the adaptive capacity of populations, and illustrate how

the relative amount of each of them determines whether a

population needs to increase or reduce the mutation rate to get

rapid adaptation.

We have used an exponential fitness function, such that

replication of molecules with any value of di is possible. This is

one reason why we do not observe extinction in any of the cases

studied. The situation would be different should we work with a

truncated landscape, for instance, where molecules folding too far

from the target structure would not have the minimal functionality

required for replication. More restrictive landscapes of this kind,

together with a population that could vary its size, would yield

extinction in cases of low m1, especially. Still, the conditions for

extinction in truncated landscapes would be alleviated in large

enough populations, with a broader range of di values and hence of

diversity.

Our results can be discussed in the context of actual organisms

that replicate using error rates that differ by orders of magnitude

(from 1028–1029 in DNA organisms to 1024–1026 in RNA

viruses). Although the error rates for the RNA molecules used in

this study are apparently much higher than the error rates of

actual organisms, they become much more similar if the values are

expressed per genome, or replicating molecule. Taking genome

size into account, our RNA molecules replicate with error rates

between 0.05 and 2.5 errors per molecule and generation, a value

quite similar to the error rates found in Nature, which range

between roughly 0.003 errors per genome and generation in DNA

based microbes to 1–5 in RNA viruses [10]. These values can be

further increased by mutagenic agents.

Table 3. Lowest values of d
A

(S2) reached at g = 40 and
values of m2 at which they are obtained in populations
previously optimized at the indicated values of m1.

m1 m2 d
A

(S2)

0.001 0.001 22.9

0.01 19.6 (p%0.001)

0.02 19.4 (p%0.001)

0.002 0.002 13.3

0.005 11.5 (p%0.001)

0.01 11.9 (p%0.001)

0.005 0.005 14.5

0.01 13.9 (p%0.001)

0.01 0.01 14.5

0.002 13.7 (p%0.001)

0.005 13.8 (p%0.001)

0.02 0.02 18.0

0.001 15.2 (p%0.001)

0.002 15.1 (p%0.001)

0.05 0.05 22.9

0.002 11.8 (p%0.001)

0.005 12.0 (p%0.001)

For all m1 (left column) we show the lowest values of d
A

(S2) at g = 40 (right
column), together with the values of m2 at which they are attained (central
column). We also display d

A
(S2) for m1 = m2 and the p value of the Student’s t-

test for the difference of d
A

(S2) between the indicated population and the
corresponding one evolving at m1 = m2.
doi:10.1371/journal.pone.0011186.t003
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Populations optimized at low mutation rates present a high

degree of adaptation and a low phenotypic diversity (see Table 1).

After a limited number of generations, under a new selective

pressure, the highest degree of adaptation reached by these

populations takes place when they increase the mutation rate to

values of 0.01 or 0.02 (Fig. 3 and Table 3). These populations

behave similarly to DNA organisms that maintain a certain degree

of constancy in the intracellular medium, which allows a reduced

mutation rate for replication. However, under conditions of

environmental stress, a more convenient evolutionary strategy for

these organisms would be to increase the mutation rate to get

rapid adaptation [14–16]. This strategy is particularly important

when the new selective pressure is strong enough to extinguish the

population in case it is not able to adapt in a short time span. A

well known example is the selection of hypermutator strains when

bacterial populations are infected with phages or exposed to

antibiotics [43,44,50]. There is however a limit for the beneficial

effects derived from the increase of the error rate. In our system,

when the mutation rates are increased above m2,0.01, the degree

of adaptation reached diminishes (see Fig. 3), a result that suggests

that there must be also a limit for the increase of the mutation rate

that can be attained by a hypermutator strain. In our case, this

limit is set by the mutation rate above which fixation of the

optimal phenotype becomes impossible.

There are important differences in the behaviour of populations

evolving at low error rates. In our system, the population that

performs worst under a new selective pressure at any of the values

of m2 assayed is that one previously optimized at the lowest

mutation rate considered (m1 = 0.001; see Fig. 3). This population

reached the highest degree of adaptation at the stationary state (see

Table 1) and resembles specialist organisms that perform optimally

under a narrow range of very well established conditions, but have

difficulties to adapt when these conditions are modified [51].

Populations optimized at a slightly higher error rate (m1 = 0.002)

experience a substantial increase in their adaptive ability (Fig. 3;

Table 3). This population could represent less specialized

organisms, not so well adapted to a concrete selective pressure,

but able to perform optimally in a wider diversity of environments

[52] due to their higher degree of genotypic and phenotypic

diversity. These results also suggest that the transition from a rigid

population, with little ability to respond to environmental changes,

to a more flexible population, able to adapt rapidly, may occur

through small increases of the mutation rate that produce

concomitant increases in the pre-existent diversity.

Populations optimized at high mutation rates (m1 = 0.01) can

adapt rapidly to a new selective pressure keeping this parameter

constant. These cases resemble in some aspects RNA virus

populations, which, together with viroids, replicate at the highest

error rates found in Nature and that are able to adapt rapidly to

changing environments without significantly altering the error

rate. The disadvantages experienced by these populations when

the error rate is further increased [30,53] agree with the fact that

only mild mutator mutants have been isolated in the case of RNA

viruses [27,28]. In normal conditions, RNA viruses also do not

select mutants with lower than standard mutation rate. It is likely

that the associated reduction in the genotypic and phenotypic

diversity strongly challenges their ability to undergo adaptation

[35,36].

As could have been expected, populations optimized at values of

m1$0.02 (above the fixation threshold) can dramatically increase

their adaptive potential if they reduce the mutation rate. These

populations sustain a high degree of diversity, with molecules

already close to other possible new target structures. If the

mutation rate is kept high, molecules with low distance values are

lost due to the strength of mutation. However, when the mutation

rate is reduced, these molecules can become fixed, permitting in

this way the optimization of the whole population. The equivalent

in Nature of these populations could be RNA viruses replicating at

higher than standard mutation rates, a condition that has been

explored experimentally by exposing RNA virus populations to

mutagens. RNA viruses can escape the negative consequences of

the increase of the mutation rate by selecting anti-mutator mutants

[34]. The consequences of the selection of an anti-mutator mutant

in a population previously mutagenized have not been explored,

but they could be quite negative from the viewpoint of the host if,

as predicted by our model, they are associated to a short term

increase in the adaptive ability. The treatment of RNA virus

infections with mutagens is being investigated as a new therapeutic

approach known as lethal mutagenesis [53]. One of the main

criticisms to this alternative therapy is that the increase of diversity

caused by the mutagen could induce a parallel increase in the

adaptive ability of the virus [54]. Our results suggest that if the

mutagen is withdrawn before infection clearance, or if anti-

mutator mutants emerge, the resulting populations could adapt

more easily to new selective pressures. A great care should be

taken when manipulating the error rate of pathogenic organisms.

The associated variations in fitness and adaptive capacity could

result in the generation of strains better suited to resist new

treatments or the action of the immune system of the host.

Therefore, a continuous research in this field combining both

experimental and computational approaches is highly promising.
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