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1 Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland, 2 Center of Functionally Integrative Neuroscience, Aarhus University,

Aarhus, Denmark, 3 Pathophysiology and Experimental Tomography Center, Aarhus University Hospitals, Aarhus, Denmark, 4 Cognitive Brain Research Unit, Institute of

Behavioral Sciences, University of Helsinki, Helsinki, Finland, 5 Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä, Jyväskylä, Finland,
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Abstract

Musical competence may confer cognitive advantages that extend beyond processing of familiar musical sounds.
Behavioural evidence indicates a general enhancement of both working memory and attention in musicians. It is possible
that musicians, due to their training, are better able to maintain focus on task-relevant stimuli, a skill which is crucial to
working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-
musicians during working memory of musical sounds to determine the relation among performance, musical competence
and generally enhanced cognition. All participants easily distinguished the stimuli. We tested the hypothesis that musicians
nonetheless would perform better, and that differential brain activity would mainly be present in cortical areas involved in
cognitive control such as the lateral prefrontal cortex. The musicians performed better as reflected in reaction times and
error rates. Musicians also had larger BOLD responses than non-musicians in neuronal networks that sustain attention and
cognitive control, including regions of the lateral prefrontal cortex, lateral parietal cortex, insula, and putamen in the right
hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between
the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians,
particularly during the most difficult working memory task. The results confirm previous findings that neural activity
increases during enhanced working memory performance. The results also suggest that superior working memory task
performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in
musicians may be a consequence of focused musical training.

Citation: Pallesen KJ, Brattico E, Bailey CJ, Korvenoja A, Koivisto J, et al. (2010) Cognitive Control in Auditory Working Memory Is Enhanced in Musicians. PLoS
ONE 5(6): e11120. doi:10.1371/journal.pone.0011120

Editor: Eric Warrant, Lund University, Sweden

Received April 20, 2009; Accepted February 24, 2010; Published June 15, 2010

Copyright: � 2010 Pallesen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by the Academy of Finland (National Center of Excellence Program) and by a research grant from the University of Helsinki.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: karenjohanne@pet.auh.dk

¤ Current address: Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Introduction

Musical knowledge and skilfulness vary greatly across the

population. This provides a basis for the study of how individual

differences are reflected in brain activity during perceptive and

cognitive processes. Not surprisingly, musical competence facili-

tates both sensory memory and conscious cognitive processing of

musical sounds, reflected in enhanced brain activity [1,2,3,4,5,6].

The increased neural activity is explained by stronger acoustic

encoding of musical sounds and also by the representation of

stimuli in terms of multiple codes that can be exploited

automatically [7]. For example, musicians recall visual patterns

of successive musical notes better than non-musicians, probably

because of musicians’ knowledge of sound-labels [8]. However,

evidence also indicates that musicians benefit from enhanced

domain-general cognitive processes, including enhanced mathe-

matical, verbal, and non-verbal skills [9,10,11], and non-musical

enhancement of working memory in musicians has repeatedly

been demonstrated. For example, musicians were able to

remember more words from a recently presented list than non-

musicians [12] and enhanced verbal memory [13] followed from

musical training in children. Musicians also had shorter reaction

times than non-musicians in a non-musical visual attention task,

indicating greater ability to focus attention [14]. Cognitive control

is an important component of working memory and may be

critical in enhanced WM task performance. The notion that

musicians may exhibit generally enhanced cognitive control and

abilities to focus has interest in an overall learning perspective,

since it has been suggested that these benefits could develop as a

consequence of musical training and subsequent transfer to other

cognitive domains [9,10]. Long-term training in cognitive tasks

was generally associated with activity increases in the lateral PFC

and parietal regions [15], regions that were also repeatedly linked

to top-down’’ cognitive control mechanisms. Specifically, lateral

PFC regions were functionally linked to cognitive control during

demanding tasks [16], and posited to be responsible for superior
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task performance [17,18]. Moreover, the magnitude of PFC

activity and task-relevant adjustments in behavior was found to

relate positively to activity in the anterior cingulate cortex (ACC)

[19,20], which, together with bordering sections of the medial

PFC, is associated with monitoring response conflicts [21], and

predicting error likelihood [22], hence serving a supporting role in

the engagement of cognitive control. Brain regions involved in the

optimization of task execution also includes anterior parts of the

lateral PFC, associated with the ordering of sequences of stimuli

[23,24].

We now test the hypothesis that musicians’ superior perfor-

mance in a demanding working memory task with musical chords

depends on increased recruitment of brain areas involved in

cognitive control, rather than enhanced processing in auditory

cortical areas. Hence, to place high demands on cognitive control,

we used the n-back task where stimuli appearing in sequences must

continuously be memorized and compared. The stimuli were

designed to minimize advantages of musical competence such as

accurate encoding and distinction of sound features, by spacing the

three different chords to be memorized by entire octaves.

However, advantages to task performance could also be conferred

on musicians via automatically enhanced memory traces or

activation of stimulus-associated cues, such as descriptive musical

terms. Two groups of participants, musicians and non-musicians,

performed low load 1-back (1B) and high load 2-back (2B) WM

tasks as well as passive listening (PL) that did not require

memorization, while their blood oxygenation-level dependent

(BOLD) brain responses were measured with functional magnetic

resonance imaging (fMRI). The 2B vs. 1B contrast is well suited to

assess changes in brain activity related to WM load, while other

factors are kept constant, and we therefore focused on this

contrast. We predicted that musicians would both perform better

in the two WM tasks and have associated stronger brain activation,

despite limited advantage from specialized musical knowledge. In

particular, stronger activation of ‘‘top-down’’ cognitive control

mechanisms would be reflected in enhanced responses in the

parietal cortex, lateral PFC regions and ACC.

Materials and Methods

Ethics Statement
The volunteers gave informed consent to the study, as approved

by the ethics committee of the Helsinki University Central

Hospital.

Participants
We recruited 10 participants aged 22–31 years (mean age 25

years, 5 women) with minimal musical training, obtained

exclusively as obligatory primary school education, and 11

classical musicians aged 21–34 years (mean age 28 years, 9

women), who were either students or graduates of the Sibelius

Music Academy in Helsinki, Finland. All participants were right-

handed and had no history of neurological disease or hearing

deficit.

The non-musicians in the present study were previously studied

as a separate group, with focus on task-related decreases during

working memory [25]. We also previously compared non-

musicians and musicians in their behavioural and brain responses

to the three different musical chords (major, minor, dissonant).

Significantly different brain responses to chord type were detected

during the passive listening condition only, while not detectable

during the working memory conditions [26]. Here, we will focus

on the effect of WM load on brain responses in non-musicians and

musicians.

Stimuli
The stimuli were 9 sound combinations (chords) of ‘‘major’’,

‘‘minor’’ and ‘‘dissonant’’ chord categories according to the

Western tonal music theory, each spanning three frequency levels

separated by an octave (frequency ratio 1:2, in musical notation

the lowest pitches of the chords were A3, A4 and A5). Each chord

was produced with the grand-piano (piano 1) timbre of the Roland

Sound Canvas SC-50 synthesizer with built-in samples, and played

using the ENCORE software. The chords were edited by

CoolEdit and SoundForge programs to be balanced in the

loudness level and have the same duration (870 ms). The relatively

long duration for single piano chords was chosen to maximize the

emotional effects, which were studied separately [26]. The major

chords consisted of A, C#, E, A, C#, and as such were

characterized mostly by consonant intervals. The minor chords

were made of A, C, E, A, C, thus including the minor third

interval, considered in music theory as an imperfect consonance

[27,28]. The dissonant chords were made of A, Bb, G, Ab, C,

including a minor second, the interval considered as the most

dissonant in the literature [29,30,31], and several other dissonant

intervals.

Experimental conditions
The three experimental conditions included two n-back task

conditions of memorizing the octaves of chords, an easy 1-back

task (1B) and a difficult 2-back task (2B), in addition to a condition

of passive listening to stimuli without cognitive evaluation (PL).

After each stimulus, participants responded by pressing the left or

right button of a response pad, with their right index or middle

finger, respectively. Participants pressed the left button in the 1B

task when the octave of the chord matched that of the previous

trial, and in the 2B task when the octave matched the chord

presented two trials back. In all other trials and the PL condition

participants pressed the right button.

Image acquisition
Both functional and structural MRI images were acquired on a

Siemens Sonata 1.5T system using a birdcage head coil. T1-

weighted images were obtained for co-registration purposes with

an isotropic resolution of 16161 mm3 [MPRAGE: TR = 1900ms,

TE = 3.86ms, TI = 1100 ms, flip angle = 15u]. For functional

imaging, a T2*-weighted gradient echo echo-planar imaging

sequence was used [GE-EPI; TR = 3660 ms, TE = 40 ms, flip

angle = 90u], with an in-plane resolution of 3.563.5 mm2 and a

slice thickness of 4 mm. The entire brain and cerebellum were

covered using 36 axial slices (no gaps). A single functional volume

was acquired in 2760 ms, introducing a period of scanner silence

(900 ms; no gradient noise) during which the stimuli were

presented.

Experimental procedure
Participants received written and oral instructions of the

experimental conditions. Prior to the start of the experiment, they

practiced the WM tasks and button presses in the scanner room.

During practice we carefully observed and interacted with the

participants to make sure that they felt confident in performing the

tasks. Regarding the PL condition, participants were told to rest

their mind from the task while still pressing a button after each

stimulus. The chords were presented binaurally with MR-

compatible headphones (Commander XG, Resonance Technol-

ogy Inc.) and played at an intensity of approximately 80 dB,

individually adjusted, so that participants could clearly hear the

sounds and did not feel any related discomfort. In order to assure
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optimal perception of the sounds, stimulus presentation was

interleaved with image acquisition. The experimental instructions

(see below) were projected onto a screen at the foot of the MR

patient bed, which the subjects viewed via a mirror attached to the

head coil.

The experimental design is illustrated in Figure 1. The

experiment was divided into two sessions separated by a break

of 2 min, during which the participants remained quietly at rest in

the scanner but could move or close the eyes freely. A warning

sound readied the subjects for the next session. Each session

consisted of 18 blocks, each block defined by a task condition (PL,

1B or 2B) and a chord category (major, minor or dissonant); thus

there were nine types of blocks: 1. PL (major), 2. 1B (major), 3. 2B

(major), 4. PL (minor), 5. 1B (minor), 6. 2B (minor), 7. PL

(dissonant), 8. 1B (dissonant), 9. 2B (dissonant). Each type of block

was presented 4 times during the experiment in a counter-

balanced design. An instruction screen was shown for 12 sec

between the blocks to prepare the subject for the following task

(‘‘Passive Listening’’, ‘‘1-Back’’, or ‘‘2-Back’’). During each block

lasting 60 sec, 20 trials were presented, to which the subjects

responded according to the task while fixating on a central cross

on the screen. Each trial consisted of a sound presentation

(870 msec), followed by image acquisition (2760 msec) and a brief

silence (30 msec) before the next trial. Functional imaging lasted

approximately 54 minutes, anatomical imaging about 7 minutes,

resulting in a total time in the scanner of approximately one hour.

A questionnaire and a behavioural test followed the imaging

part. The participants rated the task difficulty level as: 1. (very

easy), 2. (easy), 3. (intermediate), 4. (difficult), and 5. (very difficult),

and their level of alertness was rated at four different points

(beginning, before break, after break and end) as alert, normal,

tired or sleepy. Their memory strategies were evaluated by

checking one or more of the following options: auditory rehearsal,

verbal rehearsal, visual imagery, somatosensory imagery, move-

ment, no specific strategy. In the behavioural test, participants

rated the emotional connotation of each stimulus (major, minor

and dissonant chords) on happy-sad and pleasant-unpleasant

scales. Each scale had 11 values, from 25 to +5, 25 being the

most negative rating and +5 the most positive rating, with zero

as ‘‘neutral’’. The chords were rated twice, presented in a

randomized sequence.

Behavioural data analysis
Statistical analysis of behavioural data was performed using the

R project for statistical computing (www.r-project.org). Three-way

repeated measures analysis of variance (ANOVA) was applied to

the log-transformed reaction time (RT) data, with group

membership as a between-groups factor, task condition and chord

category as within-participant factors, and participant treated as a

random effect. The test was implemented as a linear mixed-effects

model (R function lme), after averaging the reaction times of

individual participants within each experimental block. Accuracy

of task performance was measured as the ratio (r) of incorrect

responses over total (n) responses. The ratio was then transformed

using the following formula: r9 = 26pi6arcsin(p), where p =

1/(46n), if r = 0; p = r , if 0,r,1; p = (n21/4)/n, if r = 1. The

arcsine transformation homogenized the variance of the binomial

response variable (r). The transformed ratios (r9) were subjected to

the same statistical test (three-way repeated measures ANOVA) as

the log-transformed reaction times. The alpha-level used in all

analyses is 0.05.

Neuroimaging data analysis
All analysis of functional and anatomical MR data were carried

out using the FMRIB Software Library (FSL, version 3.2b),

Oxford Centre for Functional Magnetic Resonance Imaging of the

Brain, UK (fmrib.ox.ac.uk/fsl/). Non-brain tissue was removed

from the T1-weighted anatomical images using the Brain

Extraction Tool (BET) [32]. The MNI/ICBM-152 average brain

was used as the standard stereotaxic space template in group

analyses [33,34,35]. Each individual’s brain volume was co-

registered to the template using affine transformations (12 degrees

of freedom) estimated by FMRIB’s Linear Registration Tool,

FLIRT [36]. Functional data were processed, prior to normali-

zation to stereotaxic space, using FMRIB’s Expert Analysis Tool

(FEAT). During the experiment, 896 volumes were collected, of

which the first 5 volumes were discarded allowing T1 effects in the

signal to saturate. Since the scanning had continued during the

break between sessions there was no need to discard any images

from the second session. The functional volumes were realigned to

the midpoint of the experiment using rigid-body transformations

(MCFLIRT [37]). Spatial smoothing was performed using a low-

pass Gaussian filter with a FWHM of 8 mm. A piecewise linear

temporal high-pass filter (longest period passed: 805 s) was used to

remove low frequency components of the data. The GLM

implementation of FEAT was used for model fitting of

preprocessed data. The design matrix consisted of nine columns

representing each of the possible blocks: permutations of memory

load (2B, 1B or PL) and chord category (major, minor or

dissonant). All columns were convolved with the ‘‘canonical’’

double-gamma hemodynamic response function. Autocorrelations

in the model fit residuals were estimated and removed using the

FILM prewhitening step in FEAT [38]. First-level contrast images

between the 2B and 1B WM conditions were calculated separately

within each chord category: 2B (major) vs. 1B (major), 2B (minor)

vs. 1B (minor) and 2B (dissonant) vs. 1B (dissonant).

Group results were obtained with full mixed effects (ME)

modelling, thus allowing generalization to the participant

Figure 1. Experimental design. The experiment includes 36 blocks
divided into two sessions (ca. 26 min each). A block consists of 20 trials
and is defined by cognitive load (passive listening, 1B or 2B; indicated
by column height), and chord type (major, minor or dissonant;
indicated by color). The pitch height (low, medium or high) of each
stimulus within a block, which is the memory item in the WM tasks, is
indicated by line style. Experimental instructions are presented for
12 seconds between blocks on a screen viewed through a mirror. A
single fMRI volume is acquired in 2760 msec (shaded area), allowing the
stimuli (870 msec) to be presented during, and preceded by (30 msec),
scanner silence (TR = 3660 msec).
doi:10.1371/journal.pone.0011120.g001
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populations. In the present study, only the WM conditions were

included in the group-level analysis, i.e. the PL condition was

excluded. Higher level parameter estimates and the ME variance

were estimated implicitly within FEAT using FMRIB’s Local

Analysis of Mixed Effects (FLAME) [39,40]. The group mean 2B

vs. 1B contrast was defined as a t-test of non-zero mean, where

input contrast images were averaged across group, participant and

chord category (we initially tested a model with chord type as an

additional dependent variable; no effects of chord were found,

consistent with our earlier findings in the WM conditions [25,26]).

The group difference (musicians vs. non-musicians) 2B vs. 1B

contrast was similarly a t-test of differing means in the two groups.

To allow for different first-level variances between the groups, they

were modelled separately in FLAME. To control the type I error

rate, Gaussian random field theory was applied to assign corrected

significance levels to clusters of voxels surviving a threshold of

Z.3.0; all imaging results presented in this paper are based on a

cluster-level criterion of p,.05 [41,42]. Tables of local Z-score

maxima produced by FSL for each contrast were translated to

anatomical names using a structural parcellation of the MNI

single-subject brain [34], and the extended naming procedure

described in [43].

ROI-based regression analysis
To correlate task performance measures to the strength of brain

responses, we conducted a region-of-interest (ROI) analysis on

standard-space coordinates of group-dependently activated loca-

tions (cf. Results). A spherical ROI of 8 mm radius was created,

centered on each coordinate, and resampled to each subject’s

functional data space using transformations estimated during

intrasubject analysis. Mean percent BOLD signal changes were

then extracted for the WM conditions, and used as the dependent

measure in a regression of either the RT or ‘‘percent correct’’ rate

(PC = 12error rate) as the independent measure. Furthermore,

load level, chord type and group membership were entered as

categorical variables. Since none of the regions tested exhibited

significant modulation of the regression by chord type (data not

shown), this variable was removed from the final model, which

then included the full 3-way load-by-group-by-BOLD interaction.

Using this single model, we are able to test for significant

differences between the slopes estimated for all four combinations

of group and load. Regression analyses were performed in Stata

release 10.1 (StataCorp, College Station, TX, USA).

Results

Behavioural results
The effect of WM load on reaction time was significant,

F2,144 = 314.44, p,.0001. The grand mean 6 SEM values for the

PL, 1B and 2B conditions were 625.0621.7 ms, 867.6626.2 ms

and 1041.7631.8 ms, respectively (PL,1B: t59 = 10.94, p,.0001;

1B,2B: t59 = 12.01, p,.0001). Though no difference was

observed on average between groups, F1,18 = 0.89, p..05, the

load-by-group interaction was significant, F2,144 = 18.80, p,.0001,

illustrated in Figure 2A. The musicians responded faster than non-

musicians in both the 1B (790.9623.1 ms vs. 945.1643.6 ms;

t44 = 3.15, p,.005) and the 2B (954.1636.6 ms vs. 1130.26

47.5 ms; t54 = 2.94, p,.001) conditions. There was no difference

between groups in the PL condition (637.2625.1 ms vs.

612.6635.8 ms; t52 = 0.56, p..05). The dissonant chords were

associated with slightly faster responses (813.7632.8 ms) than

major (848.7634.2 ms) and minor (851.7637.5 ms) chords, but

the main effect of chord type was not significant (F2,144 = 2.59,

p = .078), and neither was the chord-by-group interaction

(F2,144 = 0.06, p..05). The remaining interaction terms were

likewise non-significant: load-by-group, F4,144 = 0.54, p..05, and

load-by-chord-by-group, F4,144 = 0.12, p..05.

The effect of WM load on response error rates, Figure 2B, was

predictably strong (F2,144 = 161.29, p,.0001), with the PL

condition error-free (0.060.0%), the 2B condition the most

error-prone (8.760.8%), and the 1B condition between the two

extremes (3.560.6%; PL,1B: t59 = 9.00, p,.0001; 1B,2B:

t59 = 8.16, p,.0001). As in the case of RT, a significant load-by-

group interaction was revealed for the error rates (F2,144 = 5.24,

p,.01). Non-musicians made significantly more errors in the 1B

condition than musicians, 5.361.0% vs. 1.660.3% (t52 = 3.51,

p,.001), and more errors also in the 2B condition, 10.461.4% vs.

7.160.8% (t51 = 1.27, p..05), but this difference did not reach

statistical significance. No main effects on the error rate were

found of either chord (F2,144 = 0.12, p..05) or group (F1,18 = 2.66,

p..05). The interaction terms load-by-chord (F4,144 = 0.01,

p..05), chord-by-group (F2,144 = 0.27, p..05) and load-by-

chord-by-group (F4,144 = 0.08, p..05), were all non-significant

Participants’ ratings of task difficulty levels, alertness levels and

employed task strategies revealed a similarity between the groups.

Regarding their experience of task difficulty, 90% of the

participants rated the 1B task as ‘‘very easy’’ or ‘‘easy’’ (the

remaining 2 participants, 1 musician and 1 non-musician, rated it

as ‘‘intermediate) and 86% of the participants rated the 2B task as

‘‘difficult’’ or ‘‘intermediate’’ (the remaining 3 participants, 1 non-

musician and 2 musicians, rated it as ‘‘very difficult’’). The ratings

were similar in the two groups and hence the task of memorizing

the octaves was apparently experienced subjectively as equally

feasible irrespective of musical competence (Figure 3B). The

reported levels of alertness during the course of the experiment

showed a development in alertness levels from alert to sleepy,

which was also similar between groups (Figure 3A). The relative

occurrence of the different task strategies was also similar in non-

musicians and musicians (Figure 3C). The strategies ‘‘somato-

sensory imagery’’, ‘‘movement’’ and ‘‘no certain strategy’’ were

not employed by any subjects. The majority, 8 musicians and 9

non-musicians, used several different strategies.

Functional imaging results
Subject motion during scanning was corrected for using

MCFLIRT [37], the output of which was used to calculate mean

voxel displacements for each volume relative to the reference

image and for each volume relative to the previously acquired

Figure 2. Effect of WM load on task performance measures as a
function of group. A) Reaction times (RTs) increase as a function of
load in both groups. In the WM conditions, the musicians respond faster
than the non-musicians. B) Error rates also increase with increasing load
in both groups. The musicians performed the WM tasks more accurately
than the non-musicians. Asterisks (*) indicate significant group
differences (p,.05).
doi:10.1371/journal.pone.0011120.g002
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volume (Dabs and Drel, respectively). The values (mean 6 SEM)

were: Dabs (non-musicians) = 1.046.10 mm, Dabs (musicians) =

1.206.09 mm, Drel (non-musicians) = .056.01 mm, and Drel

(musicians) = .066.01 mm. The realignment data were not used

in the subsequent GLM analysis, but manual inspection of the

motion plots did not indicate stimulus-correlated motion (data not

shown). Furthermore, in no subjects did the absolute or relative

displacements exceed 1.9 mm and 0.15 mm, respectively. There

were no statistically significant group differences between the

displacements.

The increased WM load in the 2B vs. 1B contrast manifested in

an across-groups increase in brain responses. Significant clusters

were localized bilaterally to the superior, middle and inferior

frontal gyri, to the superior and inferior parietal lobules, and to

precuneus, as illustrated in Figure 4 (red-orange colour scale) and

listed in Table 1. The inferior, middle and superior temporal gyri,

and orbital parts of the middle, inferior and superior frontal gyri

also evidenced increased neural activity, as did several areas in the

cerebellar hemispheres and vermis, the anterior/middle cingulate

gyrus, thalamus, caudate nucleus, putamen, and insula.

Musicians responded significantly more strongly than non-

musicians to increased WM-load in a subset of the brain areas

reported in the across-groups contrast, see Table 2 and Figure 4

(green colour scale). In no brain areas did non-musicians respond

significantly more strongly than musicians. The increased

responses in musicians were right-lateralized to the dorsomedial,

frontopolar and orbital PFC regions and to the superior and

inferior lateral parietal areas. Right-lateralized responses also

appeared in the insula and putamen. We found bilateral responses

in the posterior dorsal PFC (including medial parts of BA 6) and

the anterior cingulate gyrus, and a left-sided response in the

precentral gyrus. Neither the main effect of WM load nor the load-

by-group interaction was modulated by chord type (data not

shown); chord type information was excluded from the model on

which the present results are based.

ROI-based regression results
In order to link the independent findings of enhanced

performance and elevated BOLD signals in musicians, as

compared to non-musicians, we extracted the percent BOLD

signal change values for the WM task conditions from the group-

dependently activated locations shown in Table 2. We used

spherical ROIs with 8 mm radius, and performed the linear

regression analysis described in Methods for each region

separately. We focused attention on the slopes of the regression

lines estimated for the load-by-group-by-BOLD model, i.e. the

degree to which the brain-derived measure BOLD was correlated

with the behavioural measures of percent correct responses and

RT.

The most consistent finding is that of a group difference in the

measure linking successful task performance (PC) to BOLD signal

strength in the 2B condition. Here, the slope of the musicians’

regression line is more positive than the non-musicians, a tendency

that reaches significance in the right putamen, the right

supplementary motor cortex, the right insula and the right middle

cingulate gyrus (Figure 5). We report all regression slopes and their

group differences, for both WM task conditions, in Table 3. Each

slope and difference value in Table 3 was tested against being zero,

significant deviations from which are highlighted in bold typeface

(p,.05). To emphasize the tendencies across brain regions, we

calculated the median values for the slopes and their group

differences, and applied the Wilcoxon signed-rank test to

determine whether these medians were non-zero. In the 2B

condition, the median correctness-to-BOLD slope was: signifi-

cantly positive in musicians (7.21, p,.01), and significantly

negative in non-musicians (212.76, p,.05). Furthermore, the

median group difference of slope was significantly larger than zero

(17.36, p,.05). The results for the 1B task condition followed the

same pattern, though they remained non-significant (cf. Table 3).

No significant correlations were found between RT and the

magnitude of the BOLD signal (data not shown).

Discussion

In the current study, the influence of individual differences on

WM was studied in a comparison of musicians and non-musicians

who memorized musical chords in an easy (1B) and a difficult (2B)

WM task. The behavioural data revealed that musicians

performed better than non-musicians in the WM tasks, although

the two groups rated the difficulty level of the tasks similarly. The

musicians also had higher increases in BOLD brain responses than

non-musicians as a function of WM load increase. While the load-

dependent brain responses across both groups were bilateral (as in

previous n-back WM studies [44,45,46,47,48]), this differential

Figure 3. Subjective ratings. A) Task-difficulty, B) Alertness, and C) Employed task strategies. There were no marked differences between
musicians (m) and non-musicians (n-m) in any of these subjective measures.
doi:10.1371/journal.pone.0011120.g003
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response pattern was mainly right-lateralized. Moreover, in the 2B

task, musicians had a more positive correlation between WM task

performance and BOLD signal amplitude, than non-musicians.

The across-groups results successfully reproduced the known

relationship between working memory load and task performance

[49,50,51] by showing that an increased WM-load leads to increases

Figure 4. Working memory load-dependent brain responses differ between musicians and non-musicians. Regions in which the BOLD
signal is significantly stronger during the 2B than the 1B task condition are shown in red/orange. In addition to this across-groups result, musicians’
differential (2B vs. 1B) brain responses were significantly larger than non-musicians’ in a subset of these regions shown in green. Both statistical maps
are thresholded at Z.3.0 and corrected for multiple comparison at the cluster level (p,.05). The functional imaging results are overlaid on the MNI
single-subject brain, which is displayed in the neurological orientation (left is left). The standard MNI space Z-coordinates (in mm) of the 8 axial slices
are indicated in the ‘‘Z-pos’’ table.
doi:10.1371/journal.pone.0011120.g004
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in both RT and the number of erroneous responses. The pattern of

the load-dependent incremental brain activity included frequently

reported ‘‘WM structures’’, notably the PFC and posterior parietal

cortex. Previous studies of visual verbal [44,46,52,53], visual spatial

[45], auditory spatial [47] and auditory verbal [54] n-back tasks all

revealed load-dependent responses in the middle frontal gyrus

(MFG), approximately corresponding to BAs 9, 46, and 10, superior

parietal lobule (BA 7), inferior parietal lobule (BAs 39, 40) and

posterior dorsal PFC (BAs 6, 8). The cerebellum also previously

displayed load-dependent incremental activity in the few n-back

studies that included this structure in the field of view [46,53].

Recent theories relate the cerebellum to optimization of stimulus

perception and manipulation during increased cognitive load [55].

Findings also suggest that decreased cerebellar activity is charac-

teristic of skill learning [56,57]. In our study there was no differences

between the groups in the cerebellar responses, although the theory

outlined above could suggest decreases in musicians/increases in

non-musicians, due to decreased/increased recruitment of cerebel-

lar optimization processes. The thalamus was similarly character-

ized by across-groups increased response, while no group difference

was found. The thalamus was, to our knowledge not previously

observed to respond to increasing WM load. However, thalamus

activity was frequently observed during perception and cognition

and has been functionally linked to attention [58,59,60], specifically

the alerting component [61]. Since attention may increase during a

demanding, compared to a less demanding, WM task, this could

Table 1. WM load-dependently activated regions: across groups average of the 2B vs. 1B contrast.

Peak Coordinates (MNI) Peak Coordinates (MNI)

Brain region Z score x y z Z score x y z

Angular gyrus L 8.88 252 250 34 R 15.9 34 258 50

Inferior parietal gyrus L 15.5 236 256 52 R 12.2 36 254 48

Supplementary motor area L 12.9 28 10 50 R 11.1 2 14 50

Superior parietal gyrus – – – – R 12.1 30 270 54

Triangular inferior frontal gyrus L 9.7 242 42 0 R 11.5 44 30 24

Middle frontal gyrus L 11.4 240 50 2 R 11.1 30 18 44

Orbital middle frontal gyrus L 11.4 242 48 0 R 8.06 26 52 24

Superior frontal gyrus L 11.3 230 0 66 – – – –

Operular inferior frontal gyrus L 9.51 244 10 26 R 10.8 44 16 30

Precentral gyrus L 10.6 234 24 64 R 8.74 40 4 44

Inferior temporal gyrus L 7.12 256 260 210 R 10.2 60 244 212

Precuneus L 9.45 26 268 46 R 10.1 4 266 46

Cerebellum, Crus1 L 10.1 230 264 232 R 9.37 32 262 230

Middle cingulate gyrus – – – – R 9.97 10 16 46

Cerebellum, Crus2 L 9.91 234 264 240 R 8.62 12 278 230

Cerebellum, 8 L 7.21 238 252 254 R 9.4 36 266 254

Middle occipital gyrus L 9.29 230 272 40 – – – –

Medial superior frontal gyrus L 9.01 0 26 40 – – – –

Putamen L 8.96 216 12 0 R 8.26 20 16 0

Insula L 7.64 242 16 6 R 8.68 34 28 22

Cerebellum, 7b – – – – R 8.63 26 278 252

Anterior cingulate gyrus L 8.1 26 30 32 R 5.76 12 28 22

Caudate nucleus L 7.79 210 8 10 R 6.55 14 26 20

Thalamus L 7.71 210 28 4 R 7.48 18 214 12

Orbital inferior frontal gyrus – – – – R 7.31 42 46 24

Inferior occipital gyrus L 6.87 254 266 212 – – – –

Cerebellum, 9 L 6.16 222 240 242 R 6.59 8 256 254

Cerebellum, 10 L 6.29 224 236 240 – – – –

Middle temporal gyrus L 6.08 248 252 8 – – – –

Orbital superior frontal gyrus L 6.04 224 50 26 – – – –

Cerebellum, 6 – – – – R 5.96 6 268 224

Vermis, 4/5 – – – – R 5.89 2 252 224

Superior temporal gyrus L 4.02 264 248 22 – – – –

Vermis, 9 – – – – R 3.82 0 256 236

Vermis, 8 – – – – R 3.49 0 264 236

Nomenclature according to Tzourio-Mazoyer et al. (2002). Letters ‘‘L’’ and ‘‘R’’ refer to left and right hemisphere, respectively.
doi:10.1371/journal.pone.0011120.t001
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explain the current results. Other across-groups load-dependently

activated brain areas include the cingulate gyrus [45,47,52], insula

[44,45,47], and precuneus [45,47,62].

Previous attempts to systematically relate individual differences

in working memory to the patterns of brain activity have led to

equivocal results, as both increases and decreases in activity in

similar brain regions were observed in relation to improved,

Table 2. Regions in which WM load-dependent activations (2B vs. 1B) were stronger in musicians than non-musicians.

Peak Coordinates (MNI) Peak Coordinates (MNI)

Brain region Z score x y z Z score x y z

Precentral gyrus L 6.49 236 8 34 – – – –

Triangular inferior frontal gyrus – – – – R 5.35 50 22 30

Middle frontal gyrus – – – – R 5.19 36 44 10

Orbital middle fontal gyrus – – – – R 5.03 30 60 24

Middle cingulate gyrus – – – – R 4.98 12 20 40

Orbital inferior frontal gyrus – – – – R 4.55 36 40 28

Supplementary motor area L 4.42 26 8 56 R 3.48 4 12 52

Inferior parietal gyrus – – – – R 4.09 38 244 42

Anterior cingulate gyrus L 3.98 22 30 32 R 4.14 8 32 22

Angular gyrus – – – – R 4 34 258 50

Insula – – – – R 3.68 34 20 14

Putamen – – – – R 3.62 20 16 24

Superior parietal gyrus – – – – R 3.46 30 270 58

Nomenclature according to Tzourio-Mazoyer et al. (2002). Letters ‘‘L’’ and ‘‘R’’ refer to left and right hemisphere, respectively.
doi:10.1371/journal.pone.0011120.t002

Figure 5. The strength of linear correlation between percent correct responses and the BOLD response differs significantly
between musicians and non-musicians in the 2B task. The four regions illustrated are those that individually exhibit a significantly more
positive linear slope in musicians than non-musicians in the 2B condition. This tendency, which is also present in the 1B condition, shows that by
recruiting more brain resources during a WM task, musicians are able to sustain a higher performance level in face of the elevated cognitive demands.
The green dots in each plot are measurements from individual subjects, and the orange line is the corresponding best-fitting regression line. NB: A
single model was fit that was flexible enough to allow all four slopes to differ (see Methods for details); no R2-values are therefore given for the
individual slopes. See Table 3 for a full account of the results and general tendencies for all regions.
doi:10.1371/journal.pone.0011120.g005
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impaired or even unchanged performance. In one study, a low

error rate in a WM task related to increased activity in the left

lateral PFC and parietal cortex [17]. In another, increased activity

in the middle frontal gyrus and parietal cortices appeared to result

from long-term training, independently of changes in performance

[18]. However, local activity decreases in the lateral PFC and

additional regions in association with WM training and improved

performance was also reported [63], and it was suggested that

activity increases in the dorsal PFC represents the effort invested in

task performance [64]. On the other hand, it has been posited that

increases in activity during repetition of the same WM task

specifically relate to the prevention of automation by the demand

to keep trial specific information active [18]. These studies suggest

that increased activity occurs in areas that are critical to cognitive

control [17]. The results of our study showed an effect of musical

competence which was notably one-way: the magnitude of the

BOLD responses was enhanced in musicians compared to non-

musicians, whereas no enhanced responses were found in non-

musicians compared to musicians. Hence our results show that

enhanced WM performance is accompanied by enhanced brain

activity. This is further in accordance with brain imaging studies in

the musical domain that reported superior performance as well as

increased brain activity in musicians compared to non-musicians.

By comparing WM studies with respect to the time course of

changes during training, it has been noted that activity decreases

in the lateral PFC and other regions tend to be registered in

relation to short-term training while increases seem to relate to

long-term training [15]. Hence this would imply that different

processes are pronounced at different times during the period of

training, which would give rise to a variation in the observed

patterns of brain activity. The activity increases observed in the

current study may be viewed in the perspective of long-term

training in musicians.

The proposition that musicians’ superior performance depends

on the magnitude of load-dependent BOLD responses receives

supportive evidence from the ROI-based regression analysis. The

assumed linear relationship between BOLD in the chosen ROIs

and percent correct responses during the 2B task, was consistently

more positive in musicians than in non-musicians (Table 3 and

Figure 5), a tendency that reached significance in the right

putamen, right insula, right supplementary motor cortex and the

right middle cingulate gyrus. If, as we propose, the elevated BOLD

signals during the high WM load (2B) task are interpreted as a

manifestation of the participants’ brains allocating more resources

to the execution of the task, then the less negative BOLD-to-

correctness relationship in musicians than non-musicians indicates

that as a consequence of their efforts, musicians’ performance

deteriorated less. In other words, by allocating more resources, as

reflected by the magnitude of the BOLD signal, to task execution,

the musicians were better able to uphold task performance than

non-musicians. Indeed, this interpretation is corroborated by the

higher behavioural performance measures in musicians, than in

non-musicians.

The group difference in the slope of the regression did not reach

significance in the 1B task. This may be related to the observation

that the 1B task was generally easy for all subjects, measured both

subjectively (individual reports) and objectively (performance). The

small spread of data points this implies will, independent of other

Table 3. Summary of the ROI-based linear regression analysis of performance (Percent Correct) against BOLD signal amplitude,
categorized by WM load (1B/2B) and group (musician/non-musician).

1B 2B

Region-of-interest, ROI mus non-mus diff. mus non-mus diff.

Angular gyrus R 1.60 14.70 213.10 7.21 20.04 212.83

Anterior cingulate gyrus L 21.71 22.37 0.66 8.19 212.76 20.95

Anterior cingulate gyrus R 27.87 276.49 68.63 15.52 223.25 38.78

Inferior parietal gyrus R 3.80 12.45 28.65 9.71 18.13 28.42

Insula R 24.50 254.93 50.43 6.32 244.06 50.38

Middle cingulate gyrus R 29.84 256.60 46.76 25.62 294.26 119.88

Middle frontal gyrus R 21.15 15.51 216.66 24.79 6.87 211.65

Orbital inferior frontal gyrus R 26.04 23.83 22.21 23.18 215.01 11.83

Orbital middle fontal gyrus R 20.22 211.03 10.81 20.73 28.00 7.27

Precentral gyrus L 0.00 22.04 222.05 5.82 1.24 4.58

Putamen R 29.82 246.61 36.79 20.62 234.62 55.25

Superior parietal gyrus R 20.72 210.95 10.23 4.94 221.66 26.60

Supplementary motor area L 4.27 22.73 7.00 12.87 24.50 17.37

Supplementary motor area R 0.23 23.50 3.73 12.23 220.20 32.43

Triangular inferior frontal gyrus R 21.30 3.59 24.89 5.46 26.76 12.22

mus non-mus diff. mus non-mus diff.

Median slope or difference 21.15 23.50 3.73 7.21 212.76 17.37

P(H0: slope or difference = = 0) 0.08 0.31 0.31 0.00 0.03 0.01

The values above are the slopes of the estimated regression lines and their group differences for each region. Significantly non-zero slopes/differences are highlighted
in bold typeface (p,.05). The median values, across ROIs, for each slope/difference are given separately, along with the p-values for the null-hypothesis (H0) of median
zero (Wilcoxon signed-rank test). See text for a detailed description of the ROI definition, the regression model applied, and for an analysis of the results. Letters ‘‘L’’ and
‘‘R refer to the left and right hemisphere, respectively; see also Table 2.
doi:10.1371/journal.pone.0011120.t003
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considerations, lead to wider confidence intervals of the estimated

linear regression parameters. That there were only two WM task

difficulty levels, one rather easy and one rather difficult may be

considered a weakness of the current experimental design that was

not designed with regression analysis in mind. More difficulty

levels and more subjects could potentially confirm the reported

tendencies.

The enhanced WM performance of musicians in our study

could involve both music-specific and more general cognitive

processes. A previous study found that during a pitch memory task

(contrasted with a motor control task), musicians had greater

activations of the right planum temporale, right supramarginal

gyrus, and superior parietal lobules, than non-musicians [65].

Noteworthy, this differential brain activity was present even when

participants were matched on performance, suggesting that

enhanced processing in these regions in musicians could be

automatic. It was also found that (in a group of non-musicians)

pitch WM training over a period of five days leads to enhanced

responses in superior temporal brain regions including Heschl’s

gyrus [66].

Increased WM load in the present study did not enhance

neuronal responses in auditory sensory regions. This may partly be

due to the nature of the task, which did not involve fine-grained

pitch comparisons such as those employed by Gaab et al. (2003),

and hence there was little need for musicians to use their extensive

music-specific processing capabilities. Another influential factor

could be the nature of the contrast (2B vs. 1B) which may not be

optimal to elicit activity changes in sensory cortical regions [47].

In the currently employed WM task musicians may on the other

hand have benefited from superior cognitive skills that did not

relate to musical stimulus processing per se [11,14]. The nature of

the n-back task partly supports this interpretation, since the

increasing need for control during the temporary storage of

information in correct serial order in the n-back task, especially

when n.1, has been linked to the MFG [52,67], and activity in

the lateral PFC regions was more generally linked to the need for

cognitive control during demanding tasks [16]. Cognitive control

mediated by lateral PFC regions was previously mentioned as the

mediator of superior task performance [17,18]. We suggest that

cognitive control may be a key to a unified interpretation of

findings from studies of individual differences in an attempt to

explain the variation in WM responses as a function of task

performance. The hypothesis that musicians recruit more

resources for cognitive control is also supported by our observation

of greater activity in musicians in the anterior cingulate cortex

(ACC), which, together with bordering sections of the medial PFC,

has been assigned a central role in monitoring response conflicts

[21], and predicting error likelihood [22]. Specifically, the

magnitude of activity was found to predict both greater PFC

activity and adjustments in behavior [19,20], hence supporting a

role of the ACC in the engagement of cognitive control. Cognitive

control also serves to keep active in mind the rules and goals that

are relevant in a certain context, functions that are associated with

lateral PFC regions [68]. The anterior PFC (BA 10), which also

was more active in musicians, may be related to the integration of

subgoals during WM [69], and the distinction of target from non-

target stimuli during recognition [70]. Enhanced load-dependent

responses in musicians were also found in the posterior dorsal PFC

(approximately BA 6). This observation may be related to recent

findings that link this region to the ordering of stimuli in a

sequence [23] and the binding of individual stimulus units into a

sequence [24], processes that are essential in updating the stimulus

sequence and assigning temporal order in the n-back task.

Maintenance of ordinal position, an essential component of

WM, may also rely on verbal coding [71]. The greater activity in

the right hemisphere triangular part of the inferior frontal lobe (BA

45) in musicians is intriguing. Since verbal reports did not reveal

any group differences in the strategies used to perform the n-back

task it could indicate enhanced automatic processing of musical

syntax [72], potentially influencing the strength of the WM

representations.

According to one interpretation, cognitive benefits in musicians

that appear independent of their highly developed auditory

sensory capacity may have developed during musical training

and transfer to other cognitive domains. A recent long-term study

clearly shows that non-musical enhancement in cognitive tasks can

result from musical training-induced brain plasticity [10]. By

following both the structural brain development and the musical

and general cognitive development of children who received music

lessons it was found that whereas after 15 months there was no

evidence of transfer of cognitive skills to non-musical domains

[73], after at least three years of training children who received

music lessons performed better in both vocabulary and nonverbal

reasoning skills [10]. Hence, the length of the training period most

likely indicates the appearance of changes in brain activity. The

present results do not constitute a basis for causal inferences, as

superior cognitive control could be present from birth to a higher

extent in musicians than in non-musicians, and hence may partly

have primed musicians in their successful choice of career.

However, it makes some sense to assume that musical skills,

rather than a well-developed ability to focus, could be the primary

determinant in musicians’ choice of career. Hence, we tentatively

suggest that the development of cognitive control may benefit from

focused musical training, and that this cognitive benefit is reflected

in enhanced brain activity during demanding cognitive tasks of

any type.

The right-lateralization of the differential load-dependent

responses in musicians observed in the current study represents

a new addition to our knowledge of lateralization patterns during

processing of musical sound stimuli, since several studies of musical

competence and brain activity documented a relative shift to the

left hemisphere in musicians compared to non-musicians during

tasks requiring melody recognition [74], spectral musical tasks

[75,76,77], passive listening [78] and rhythm perception [79].

However, these lateralization shifts in music experts were mainly

explained in terms of the neural processing of complex musical

sound features in regions including the planum temporale, the

superior temporal gyrus and PFC. The latter area was specifically

associated with the processing of musical rules and violations of

conventional chord successions [72,80,81]. The left-lateralization

observed in musicians was related to an increased analytical

approach representative of tasks that require special musical skills

[82], including the relative left-lateralization of responses during

pitch processing in planum temporale in individuals with absolute

pitch [78,83]. On the other hand, processing of pitch-related

aspects of musical sounds consistently was linked to predominantly

right-lateralized temporal and prefrontal networks in the brain,

based on lesion studies [84,85,86,87,88,89,90,91] and human

brain imaging studies [92,93]. The minimization of music-specific

processing demands in the present study could be a main factor

influencing the observed right-lateralization of WM processing of

musical pitch. As most comparative studies that investigated the

lateralization of music processing in the brain relied on sensory

abilities to recognize and identify complex musical sounds, the

interaction between stimulus properties, musical competence, and

processing requirements needs further investigation.

In summary, the results of the current study suggest that

musicians are capable of recruiting more brain resources to sustain
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cognitive control during a WM task with musical chords than are

non-musicians, and in doing so are able to sustain a higher

performance level despite the elevated cognitive demands. There

were no strong indications in our results that music-specific

processes played a role in the superior performance of musicians,

hence supporting previous evidence that cognitive control may be

generally enhanced in musicians. Superior cognitive control could

represent a skill that is established during demanding musical

training and transferred to other cognitive domains. This finding

bears important implications for the use of music to stimulate

cognition, such as the ability to focus in school-age children.

Author Contributions

Conceived and designed the experiments: KJP SC. Performed the

experiments: KJP EB AK. Analyzed the data: KJP CJB. Contributed

reagents/materials/analysis tools: AK JK. Wrote the paper: KJP EB CJB

AK AG SC. Taught the 1st author to run the fMRI data collection: AK.

Taught 1st and 3rd authors to analyze the data: AK. Main supervisor and

employer of 1st author: AG.

References

1. Gaab N, Schlaug G (2003) Musicians differ from nonmusicians in brain

activation despite performance matching. Ann N Y Acad Sci 999: 385–388.

2. Koelsch S, Schroger E, Tervaniemi M (1999) Superior pre-attentive auditory

processing in musicians. Neuroreport 10: 1309–1313.
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