
Host Factors Required for Modulation of Phagosome
Biogenesis and Proliferation of Francisella tularensis
within the Cytosol
Christine Akimana1., Souhaila Al-Khodor1., Yousef Abu Kwaik1,2*

1 Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America, 2 Department of Biology,

University of Louisville, Louisville, Kentucky, United States of America

Abstract

Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by
arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella,
Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome
and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required
for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells.
However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known.
We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived
cells. Screening a library of ,21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial
proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors,
the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication
in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or
phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required
for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the
autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data
suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic
phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate
deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology
and patho-evolution to infect mammals.
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Introduction

Francisella tularensis is a Gram-negative facultative intracellular

zoonotic bacterium that infects a broad range of small animals and

causes tularemia [1,2]. F. tularensis is classified into four closely

related subspecies: tularensis, holarctica, mediasiatica and novicida

[1,2,3,4]. Despite its attenuation in humans, subspecies novicida is

trafficked and replicates within macrophages similar to the most

virulent subspecies [1,5,6]

Humans become infected with F. tularensis through contact with

infected animal tissues, ingestion of contaminated food or water,

inhalation of contaminated aerosols, and by arthropods, such as

ticks, flies, mosquitoes, deer fly, and horsefly [1,7], where the

organism is present in the feces and not in the saliva of the

arthropod vector [8]. Although arthropod transmission of F.

tularensis to humans remains a concern worldwide [9], very little is

known about the interaction of F. tularensis with the arthropod

vectors.

Upon transmission to humans, F. tularensis is engulfed by

macrophages, where the F. tularensis-containing phagosome (FCP)

matures into an acidified late endosome-like phagosome with

limited fusion to the lysosomes [1,10,11,12,13], followed by rapid

bacterial escape into the cytosol within 30-60 min post-infection

[10,12,14,15,16]. Various genes within the F. tularensis pathoge-

nicity island (FPI) [17], such as iglC, are required for modulation of

phagosome biogenesis and bacterial escape into the cytosol

[1,11,12,18,19]. In mouse bone marrow-derived macrophages

(BMM), F. tularensis re-enter the endocytic compartment within

,20hrs of infection, via an autophagy-like process [10]. It is not

known whether interaction of F. tularensis with autophagy also

occurs in human-derived cells.

Several arthropod vector models for Francisella such as Galleria

mellonella [20], D. melanogaster [1,21], and mosquitoes [6] have been

explored. Within D. melanogaster-derived cells, the FCP matures to

a late endosome-like phagosome followed by bacterial escape into

the cytosol, similar to mammalian cells [1]. Recent studies have
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established the genetically tractable model system, D. melanogaster,

as an arthropod vector model system for F. tularensis [1,21]. F.

tularensis proliferates in adult flies and in D. melanogaster- and

mosquitoe–derived cells [1,21].

At least 90 loci of F. tularensis are required for evasion of

lysosomal fusion and bacterial escape into the cytosol, and 34

bacterial loci are required for proliferation in the cytosol of human

macrophages [22]. There are conserved as well as host species-

specific genes of F. tularensis required for phagosomal escape and

intracellular proliferation in human macrophages and D. melano-

gaster-derived cells [22,23]. Interestingly, about 50% of the

bacterial loci required for replication in D. melanogaster-derived

cells are also required for proliferation in adult fruit flies [23]. The

FPI genes, as well as the mglA global regulator, are required for

modulation of phagosome biogenesis and escape into the cytosol of

human-derived and D. melanogaster-derived cells [22,23]. There-

fore, some F. tularensis factors required for virulence in mammals

are also required for virulence in the arthropod model system, but

there are distinct molecular differences utilized by F. tularensis to

exploit the two hosts [22,23].

D. melanogaster S2 cells are macrophage-like cells that have been

exploited to identify host factors that interact with several

important pathogens [24,25,26,27,28,29,30,31]. Since no arthro-

pod or mammalian host factors are known to be required for

intracellular growth of F. tularensis, we performed a genome-wide

D. melanogaster RNAi screen to identify arthropod factors required

for intracellular proliferation of Francisella. Our data show that 186

RNAi targets suppressed intracellular proliferation by F. tularensis.

We silenced 12 mammalian homologues by RNAi and identified

nine arthropod-specific factors and three common host species

factors, PI4KCA, USP22, and CDC27 that were also required for

replication in human cells. The PI4KCA and USP22 factors are

required for cytosolic proliferation, while CDC27 is required for

evasion of lysosomal fusion and phagosomal escape. Our approach

has identified arthropod vector-specific factors as well as a few

conserved mammalian factors required for modulation of

phagosome biogenesis and bacterial escape into cytosol by F.

tularensis.

Results

D. melanogaster RNAi screen to identify host factors
required for infection by F. tularensis

There are conserved as well as host species-specific genes of F.

tularensis required for phagosomal escape and intracellular prolifer-

ation in human macrophages and D. melanogaster-derived cells

[22,23]. To identify arthropod host factors involved in intracellular

proliferation of F. tularensis, we developed a GFP fluorescence plate

reader-based high throughput RNAi screen in D. melanogaster –

derived cells (Fig. 1A). For the high throughput primary genome-

wide screen, ,21,300 genes were targeted by RNAi in S2R+ cells

that were infected with GFP-expressing F. tularensis for 2 h at MOI

of 10, followed by killing of extracellular bacteria by gentamicin.

The intensity of GFP fluorescence was measured at 4 days post-

infection. Duplicate plates were processed side by side and RNAi

targets that suppressed intracellular bacterial proliferation were

considered hits if similar results were obtained in both plates

(Fig. 1A). To score the strength of suppression of intracellular

bacterial proliferation (down phenotype), the Z-scores below 22,

21.2, and 20.75 were considered as strong, medium, and weak

effects, respectively (See experimental procedures). To score the

strength of enhanced intracellular bacterial proliferation (up

phenotype), Z-scores above 3 and 2 were considered as strong

and medium effects, respectively (see experimental procedures).

Internal controls in each plate included thread, which is an RNAi

target that affects cell viability. Another internal control targeting an

arbitrary gfp (not related to bacteria or cells) was included to

normalize all raw data (Fig. 2). Overall, 456 RNAi targets that

Figure 1. D. melanogaster RNAi screen and identification of host factors required for proliferation of F. tularensis. (A) Genome-wide
screen design. Procedural outline for the screen including RNAi treatment, infection, and identification of hits from a z-score heat map. (B) Functional
categories of RNAi targets that decreased intracellular proliferation of F. tularensis in the secondary screen and (C) functional categories of targets that
were also identified to be required for intracellular proliferation of L. monocytogenes, Mycobacterium, or Chlamydia in the secondary screen. The
number of host factors within each functional category in panels B and C are shown.
doi:10.1371/journal.pone.0011025.g001

Host-Francisella Interaction

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e11025



affected intracellular proliferation of F. tularensis were identified in

the primary screen (data not shown). We re-tested the identified

targets after exclusion of genes that affect host viability and

transcription/translational processes [32]. We also included a list of

23 RNAi targets (see materials and methods) not identified in our

primary screen, but which have been shown in other D. melanogaster

RNAi screens to suppress the infection by Mycobacterium, Chlamydia,

and L. monocytogenes [26,29,30]. Overall, 345 RNAi targets were

retested at least 4 times, and a total of at least 186 RNAi targets

suppressed intracellular proliferation of F. tularensis, consistently and

reproducibly (Table S1, down phenotype), while 20 RNAi species

were confirmed to enhance intracellular proliferation of F. tularensis

(Table S1, up phenotype). Using trypan blue exclusion, we

confirmed that all the RNAi targets that suppressed or enhanced

intracellular proliferation in the secondary screen did not affect host

cell viability. The 186 genes confirmed in the secondary screen to

suppress intracellular proliferation were classified into 12 functional

categories, predicted according to their annotation on the flybase

website (Table S1). These include unknown (58 genes; 31%),

transcription/translation (5 genes; 3%), miscellaneous (28 genes,

15%), metabolism (14 genes; 8%), signal transduction (26 genes;

14%), proteolysis (10 genes; 5%), cytoskeleton (9 genes; 5%), cell

cycle (5 genes; 3%), defense response (11 genes; 6%), transport (4

genes; 2%), vesicular trafficking (12 genes; 6%), and phagocytosis (3

genes; 2%) (Fig 1B, Table S1). Only RNAi targets that affected

proliferation of F. tularensis in at least 3 out of 4 independent

experiments are shown (Fig 1B, Table S1). Immunofluorescence

examination of the infection of the RNAi-treated cells confirmed

suppression of intracellular proliferation, compared to the GFP

control (Fig. 2B). Comparing our screen to the L. monocytogenes [30],

Mycobacterium [26], and Chlamydia [29] screens, we identified 23

genes that were required for the intracellular infection of other

intracellular pathogens (Fig. 1C and Table S1), indicating that few

common host targets are required for infection by other intracellular

pathogens. Interestingly, 10 of these common host genes were

involved in vesicular trafficking, which is consistent with the

Figure 2. Representative host factors required for intracellular growth of F. tularensis. S2R+ cells were treated with RNAi targeting gfp, an
arbitrary negative control, or the indicated representative RNAi and infected with F. tularensis expressing GFP. (A) At 4 days post-infection, the
fluorescence intensity (F.I.) of F. tularensis GFP was measured. The GFP-expressing mglA mutant that is severely defective in intracellular proliferation
was used as a control. Results of representative genes were obtained in two independent experiments, each with up to 4 wells. Asterisk indicates
RNAi that produced a statistically significant decrease in F. tularensis GFP fluorescence intensity versus control RNAi, as described in materials and
methods. Error bars represent standard error of the mean. (B) Representative RNAi-treated cells were fixed and stained with Hoechst dye (blue) and
bacteria were labeled with antibodies (red) at 24 h post-infection.
doi:10.1371/journal.pone.0011025.g002
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prediction that various intracellular pathogens may utilize some

conserved mechanisms of manipulating the vesicular trafficking

pathways.

Mammalian host factors required for intracellular
replication of F. tularensis

Although we predicted that the majority of the identified

arthropod factors to be host species-specific, we hypothesized that

few of the human homologues of the arthropod host factors may

also be necessary for the intracellular replication of F. tularensis

within human cells. Therefore, from the primary and secondary

RNAi screens, we selected a group of 12 genes encoding proteins

with different functional categories to be silenced in human cells.

Six of the selected genes were identified in the primary screen only,

while the other 6 were identified in both screens. The selection

criteria of this group of genes were based on the existence of

human homologues and on the major role of these genes in

intracellular bacterial replication within D. melanogaster cells in the

primary and secondary screens (Table S1, marked by an *). Since

F. tularensis infects both phagocytic and non-phagocytic cells [33],

we performed silencing in HEK293T cells, due to the high level of

efficiency for RNAi silencing in these cells. Importantly, we have

recently shown that evasion of lysosomal fusion and escape of F.

tularensis into the cytosol in HEK293T cells is indistinguishable

from human monocytes-derived macrophages (Al-Khodor et al,

unpublished data). Cell viability was determined by trypan blue

exclusion, and none of the RNAi targets used affected viability

compared to the negative RNAi control or mock-treated cells.

Western blot analysis confirmed all the 12 RNAi target genes were

effectively and specifically silenced within 48 h by the respective

specific RNAi (Fig. 3B, 4B, and data not shown). The data showed

that nine of the RNAi targets tested had no detectable effect on

intracellular proliferation, despite their effective silencing by the

specific RNAi used (data not shown). Silencing of mammalian

ubiquitin-specific peptidase USP22, ubiquitin ligase CDC27, and

the PI4 kinase PI4KCA had temporal and spatial effects on

intracellular proliferation. The data showed that at 8 and 24 h

post-infection (Fig. 3), specific silencing of USP22 and CDC27

inhibited bacterial replication throughout the intracellular infec-

tion period, compared to the negative control RNAi-treated or

untreated cells (Fig. 3A). Depending on the MOI, we considered

cells harboring 6–15 bacteria after 8 h of infection and more than

25 bacteria after 24 h to reflect the normal WT levels of

replication. At 8 h post infection, only ,20% of the USP22-

and CDC27-silenced infected cells showed normal levels of

replication. In contrast, the WT strain proliferated in most cells

Figure 3. Suppression of intracellular replication of F. tularensis within CDC27 and USP22 RNAi-silenced HEK293T cells. A.
Representative microscopy images of HEK293T cells at 8 h after infection by F. tularensis. HEK293T cells were either left untreated or treated with the
RNAi negative control or the corresponding RNAi for USP22 or CDC27 for 48 h before infection, then infected with MOI of 10 by the WT strain U112
for 1 hr, followed with 1 hr gentamicin and additional 6 h of incubation for a total of 8 h. B. Western blot results confirming specific gene silencing.
Membranes were blotted with specific antibodies against USP22 or CDC27, then stripped and re-probed with the anti-actin antibody as a loading
control. C. Effect of USP22 and CDC27 silencing on bacterial replication after 8 h of infection. HEK293T cells were either left untreated or RNAi treated
for 48 h before infection, then infected with the WT strain U112. We considered cells harboring 6–15 bacteria after 8 h of infection as normal WT
levels of replication. At least 100 infected cells from different field were analyzed in each experiment. Data are the results of one experiment
representative of three independent experiments. The asterisk indicates statistically significant differences between the control and the USP22 and
CDC27 RNAi- treated cells.
doi:10.1371/journal.pone.0011025.g003

Host-Francisella Interaction

PLoS ONE | www.plosone.org 4 June 2010 | Volume 5 | Issue 6 | e11025



(,90%) that were either untreated or treated with the RNAi

negative control (Fig. 3C).

In contrast, silencing of PI4KCA in HEK293T cells did not

affect intracellular replication of F. tularensis by 8 h of infection.

Indeed, ,90% of the untreated or the RNAi control-treated cells

infected with the WT strain harbored 6–15 bacteria by 8 h.

Similarly 76% of the PI4KCA RNAi-treated cells harbored 6–15

bacteria per cell by 8 h. At 24 h post infection the WT strain in

both untreated or RNAi control treated cells showed increased

bacterial numbers in ,80% of the infected cells (Fig. 4A, C).

However, in the PI4KCA RNAi-treated cells, the bacterial

numbers did not increase at 24 h compared to the 8 h time

point. Our data indicated a temporal requirement of the PI4KCA

and its role in PI4 metabolism in later stages of cytosolic

proliferation of F. tularensis.

The role of mammalian USP22, CDC27 and PI4KCA in
phagosome biogenesis of F. tularensis

The FCP transiently matures to an acidified late endosome-like

phagosome for ,30 min, followed by escape of the organisms

into the cytosol by 30–60 min (see [1] for a recent review). While

the F. tularensis factors required for modulation of phagosome

biogenesis and escape into the cytosol of human-derived and D.

melanogaster-derived cells have been recently identified [22,23], the

host factors involved in these processes are not known. We

postulated that CDC27, USP22 and PI4KCA suppressed

intracellular bacterial replication due to alteration in biogenesis

of the FCP in the RNAi-silenced cells. To test this hypothesis, we

examined intracellular trafficking of the WT strain within non

treated or RNAi-treated HEK293T cells and used the iglC

mutant, which is defective in evasion of lysosomal fusion, as a

control.

We examined co-localization of the phagosomes with the

late endosomal/lysosomal marker LAMP-2 and the lysosomal

marker cathepsin D at 30 min and 2 h after infection (Fig. 5). As a

negative control for LAMP-2 and cathepsin D co-localization we

used the WT strain in the RNAi control-treated or non- treated

cells. At 30 min after infection, ,65% of the iglC mutant-

containing phagosomes co-localized with LAMP-2 and cathepsin-

D, as previously shown [34] (Fig. 5). No significant difference

(Student t-test, p.0.1) in LAMP-2 andcCathepsin-D co-localiza-

tion was observed between the WT strain-containing phagosomes

in the untreated and the RNAi-treated cells (Fig. 5).

At 2 h after infection, only 26% of the WT strain-containing

phagosomes co-localized with the late endosomal/lysosomal

marker LAMP-2 (Fig. 5A and C), while 71% of the iglC mutant-

containing phagosomes showed persistent co-localization with the

LAMP-2 marker. Silencing of USP22 and PI4KCA did not affect

co-localization with LAMP-2 when compared to untreated cells

(Fig. 5A and C), indicating successful modulation of phagosome

biogenesis. In contrast, 67% of the WT strain-containing

phagosomes in the CDC27-silenced cells co-localized persistently

with the LAMP-2 marker (Fig. 5A and C). This suggested a role

for CDC27, but not USP22 or PI4KCA, in modulation of

phagosome biogenesis by F. tularensis.

Figure 4. Late cessation of intracellular proliferation within PI4KCA-silenced cells. A) Representative microscopy images of HEK293T cells
after 8 and 24 h infection by F. tularensis. HEK293T cells were either treated with the RNAi negative control or the PI4KCA RNAi for 48 h before
infection, then infected with MOI of 10 with the WT strain U112 for 1 hr, followed by 1 h gentamicin and an additional 6 h (left panel) or 22 h (right
panel) of incubation. B. Western blot results confirming PI4KCA gene silencing. Membranes were blotted with anti-PI4KCA antibody, then stripped
and re-probed with the anti-actin antibody as our loading control. C. Effect of PI4KCA silencing on bacterial replication after 24 h of infection.
HEK293T cells were either left untreated or RNAi treated for 48 h before infection, then infected with the WT strain. Depending on the MOI that we
used, we considered cells harboring 6–15 bacteria after 8 h of infection and more than 25 bacteria after 24 h to reflect the normal WT levels of
replication. At least 100 infected cells from different fields were analyzed in each experiment. Data are the results of one experiment representative of
three independent experiments. The asterisk indicates statistically significant difference between the control and the PI4KCA RNAi- treated cells.
doi:10.1371/journal.pone.0011025.g004
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Similar results to co-localization of the FCP with LAMP-2 were

observed with co-localization of the FCP with the lysosomal

marker cathepsin-D (Fig 5B and C), where a small number of WT

strain FCPs co-localized with this marker at 30 min in control

cells. In contrast, 70–90% of the iglC mutant-containing

phagosomes showed persistent acquisition of Cathepsin-D,

indicating fusion with the lysosomal compartments. Silencing of

USP22 and PI4KCA had no significant effect (Student t-test,

p.0.2) on co-localization of the WT strain-containing phagosomes

with cathepsin-D compared to non-treated cells (Fig. 5B and C).

This indicates that evasion of lysosomal fusion by F. tularensis is

independent of USP22 and PI4KCA. In contrast, the WT strain-

containing phagosomes showed persistent co-localization with the

lysosomal marker cathepsin-D within the CDC27-silenced cells,

similar to the iglC mutant in untreated cells (Fig. 5B and C). Thus,

the CDC27 ubiquitin ligase is crucial for the ability of the WT

Figure 5. CDC27 but not USP22 or PI4KCA is required for modulation of phagosome biogenesis. A. Representative confocal microscopy
images that show co-localization of the late endosomal/lysosomal marker LAMP-2 with the phagosomes harboring the iglC mutant in the untreated
HEK293T cells (UN) as well as the WT strain in the RNAi-treated cells at 2 h after infection. B. Representative confocal microscopy images that show
co-localization of the lysosomal enzyme cathepsin D with the phagosomes harboring the iglC mutant in the untreated cells (UN), as well as the WT
strain in the RNAi-treated cells. C. Quantification of co-localization of the phagosomes with LAMP-2 (L-2) and cathepsin-D (C–D) markers at various
time points. The results are based on examination of at least 100 bacteria at 2 h after infection analyzed by confocal microscopy in 2 independent
experiments performed in triplicate and the error bars represent standard deviation.
doi:10.1371/journal.pone.0011025.g005
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strain to limit fusion of the FCP to lysosomes. Taken together, our

data indicate that the CDC27 ubiquitin ligase is essential for F.

tularensis to evade lysosomal fusion, while the USP22 ubiquitin-

specific peptidase and the PI4KCA PI4 kinase are only required

for bacterial proliferation in the cytosol, but play no detectable role

in evasion of lysosomal fusion.

To determine whether the three host factors were involved in

interaction with autophagy during late stages of infection, similar

studies were conducted at 12 h and 24 h post infection. The

results showed that at 12–24 h of infection the % of co-localization

of the WT FCPs with both LAMP-2 and cathepsin-D positive

compartments did not change from the 2 h time point in the

CDC27, USP22, or PI4KCA RNAi-treated cells. Thus, in

contrast to mouse-derived cells, late stages of intracellular

replication of F. tularensis within the cytosol of human-derived

cells do not involve re-entry to the endosomal-lysosomal pathway

through autophagy. These data show that interaction of cytosolic

F. tularensis with autophagy during late stages of proliferation

within the cytosol is specific to the mouse model but does not apply

to the human host.

The role of CDC27, USP22 and PI4KCA in phagosomal
escape

To determine the role of the USP22, CDC27 and PI4KCA

factors in phagosomal escape directly, we utilized a fluorescence

microscopy-based phagosomal integrity assay, to differentially

label bacteria that are cytosolic or within a compromised

phagosome vs. bacteria enclosed within an intact phagosome, as

we described previously (see Experimental Procedures). This is

achieved by loading the host cell cytosol with anti-F. tularensis

antibody after preferential permeabilization of the plasma

membrane. Consistently, ,85% of the iglC mutant control

remained in intact phagosomes in untreated cells (Fig. 6). In

untreated HEK293T cells infected by the WT strain for 2 h,

,70% of the bacteria were cytosolic or within disrupted FCPs

(Fig. 6). Similarly, ,80% of the intracellular bacteria were

cytosolic in USP22 and PI4KCA RNAi-silenced cells. In contrast,

only 25% of the WT strain escaped into the cytosol within the

CDC27-silenced cells. The data are consistent with our studies

above on phagosome biogenesis in the RNAi-treated cells (Fig. 5).

Therefore, both PI4KCA and USP22 are not required for

phagosomal escape but are essential for bacterial replication

within the cytosol, while CDC27 is essential for phagosomal

escape of F. tularensis into the host cell cytosol.

Discussion

Previously, we have shown that intracellular trafficking and

cytosolic proliferation of F. tularensis within D. melanogaster derived-

cells is similar to that of mammalian macrophages at the cellular

level [1]. However, there are some clear differences in the bacterial

factors involved in these processes in D. melanogaster derived-cells

compared to human macrophages [22,23]. At least 186 arthropod

host genes have been confirmed to be required for intracellular

proliferation of F. tularensis with D. melanogaster-derived cells. Due to

the high throughput nature of our screen and automated

measurement of intensity of the GFP fluorescence, our screen

does not differentiate mutants defective in intracellular replication

from the ones that are severely defective in entry into S2 cells.

Importantly, three mammalian homologue genes have been

confirmed to play an essential role in modulation of phagosome

biogenesis, phagosomal escape and proliferation of F. tularensis

within the cytosol of human cells. Although we only selected 12

mammalian homologues, our data clearly indicate that there are

major differences between the mammalian and arthropod host

factors required for intracellular proliferation of F. tularensis. This is

consistent with our recent findings that there are some clear

differences in the bacterial factors involved in these processes in D.

melanogaster derived-cells compared to human macrophages

[22,23]. This is despite the clear presence of some similar

mechanisms involved in proliferation in both host cells through

modulation of conserved eukaryotic factors.

Figure 6. CDC27 but not USP22 or PI4KCA is required for bacterial escape into the cytosol. Representative confocal microscopy images of
the WT F. tularensis within untreated or RNAi-treated cells to determine phagosomal escape. Phagosomal escape was determined by the ability of
GFP-expressing intracellular bacteria to bind anti-F. tularensis antibody (red) loaded into the host cell cytosol after preferential permeabilization of the
plasma membrane, compared to the bacteria found within intact vacuoles (green) that are impermeable to the antibody. The % of cytosolic bacteria
are shown, based on examination of at least 100 bacteria at 2 h after infection. The results are representative of three independent experiments
performed in triplicate.
doi:10.1371/journal.pone.0011025.g006
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Some identified host factors are relevant to previously published

host factors and pathways that are manipulated by F. tularensis and

other intracellular pathogens [26,29,30,35,36,37]. Consistent with

other findings, we identified some host factors involved in actin or

microtubule rearrangement that are required for invasion by F.

tularensis [13,37,38]. Our data show that an RNAi knockdown in

Pi3k21B results in enhanced growth of F. tularensis, consistent with

the negative regulation of this gene during infection by F. tularensis

[37]. It is also noteworthy that the CD36 family scavenger

receptor (Pes) RNAi target found to be required for uptake of L.

monocytogenes and Mycobacterium [26,30] is also required for infection

by F. tularensis, suggesting that F. tularensis may use this receptor to

enter the host cell.

Within the host cell, F. tularensis resides transiently within a late

endosome-like phagosome that becomes acidified upon acquisition

of the vATPase proton pump with limited fusion to the lysosomes,

followed by bacterial escape into the cytosol [1]. We identified

novel host factors that are likely involved in modulation of

biogenesis of the FCP such as VhaAC39, a component of the

vATPase pump, or the Rab proteins such as Rab8 and Rab10 that

are involved in vesicular trafficking. Consistent with the findings

that iron is a nutritional requirement for intra-macrophage growth

by F. tularensis [39,40,41], we identified host factors involved in

iron binding and transport processes, such as cyp317a1, and tsf1, to

be required for intracellular proliferation of F. tularensis.

To decipher whether some of the mechanisms of pathogenesis

deployed by this intracellular pathogen within arthropod and

mammalian hosts are similar, we selected 12 human gene

homologues that suppress intracellular replication within Dro-

sophila cells and these genes belong to different functional

categories. We show that silencing of CDC27, USP22 and

PI4KCA suppressed intracellular replication of F. tularensis within

mammalian cells. The USP22 ubiquitin-specific peptidase

belongs to a large family of proteins that contain a carboxy

terminal ubiquitin hydrolase [42,43]. Furthermore, endogenous

USP22 contributes a deubiquitylating activity to the human

SAGA complex, required for the function of transcription

activators in eukaryotes [43]. This activity is directed at the core

histone H2B, where USP22 may regulate transcription via

alterations in levels of histone ubiquitylation [43]. Silencing of

USP22 does not affect evasion of lysosomal fusion or phagosomal

escape by F. tularensis, but suppress replication of F. tularensis

within the cytosol of mammalian cells. These data clearly show

that F. tularensis modulate host cell cytosolic factors to enable

bacterial proliferation within the cytosol. It is likely that the

ubiquitin hydrolase activity of USP22 contributes to permissive-

ness of the host cell cytosol for bacterial proliferation.

Silencing of PIK4ca or PI4K-III-a, which encodes a type III

PI4-kinase a subunit, inhibits intracellular replication of F.

tularensis between 8 and 24 hours after infection but not at the

early time points. There are 4 known cellular PI4-kinases

involved in the phosphorylation of PI to yield PI4P. Their

primary distinction is their localization within the cell, resulting in

different biological outcomes [44]. Interestingly, silencing of

PI4K-III-a significantly reduces hepatitis C virus (HCV) RNA

replication [45]. In contrast to F. tularensis, L. monocytogenes utilizes

PI4K II-a and PI4K II-b to modulate its entry into human cells,

but does not require PI4K-III-a for phagocytosis [46], which

might highlight alternate mechanisms these two bacteria utilize to

manipulate phosphoinositide metabolism. Silencing of PI4K-III-a
did not alter evasion of lysosomal fusion and phagosomal escape

by F. tularensis. Therefore, PI4KCA is not required for evasion of

lysosomal fusion, but it is essential for bacterial proliferation in

the host cytosol, where many transduction pathways downstream

of PI4KCA may favor intracellular replication of F. tularensis.

The differential and temporal requirement of PI4KCA during

infection by F. tularensis suggests modulation of PI4KCA-

dependent signal transduction pathways and modulation of

phosphoinositide metabolism by F. tularensis are triggered after

phagosomal escape and initiation of bacterial proliferation within

the cytosol.

The CDC27, or APC3 protein, is an essential member of the

anaphase-promoting complex (APC), an E3 ubiquitin ligase in the

ubiquitin-mediated proteolysis pathway involved in regulation of

the cell cycle [47]. Our data show that silencing of CDC27

enhances fusion of the FCP to the lysosomal vesicles and restricts

phagosomal escape. The E3 ubiquitin ligase may be essential to

recruit bacterial or host substrates for polyubiquitination. The role

of the CDC27 E3 ubiquitin ligase in modulation of biogenesis of

the FCP and the role of the USP22 ubiquitin-specific peptidase in

bacterial proliferation within the cytosol suggests that F. tularensis

may utilize or exploit host ubiquitin turnover in distinct

mechanisms during the phagosomal and cytosolic phases of the

bacteria.

In mouse bone marrow-derived macrophages (BMM), F.

tularensis re-enter the endocytic compartment within ,20 hrs of

infection, via an autophagy-like process [10]. Our data show that

F. tularensis does not re-enter the endosomal-lysosomal pathway

during late stages of proliferation within the cytosol of human cells.

Therefore, interaction of F. tularensis with autophagy is specific to

the murine model but does not apply to the human host. This is

likely due to differences in the innate immunity between the two

host species. Our data caution extrapolation of findings about F.

tularensis within the murine model to human infection.

Taken together, we have utilized the arthropod-vector model

of F. tularensis, D. melanogaster, in a genome-wide RNAi-based

forward genetic screen to identify host factors that affect

intracellular proliferation of F. tularensis, and have identified

some conserved mammalian homologues required for modula-

tion of phagosome biogenesis, phagosomal escape and prolifer-

ation of F. tularensis within the cytosol. Unique as well as

conserved host factors are exploited by F. tularensis to proliferate

within arthropod and mammalian-derived cells. This is

consistent with the differences in the molecular mechanisms

utilized by F. tularensis to evade lysosomal fusion and escape into

the cytosol within human macrophages and arthropod-derived

cells [22,23]. Our data indicate that F. tularensis utilizes host

ubiquitin turnover and phosphoinositide metabolism in distinct

mechanisms during the phagosomal and cytosolic phases of the

bacteria. Our data will facilitate deciphering the ecology, and

patho-adaptation of F. tularensis to the arthropod vector and

its role in bacterial ecology and patho-evolution to infect

mammalian cells.

Materials and Methods

Bacteria, media and tissue cultures
Francisella tularensis ssp. novicida strain U112 and its isogenic

mutants harboring the plasmid pKK214, which encodes gfp, were

used in all experiments and have been described elsewhere

[34,48,49]. Bacteria were cultured on tryptic soy agar (TSA) plates

supplemented with 0.1% cysteine and 10 mg ml21 tetracycline as

required. Drosophila S2R+ cells and dsRNA used for the primary

and secondary RNAi screens were supplied by the Drosophila RNAi

Screening center (Harvard Medical School, (http://flyrnai.org/).

Drosophila cells were maintained at 24uC in tissue culture flasks

containing Schneider’s Drosophila medium (Gibco) supplemented

with 10% heat inactivated fetal bovine serum (SDM-10).
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High throughput D. melanogaster genome-wide RNAi
screen

F. tularensis infections of S2R+ cells for the primary and

secondary RNAi screens were performed in 384-well plates. S2R+
cells were re-suspended in serum-free Schneider’s Drosophila

medium (SDM), and ,3.06104 S2R+ cells in 10 ml were added

to each well of the 384-well plates containing RNAi targets using a

WellMate Microplate dispenser (Thermo Scientific). After 1 hr at

RT, 30 ml of SDM-10 were added to each well, and then cells

were incubated at 25uC for 4 days to allow for knockdown of

target transcripts and protein degradation. The S2R+ cells were

then infected by adding 10 ml of a suspension of GFP-expressing F.

tularensis ssp. novicida strain U112 or its isogenic mutants at ,MOI

20 in SDM-10 using a WellMate Microplate dispenser. The S2R+
cells were incubated at 28uC for 2 hrs, washed once, and 50 mg/

ml gentamicin in SDM-10 was added to kill extracellular bacteria.

The media was removed, and 50 ul of fresh SDM-10 was added,

then cell were incubated at 28uC. Four days post infection,

bacterial proliferation was quantified by reading GFP fluorescence

using the Analyst GT plate reader (Molecular Devices) and filter

sets 485 nm excitation, 530 nm emission and 505 nm dichroic

mirror.

Overall for the genome-wide primary screen and secondary

quantitative screen, at least 3 independent experiments were

performed, each RNAi target was tested in duplicate or in multiple

wells, and the Z-scores of fluorescence intensities within each 384

well plate were calculated using bioinformatics tools provided by

the Drosophila RNAi Screening center (Harvard Medical School,

http://flyrnai.org/). Raw data of F. tularensis GFP fluorescence

intensity generated by the plate reader in each plate was

transformed into z-scores in the form of (Raw Data-Plate

median)/interquartile Range heat map using the Drosophila RNAi

screening center website (http://flyrnai.org/) analysis tool to select

RNAi targets that suppressed intracellular bacterial proliferation.

In addition, wells suspected to have edge effects (Yellow clusters in

the Z-score heat map, Fig. 1A) or dispensing errors were not

considered as hits. The following host factors not found in our

primary screen were tested again in the secondary screen: Rab11,

Rab35, Rab7, Arf102F, CG3523, tor, ckiibeta, vhappa1-1,

vhaAC39, CG5691, CG11814, arc-p20, act5c, act57b, rab1,

rab10, rab2, rab21, rab5, rab8, crq (CD36), CG7228 (CD36

family), and CG2699 (Pi3K21B). Student’s t-test was used and the

P-value was obtained. GraphPad Prism 5 was used for statistical

analyses.

Immunofluorescence and automated fluorescence
microscopy of the screen

After 2 hr of infection of S2R+ cells, the media was removed;

500 mg/ml gentamicin in SDM-10 was added to kill extracellular

bacteria. Twenty-four hours post-infection, the 384-well plates

were centrifuged, the medium was aspirated using a 24 channel

wand (V&P scientific, inc) and samples were fixed by adding 50 ml

of 3.7% paraformaldehyde in PBS per well and incubating for

30 min at RT. Wells were washed with PBS, permeabilized with

0.1% Triton X-100, blocked with 3% BSA, then bacteria were

labeled with 1:4000 anti-F. tularensis antibodies, followed by

secondary labeling with 1:4000 alexa fluor 555-coupled donkey

anti-goat antibodies. The S2R+ cells were labeled with 5 mg/ml

Hoechst dye in 3% BSA. Samples were then washed with PBS and

kept in PBS at 4uC until automated fluorescence microscopy

analysis was performed.

Fluorescence images of infected S2R+ cells in 384- well plates

were acquired using the ImageXpress Micro automated epifluor-

escent microscope (Molecular devices) equipped with the Photo-

metrics CoolSNAP ES digital CCD camera, and the MetaXpress

cellular image analysis software. Images were acquired with a 40X

magnification, Plan Fluor ELWD lens, DAPI and CY3 filters.

Images from the stained nuclei and antibody labeled bacteria were

collected at five random fields within each well, and further

analyzed using image J NIH software; l images within each

channel were set with the same parameters.

Silencing of host factors in HEK 293T cells
HEK293T cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) supplement-

ed with 10% heat inactivated fetal bovine serum (FBS). One day

before transfection, 56104 cells/ml were seeded in six-well plates

and on glass cover slipsin 24-well plates. The RNAi clones were

purchased from Santa Cruz (Santa Cruz, CA.), and transfected as

recommended by the manufacturers. Knockdown of RNAi

silenced genes was evaluated by western blot probed with anti-

PI4KCA from Proteintech group Inc, (Chicago, IL), anti- CDC27

or anti-USP22 antibodies from Abcam (Cambridge, MA). Anti-

actin anti-serum was obtained from Sigma (St. Louis, MO) and

was used to re-probe the Western blots for a loading control.

Confocal laser scanning microscopy
Untreated HEK293T cells and successfully silenced cells were

infected with the F. tularensis subsp. novicida for 1 h using MOI of

10. After infection, the cells were washed three times, and treated

with 50 mg/ml gentamicin for 1 hr to kill extracellular bacteria.

The cells were processed for confocal microscopy as we described

previously [12,34]. Bacteria were labeled with anti-F. tularensis

antibody (1:4000) and appropriate secondary antibodies (Molec-

ular Probes Invitrogen, Carlsbad, CA). The anti-LAMP-2 (H4B4)

1:2000 monoclonal antibody (developed by J. T. August and J. E.

K. Hildreth) was obtained from the Developmental Studies

Hybridoma Bank of University of Iowa, and anti-cathepsin D

mAb (1:200) was obtained from BD transduction (San Jose, CA).

The images were captured using the Fluoview FV-1000 confocal

microscope, and are presented in the figures as a single z section.

Quantitation of vacuolar and cytoplasmic F. tularensis
within semi-permeabilized HEK293T cells

To evaluate the proportions of cytoplasmic and vacuolar F.

tularensis, untreated or siRNA treated HEK293T cells in 24-well

plates (56104 per well) were infected with the WT strain or iglC

mutant. Two hours after infection, cells were washed once with

KHM buffer (110 mM potassium acetate/20 mM Hepes/2 mM

MgCl2, pH 7.3), and their plasma membranes were selectively

permeabilized with 35 mg/ml digitonin and 1:200 goat anti-F.

tularensis antibody, in DMEM medium, for 15 min at room

temperature. After washing once with KHM buffer, goat anti-

Francisella antibody was added for 30 more min and incubated at

37uC to label cytoplasmic bacteria. After washing in KHM buffer,

cells were fixed and permeabilzed with ice cold methanol for

5 min at 220uC and blocked with 3% BSA for 1 h at room

temperature. Both vacuolar and cytoplasmic bacteria were labeled

with 1:200 mouse anti-F. tularensis mAb for 1 h at room

temperature. Secondary donkey anti-mouse conjugated to Alexa-

Fluor488 and donkey anti-goat conjugated to Alexa-Fluor555

were obtained from Molecular Probes Invitrogen (Carlsbad, CA),

were added for 1 h. Coverslips were mounted and cells were

examined by confocal microscopy. The images were captured

using the Fluoview FV-1000 confocal microscope, and are

presented in the figures as a single z section.
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Statistical Analysis
Student’s t-test was used and the P-value was obtained. GraphPad

Prism 5 was used for statistical analyses. P-value ,0.05 was

considered statistically significant.

Supporting Information

Table S1 Confirmed host factors required for proliferation of F.

tularensis in D. melanogaster cells. Further descriptive information on

individual RNAi target can be found at the Drosophila RNAi

Screening Center (DRSC) website (flyrnai.org) using the indicated

DRSC amplicon. L (L. monocytogenes), M (Mycobacterium), C

(Chlamydia). Phenotype strength are described as strong (3), medium

(2), or weak (1). * Selected genes homologues in mammalian cells.

Found at: doi:10.1371/journal.pone.0011025.s001 (0.12 MB

XLS)
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